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Abstract

The combined effect of mean flow and rotation on hexagonal patterns is investigated using Ginzburg—Landau equations that
include nonlinear gradient terms as well as the nonlocal coupling provided by the mean flow. Long- and short-wave side-band
instabilities are determined. Due to the nonlinear gradient terms and enhanced by the mean flow, the penta—hepta defects car
become unstable to the induced nucleation of dislocations in the defect-free amplitude, which can lead to the proliferation
of penta—hepta defects and persistent spatio-temporal chaos. For individual penta—hepta defects the nonlinear gradient terms
enhance climbing or gliding motion, depending on whether they break the chiral symmetry or not.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Patterns in Rayleigh—Bénard convection have been extensively explored, both theoretically and experimentally,
as paradigms to investigate spatio-temporal chaos and transitions from ordered to disordered states. Arguably, one
of the most interesting chaotic states is that of spiral defect chaos. For small Prandtl numbers, it arises from roll
convection at moderate heating rates in systems with large aspediljatio this complex chaotic state spirals,
disclinations, and dislocations are persistently created and annihilated. It is found to be driven by a large-scale mean
flow, which arises due to the curvature of the convection rolls and becomes prominent for small Prandtl numbers.

Another classic chaotic state that arises from a planform of convection rolls is the domain chaos resulting from
the KUppers—Lortz instability in rotating convectif+-4]. In this instability rolls are unstable to rolls with a similar
wavelength but different orientation. The resulting state is characterized by domains of convection rolls with different
orientation that persistently invade each other.

Motivated by the strong impact that mean flow and rotation have on the stability of rolls and by the interesting
chaotic states that result from it, we consider in this paper the effect of mean flow and rotation on the stability and dy-
namics of hexagon patterns and their defects. Hexagon patterns are common phenomena in various pattern-forming
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systems and are readily obtained also in Bénard—Marangoni convection driven by surface teng®i6}jeagd in
buoyancy-driven non-Boussinesq convection (E'D- In both of these convection systems mean flow is expected
to be important for small and moderate Prandtl numbers.

Without rotation and without mean flow the stability of hexagonal patterns has been discussed on the level of
Ginzburg-Landau equations as they pertain to Bénard—Marangoni equdi@ymaird somewhat more generally in
[9].

In the absence of mean flow but with broken chiral symmetry (e.g. by rotation), the side-band instabilities and
dynamics of hexagons have been investigated in the context of three coupled Ginzburg—Landau €q@&tions
as well as in a long-wave model for Marangoni convectibh] and a model of Swift-Hohenberg typ&2].

Even on the level of the lowest-order Ginzburg—Landau description rotation makes the system nonvariational, and
oscillatory amplitud¢13—15]and side-band instabilities appg#®]. If the nonlinear gradient terms are retained in
the Ginzburg—Landau equations the latter can lead to an interesting state of spatio-tempordid3haos

In the absence of rotation, mean flow couples differently to the two steady, long-wave phase modes of the weakly
nonlinear hexagon patterfis6]; only the stability limits due to the transverse phase instability are affected by the
mean flow, while those corresponding to the longitudinal phase mode are unchanged. As a result, for sufficiently
small Prandtl numbers the stability limit for large wavenumbers is given by the transverse phase mode, while
for small wavenumbers the longitudinal mode becomes dominant. This is particularly interesting, since without
mean flow the longitudinal mode is usually of little importarj®gl6]. While the transient patterns arising from
the longitudinal instability remain quite ordered, those ensuing from the instability involving the transverse mode
typically exhibit domains of hexagons with quite different orientafibd].

In this paper, we investigate the combined effects of rotation and of mean flow on weakly nonlinear hexago-
nal patterns using appropriately extended Ginzburg—Landau equations. We retain all three possible cubic nonlin-
ear gradient terms. The nonlinear evolution of the side-band instabilities leads to the formation of dislocations
that later combine to penta—hepta defects. In parameter regimes in which the nonlinear gradient terms, rotation,
and mean flow are significant we find quite intriguing defect dynamics: the presence of penta—hepta defects in-
duces the nucleation of a dislocation pair in the defect-free amplitude, which can lead to the proliferation of
defects and to persistent spatio-temporal chaos. We further study the effect of the nonlinear gradient terms on
the motion of single penta—hepta defects by calculating their mobility and the Peach—Kd&hler-type force acting
on them.

This paper is structured as follows. $ection 2wve formulate the problem by extending previous work on mean
flow in hexagon$16] to include the breaking of the chiral symmetry by rotation. Then we investig&tedtion 3he
linear stability of hexagons with respect to side-band perturbations. We demonstrate the induced defect nucleatior
and the resulting spatio-temporal chaoSaction 4In Section Sve investigate the effects of the nonlinear gradient
terms on the motion of isolated penta—hepta defects both analytically and numerically. We discuss our findings in
Section 6

2. Amplitude equations

For small Prandtl numbers and with rotation the usual Ginzburg—Landau equations for the three complex am-
plitudesA ; making up the hexagon patterns need to be extended in two ways. The mean flow, which is driven by
long-wave modulations of the convective amplitude, provides a nonlocal coupling of the roll fi@ileRotation
breaks the chiral symmetry. This is reflected in the difference between the cubic term coupling and that
couplingA1—A3 [10,13,14] Furthermore, to cubic order it introduces an additional nonlinear gradient term in the
equation for the amplitudes and an additional term in the leading order equation for the meah [fl@j\ The
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equations for the three hexagon modes in rotating convection at finite Prandtl numbers thus read

BAj=(u+ G- V)2— A2 = (v = )Aj 1P — 0+ )IAj DA + AT A% —iBA;(E - V)Q
+ilar —ag)AG_1(Aj41- VIAG g +ilen +ag) AT (1 VIAT ) +iea(AT_1(Tj41- VIAT
- A7+1(fj—l . V)Ai_l)» (1)

3
V20 = [2(h; - V(& - V) + T - V)P = (i - V)D)]IA, @)
i=1

with j = 1, 2, 3 cyclically permuted ir(1) ands; and; denoting unit vectors parallel and perpendicular to the
critical wave-vector associated with amplitude, respectively. The strength of the mean flow is characterized] by
whichincreases with decreasing Prandtl number. For nottoo small Prandtl nimbeughly inversely proportional
to the Prandtl numbdd 7]. With respect to the rotation rate, the coefficieptsrz, andt are odd functions, while
the other coefficients are even. They also depend on other physical parameters such as the Prandtl number. Note
that in the presence of rotation not only the differen@e - V)2 — (4; - V)?)|A;|2 but also the corresponding sum
is allowed by symmetry, which correspondsw|A; |2 and leads to a contributio@; o« Y3, |A;|2to Q. Upon
insertion in(1) Q; contributes to the cubic nonlinear gradient terms and provides therefore a local rather than a
nonlocal coupling of the roll modes. In this paper we focus on the nonlocal coupling and neglect this term along
with the other cubic gradient terms.

The above equations allow for several stationary, spatially periodic patterns. Rolls with ampltudes
Vi — g2 eanix, Aj+1 =0, existforu > g2, and are stable to homogeneous perturbations foru z + g2, where
ur = (1+ 2ga1)?/(1 — v)2. Hexagon solutions with wavenumber slightly different than the critical valusre
given byA; = Ro €9 X with

o (L+2900) £ V(A +2901)? + 41 — g?) (1 + 2v)
0= 2(1+ 2v) '

We will consider only the equilateral hexagons for which the wavenumbers in all three modes are equal. Nonequi-
lateral hexagon patterns have been discussed in the absence of mean flow and r¢i#j@fJisince the quadratic
coupling coefficient irEq. (1)has been scaled tp1, the hexagon solution corresponding to the amplitRglevith

a minus sign in front of the square root is always unstable. In the following we will consider only the hexagon
solution of amplitudeRg with the plus sign inEq. (3) It is stable to homogeneous perturbations if batlk=
R2(1—v) + (1 + 2019)Ro > 0 andv = 2R3(1 + 2v) — (1 + 2a1g)Ro > 0. Mixed-modes with amplitudes

Aj =1/(v—-1) andAj41 = \/(,bL . — A?)/(1+ v) also exist but are always unstable with respect to rolls

®)
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Fig. 1. Sketch of bifurcation diagram of simple, spatially periodic solutiorisqsf. (1) and (2yvith rotation.
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or hexagons. The stability of these stationary, spatially periodic solutions with respect to homogeneous amplitude
perturbations is summarized in the bifurcation diagrarRigh 1L The hexagons first appeanat 0 (or u = usn

in the bifurcation diagram) through a saddle-node bifurcation, and become unstable to ‘oscillating hexagons’ via a
Hopf bifurcation atx = 0 (or u = up in Fig. 1) with a Hopf frequencys. = 2+/3y (1 + 2ga1)?/(v — 1)%. Here

we focus on the instability of steady hexagons in the range < 1 < uy; a detailed discussion of the oscillating
hexagons fop > uy can be found if10,13,14,21,22]

3. Phase equation and general stability analysis

Following the procedures i[10,23], we first derive the phase equation that describes the long-wave side-band
instabilities of hexagons. The slightly perturbed hexagon solution

Aj = Ro€i* L+ r; +ig)), j=123, )

is substituted inté&gs. (1) and (2wherer; andg; are the small amplitude and phase perturbations, respectively. We
introduce the super-slow scalés— §23; andV — 8V with |§] < 1, and adiabatically eliminate the perturbations

in the amplitudes and in the total phaBe= ¢1 + ¢2 + ¢3 by expressing them in terms of the two translation phase
modesp, = —(¢2 + ¢3) ande, = (¢2 — $3)/~/3. At linear order ins, the mean flow amplitud® can be written

in terms of the phase vectgr= (¢., ¢,) as

Q=dV-¢p+di& Vxo, (5)
where
3 w @ 3
=g rar (= 57) vt (vt ) Vaaar]. ©
. -3 0] w 3
d2 = g o | (70t ) w = (= 5v) V3aarg). "
w = 2qR3 + (a1 + v3a2) R, ®)
w= 2\/§ng, (©)

andg, is the unit vector perpendicular to they plane (following a right-hand rule). The linearized phase equation
for ¢ thus reads

¢ = DYV + (D) — DO)V(V - §) — DI (& x V29) + DI, (& x V)(Ve) — BV x (Q&), (10)
where the coefficients with superscript O correspond to the infinite Prandtl numbegcas®) (10]:

1 1

PP=>4 ——
+ 4+4u2+a)2

R2u
{%[(al + V/3a2)? + 301%] - «/§Rowa3q - 2uq2} ,
1 1
DY =D + 5 — ~{Rea(e1 — v/302) — Ro(Bor — v32)q +247%),
0 _ 1
17 42 4 @2

D%, = =2 (+/3R3o1 — v/3Rog). (11)

1
{Za)RS[(al + v/3a2)? + 30'5] + Z@Rouagq - a)qz} ,
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Substitutingeq. (5)into the linear phasgq. (10) we obtain
8¢ = D1V?p+ (D) — DIV(V - §) — Dx1(& x V?§) + Dx2(&; x V)(V¢), (12)

whereD| = D% +8d,, D) = D”, Dy1 = D%, andDy2 = DY, + Bdy,. The termsBd . andBdy, are the mean
flow contributions to the diffusion coefficients.
The two eigenvalues for normal-mode solution&tp (12)are

k2
or =% |:D|| +D, + \/(Dn — D)2 — 4Dy 1(Dx1 — sz):| , (13)

wherek is the magnitude of the wave-vector of the normal-mode perturbations proportiofat t6”e The phase
instability becomes oscillatory when the discriminant

= (D — D1)> = 4Dx1(Dx1 — Dx2), (14)

is negative, which is possible only when the chiral symmetry is broken.

The stability of the hexagonal pattern to general (including short-wave) perturbations is examined by solving
linearized equations similar to those[ir6]. Without rotation and the nonlinear gradient terms, the general stability
boundaries correspond to a steady bifurcation (real eigenvalues), and they always coincide with the long-wave
stability boundarie§l5,16] This is no longer true if rotation and nonlinear gradient terms are included. Hexagons
may undergo instability via short-wave instabilities, which may be steady or oscillatory depending on the parameters
[15]. In the stability diagrams, we display both the stability boundary for the long-wave perturbations (lines) and
the short-wave stability boundaries (circles).

Fig. 2a—c represent stability diagrams for different valueg @ndz with y = 0.05 anda; = a2 = a3 = 0.

Fig. 2aisforg = t = 0, Fig. 2b for § = —1 andr = 0, andFig. 2c for 8 = —1 andt = 1. In all the stability
diagrams the thick dashed curves (labele@ and4 in Fig. 2) correspond to steady phase instabilities, whereas the
thick solid lines (labele@) denote the oscillatory phase instability. The symbols denote short-wave instabilities. As
is the case without rotatiofi6], mean flow renders the stability boundaries asymmetric with respect to the band
center § = 0). In addition, we find that the ‘bubble’ enclosed by cuhexpands as the mean flow becomes larger

in amplitude Fig. 2a and b), suggesting that the mean flow tends to diminish the importance of the oscillatory
modes. Fop < 0, this effect appears to be more prominent for negatitlean for positive; and can eliminate the
oscillatory instability altogether (cFigs. 3b and 4p
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Fig. 2. Stability diagrams fop = 2,01 = ap = a3 = 0,y = 0.05: (@) =7 =0,(b)g = —1landt =0, (¢)8 = —1 andt = 1.
Circles denote short-wave instabilities. Thick lines denote long-wave instabilities: oscillatory (solid) and steady (dashed). Dotteddme denot
saddle-node bifurcation, thin solid line gives Hopf bifurcation to oscillating hexagons.
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Fig. 3. Stability boundaries for = 0,12 = 0,03 = 0.7,v = 2: (a) 8 = 0, (b) 8 = —3. Circles denote steady short-wave instability. Solid
thick line gives oscillatory long-wave instability, dashed thick line steady long-wave instability.

In the stability diagrams shown ifig. 3a and b, we focus on the nonlinear gradient term that is due to rotation
(a3 = 0.7) and set the other nonlinear gradient terms as well as the other rotation terms tp ze®, ¢ = 0).
While the o1-term makes the stability limit of the hexagons to the mixed-mode asymmetgicaimd can shift
the transition from hexagons to rolls to large valueg.dP4], the term corresponding @3 does not affect that
amplitude instability. FoB = 0 (Fig. 3a) the long-wave instability is oscillatory, while the short-wave instability
is steady. Whers is decreased te-3 (Fig. 3b) the oscillatory instability is completely suppresseddos 0 and
replaced by the two steady phase instabilities (lab2kad4), whereas fog > 0Ot is still there @), but it is mostly
preempted by a steady short-wave instability. Only for very small valugstbe oscillatory instability remains
relevant.

If in addition toag also the cubic rotation term is present the stability diagram becomes asymmetric even in
the absence of mean flow. This is illustratedrig. 4a, which gives the stability limits fop = 0.2, a3 = 0.7
andt = 0.5, witha1 = a2 = 0 andg = —0.1. Note that for smalB the stability boundaries depend very little
on B and are indistinguishable on the scale=gj. 4a for 8 in the range-0.2 < 8 < 0. As will be discussed in
Section 4 however, the nonlinear evolution of the pattern due to the instabilities can depend substangiadiyeon
in this regime. The origin of the asymmetry ¢gncan be seen from the diffusion coefficients and the growth rate
given inEgs. (11) and (13)espectively. Forr; = a2 = 0 the only terms that are odd ininvolve the product
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Fig. 4. Stability boundaries far = 2,1 = a2 = 0,a3 = 0.7,y = 0.2,7 = 0.5: () 8 = —0.1, (b) 8 = —3. Circles denote steady short-wave
instability. Solid thick line gives oscillatory long-wave instability, dashed thick line steady long-wave instability.
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Fig. 5. Temporal evolution of the number of dislocations for different valugs. @ther parameters are same as giveRim 4a. (a)g = 0
for system size 4% 48 (dashed line) and 84 96 (solid line shows quarter of the number of dislocations) Ak} —0.1 (dashed line) and
B = —0.2 (solid line) for system size 4R 48.

asw. For these parameter values the short-wave instability is steady and the long-wave instability is oscillatory. The
steady long-wave instability (short segment of a dashed line) has been shifteg @l the way to the amplitude
instability to oscillating hexagons and is preempted by the long-wave oscillatory instabiliig.ldb the mean

flow strength is increased # = —3. Then the stability limits are given solely by steady long-wave instabilities
and hexagons are stable only over a small range in

4. Defect proliferation

We numerically simulat&gs. (1) and (2fo investigate the nonlinear dynamics ensuing from the linear instabilities
and focus on the combined effect of the nonlinear gradient terms and the mean flow. Without rotation, the mean flow
couples only to the transverse phase mode and makes it possible to discern its instability from that of the longitudinal
phase modgL6]. Both instabilities lead to the formation of PHD and eventually return the wavenumber to the stable
band. While the transient disorder generated by this process is quite different for the two instabilities, they both, in
the absence of the nonlinear gradient terms, lead to an essentially monotonic decay of the defect number after it has
reached its initial maximum.

With the nonlinear gradient terms included the defect dynamics can become much more complgx5in
and b we show the temporal evolution of the number of dislocations for parameters corresponding to the stability
diagram shown irFig. 4a with u = 1, which are characterized by a relatively strong nonlinear gradient term that
breaks the chiral symmetrwg = 0.7). Each dislocation corresponds to one location at which one of the three
amplitudes vanishes (thus, a PHD corresponds to two dislocations). Three values for the mean flow strength are
used,p = 0, —0.1, and—0.2. The initial condition is a periodic hexagon pattern with wavenungber —0.6
(diamond inFig. 4a) that is perturbed with a small long-wave modulation.

Since the initial wavenumber is only slightly outside the linear stability boundary it takes quite a long time until
the first defects are generated. Then the number of dislocations reaches a maximum very rapidly. Without mean

1 While for the parameters correspondingdrig. 4b hexagons of all wavelengths are unstablgfor 0.6 numerical simulations in this regime
show that the defects arising from the instability serve as nucleation sites for rolls, which then invade the whole system.
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Fig. 6. Root-mean-square of the mean flow velocity as a function of timg fer—0.1 and—0.2. Other parameters are same as givefign 4a.

flow (8 = 0, Fig. 58), it decays subsequently to very small values and the final state is presumably stationary (cf.
Fig. 17). In contrast to the case without nonlinear gradient terms and without rofafinfurther defects are,
however, created throughout the simulation time, in particular in the larger system of siz8@@é&olid line).

When turning on the mean flow in addition to the nonlinear gradient terms, the evolution becomes more complex
as shown inFig. 5b. Decreasings from 0 to —0.2 shifts the stability limits very slightly towards less negative
wavenumbers and renders the hexagons slightly more stable. The initial rise in the number of dislocations is
therefore delayed to later times and the initial peak is smaller. Even though this change in the stability limits cannot
be discerned on the scale Big. 4a, the weak induced mean flow is sufficient to lead to strong and persistent
fluctuations in the number of defects (solid lingHig. 5b). In fact, somewhat smaller and slower fluctuations persist
even for8 = —0.1 (dashed line). The strong correlation between the number of defects and the mean flow strength
is apparent when comparirigg. Sb with Fig. 6, which shows the spatial average of the root-mean-square of the
mean flow velocity/ < (VQ)2 > as a function of time.

4.1. Induced defect nucleation

A closer inspection of the defect dynamics showikig. 5reveals that the temporal fluctuations result from the
induced nucleation of new dislocations in the vicinity of pre-existing penta—hepta defects. One such event is shown
in Fig. 7. The initial configuration consists of a PHD denoted®y—, +), which is comprised of a dislocation with
negative topological charge in mode and one with positive charge in mode (grey circles inFig. 7). Mode A1
does not have any dislocations in the vicinity of this PHD. It is, however, perturbed due to the presence of the PHD
and the zero-contour lines of the real and the imaginary patt dthick solid and dashed lines) are twisted around
the dislocations im2 and A3 (Fig. 7a). This twisting reflects to some extent the advection of this mode by the mean
flow (thin lines). Soon two dislocations appeatin (black circles irFig. 7c), which then bind with the dislocations
constituting the initial PHD to form two new PHOs-, —, 0) and(—, 0, +). The new PHDs typically move apart
and can induce the nucleation of further dislocations leading to the proliferation or multiplication of defects as
sketched inFig. 8 There the further nucleation of a pair of dislocationsdifn and A3 leads eventually to four
PHDs. Such proliferation processes have been recently found in simulations of Kuramoto—Sivashinsky equation
and of Ginzburg—Landau equations without rotation and without mean flow but with the nonlinear gradient terms
corresponding tee 2 [25].

The nonlinear gradient terms appear to be central for the induced nucleation in that they lead to a separation of the
dislocations making up the penta—hepta defects as is illustratéd.ida. The dependence of the distance between
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Fig. 7. Induced nucleation of dislocations by penta—hepta defec{8 for—0.2 andu = 1. Other parameters as kig. 4a. Solid lines are
zero-contour lines for real part df;, and dashed lines for the imaginary part. Grey circles are dislocatiotisand A3 and the arrows indicate
the mean flow velocity field.

the dislocations ak3 is shown inFig. 9. Foraz > 0.6 the PHD becomes unstable through the induced nucleation of
dislocations. We find that the dislocations are also separated if only the nonlinear gradient terms corresponding to
a1 orap are included (see alg@5]). Breaking the chiral symmetry through theterm does not affect the distance
between the dislocations in a PHD pair, nor does the mean flow.

The stability of the PHD, however, depends not only on the distance between its two constituent dislocations
but also on the mean flow. This is shownkig. 10where the stability limit of PHDs is given as a function ®f
andas for a background wavenumber= 0. It is obtained by direct numerical simulations of a PHD pair in a
system of size 4% 48. Note that for this system size there is still a small, but noticeable interaction between the
two PHDs that have to be placed in the system to satisfy the periodic boundary conditions. In the stable regime the
two PHDs move relatively slowly towards each other and would eventually annihilate each other, whereas in the
unstable regime the seeded PHDs nucleate new dislocations and get transformed into different PHDs before they
reach each other.

Clearly, increased mean flow greatly facilitates the induced nucleation of dislocations rendering the PHDs much
less stable even though the distance of the constituent dislocations is hardly affected by the mean flow. Thus, even
relatively small values ofi3 can be sufficient to induce nucleation|f| = O(1). Whenas is decreased below
a3 ~ 0.1 the induced nucleation as described above is replaced by a different process in which new dislocations
appear not in the previously defect-free mode but in the modes that carry already a dislocation. This is presumably

<D
®_.@::= ......
G-

Fig. 8. Sketch of defect proliferation by induced nucleation.
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Fig. 9. Distance between dislocations within a bound PHD as a functieg foff 8 = 0. Other parameters are same as giveRiin 4.

due to the fact that with increasing mean flow strength the side-band stability limit of the periodic hexagon pattern
is shifted further to the left (for example, see Fig. 116]) and comes very close to the background wavenumber
g = 0 employed irFig. 10

4.2. Persistent PHD-chaos

A particularly interesting aspect of the simulations showirig. Sb is the fact that the induced nucleation of
dislocations is not merely transient as had been the cd@bJjnbut instead persists for the whole duration of the
simulation. To bring out the persistence of the dynamics more clearly, we give a detailed analysis of the pattern
evolution by measuring the local wavenumig(x) of each component

—iVA;
q;(x) =N ( ’) forj =123 (15)
J

We extract the spatial average of the transverse and of the longitudinal comp@peantly; of q;, respectively

_ = Jrhj-a;dx oz Jrti-a;dx
i=n;-q =2 " i=t,.q =42 2" 16
qlj nj q] f[v dZX qij T] q] fr d2X ( )

oE T T T T .

PHD stable

Chaos

-1

Fig. 10. Stability limits of penta—hepta defects (squares) and limit of persistent spatio-temporal chaos (diamonds) as a function of mean flow
strength8 andws. Remaining parameters gre=1,v =2,y = 0.2,7 = 0.5, andg = 0.
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HereI" denotes the spatial domalfig. 11a and b show the temporal evolution of the two wave-vector components
corresponding to the evolution of the number of defects showignba and b (for system size 4248). The rapid
initial change in both components corresponds to the period in time when the long-wave instability first generates
dislocations. For all three values pfthe longitudinal component rapidly relaxes to a very small value fiear O
and, with the exception of small fluctuations, stays there for the whole duration of the simulations. Similarly, for
B = Othe transverse component reaches in a somewhat slower transient a stationaryjjatue @f. The resulting
reconstructed pattern at the final time- 2500 is shown irFig. 12a. It still contains a few PHD, which move very
slowly. Compared to the initial pattern, in which the hexagons were aligned with-#éxés, the pattern is rotated
by a small amount reflecting the change in the average wave-vector, in particular its nonzero transverse component.
For 8 = —0.1 and—0.2 the number of PHDs keeps fluctuating throughout the simulakan &b). The corre-
sponding evolution of the average wave-vector is showhign 11b. As is the case fop = 0, during the initial
phase of defect generation the longitudinal component relaxes rapigiy+00 while the transverse component
reaches a value @k ~ 1 during that phase. Thereafter, the longitudinal component remains near 0 whereas the
transverse component keeps growing at a rate which increases with decreasing (ngg#tivk¢ reconstructed
pattern this manifests itself in a reduced overall wavelength of the hexagons and, more importantly, an increased
rotation of the pattern. As shown ig. 12b—d attimes = 1750, 2250, and 2500, on average the pattern is steadily
rotating in a counter-clockwise fashion.
To interpret the evolution shown Fig. 11b it is useful to writeA; (x, r) as

Aj=Aj(x,neui* =123 (17)

For constan#4; this corresponds to a hexagon with nonvanishing transverse wave-vector components that are equal
in all three modes. Insertion @¢17) into (1) and (2)shows that the solution and its stability does not depend on

q:- In particular, the contributions from, cancel each other. This independence;ofeflects the isotropy of the
underlying physical system and the leading order approximation of the critical circle by its tangents in the direction
of 7; at each of the three critical wave-vectors corresponding to the mbddshis suggests that the steady increase

of g with fixedg); should be interpreted as the representation of a rotation of the physical pattern (at fixed magnitude
of the wave-vector) within the approximation of the Ginzburg—Laretzuations (1) and (2 similar phenomenon

had been observed for hexagons with broken chiral symmetry in the absence of mefiDfldw that system it

had been found that if the operaiby- V was replaced by the Newell-Whitehead—Segel opefa627]or by the
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Fig. 12. Reconstructed hexagonal patterns corresponding to the wave-vector evolution as shgyviin(a) 8 = 0 atr = 2500, (b—d)
B = —0.1atr = 1750, 2250, and 2500.

Gunaratne operat¢t 9] the steady growth of the wave-vector components did not foflplut instead followed
the respective lines in Fourier space along which the growth rate of perturbations of the basic state is constant within
these two different approximatioip3].

Given the above discussion, itis appropriate to consider within the approxinj&tiand (2)all hexagon solutions
with ¢;; = 0 as having a wave-vector at the band center, wjtindicating the orientation of the pattern in space.
This raises the question why new dislocations are generated persistently even though the background wavenumbe
is in the band center where the periodic hexagon patterns are linearly staf@éPitihad been found that without
mean flow the PHDs can be unstable even if the wavenumber of the background hexagon pattern is inside the stabl
band, but away from the band center. As showifrign. 10 in the presence of mean flow PHDs can be unstable
even at the band center. We have not investigated whether there are parameter regimes for which the PHDs ar
unstable at all background wavenumbers. While instability at the band center is consistent with the persistence of
spatio-temporal chaos since the background wavenumber of the chaotic gtate @5 it is not sufficient. This
is indicated inFig. 10 where the persistence limit for the chaotic state is shown. Below the squares the PHDs
are unstable but chaos only persists for valueg btlow the diamonds. In the parameter regime between these
two lines defects are being created intermittently during the transient towards the stationary state, which leads to
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fluctuations in the defect number, but the defect creation rate is too small compared to the annihilation rate to sustain
the chaos.

To illustrate explicitly how the instability of a PHD at the band center can lead to persistent PHD-chaos, we
performed simulations that start from hexagons at the band center Q) with a pair of PHDs as a seed for
the nucleation process. The resulting evolution of the number of defects and of the spatially averaged transverse
wave-vector component is shownhig. 13 and b, respectively. Compared to the simulations show#ignl 2,
the value ofwz is reduced to 0.5. As a consequence evensfee —0.2 no new dislocations are generated. For
B = —0.4 there is an initial volley of induced nucleation, but eventually the defects annihilate each other again
completely. Only forg < —0.5 indications for persistent nucleation are seen. This illustrates that the instability of
PHD is not a sufficient condition for persistent chaos; it is necessary that creation balances annihilation for some
finite average number of PHDs.

Worth noting is the precipitous decline in the defect numberfoe —0.6 nearr = 900. At that time the
transverse wave-vector component reaches values close to the maximal spatial resolution for the number of modes
used (128« 128). More detailed studies of the case wite= 0.7 andg = —0.2 have shown that if the number of
modes is increased the suppression of the induced nucleation is delayed until larger vgjums oéached. Thus,
the saturation ofy for 8 = —0.5 in Fig. 13 and the associated end of the chaotic activity is a numerical artifact.
Note, however, that the chaotic defect states reported here have lasted substantially longer than the transient state:
found in[25].

Since the defect nucleation persists even for wavenumbers near the band center it is not surprising that similar
chaotic states are reached when the stability limit for periodic hexagons is crossed on tledakgdt should be
noted that in simulations that started from a slightly perturbed hexagon pattern beyond thethiwitity limit no
persistent nucleation was found when the wavenumber was too far in the unstable regime. In that case only a very
large number of defects was generated in the initial phase, which then quickly annihilated each other.

Of course, the steady increase of the transverse wave-vector component appaignt ib implies that after
a finite amount of time the magnitude of the transverse compapebecomes of the same order as the critical
wavenumber. At that point the Ginzburg—Landau equations clearly become invalid, since they are based on the
approximation that the amplitudés; vary only slowly compared to the critical wavelength. We have therefore also
simulated a modified Swift—-Hohenberg equation that corresponds to the same amplitude equations with coefficients
corresponding to the values used in the simulations presented here. As expected, we find that the hexagon pattern
keeps rotating on average as the defect proliferation and annihilation continue indefitt{ely
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In general, the other nonlinear gradient terms corresponding &mda, have to be taken into account as well.
We have performed simulations for selected parameter valuesasfde; that correspond, for instance, to realistic
values for surface tension-driven Bénard—Marangoni convectign= 0.3 andw, = 1.1, corresponding to a
Prandtl number-10 in a single-fluid modgl29]; o1 = —0.1 andaz = 0.4 corresponding to a two-fluid model a
water—air layef30]). While we find induced nucleation even in the absence of rotation and withhppersistent
spatio-temporal chaos arises onlyif > 0.8 in both casesd = —0.2).

5. Effectsof nonlinear gradient termson PHD motion

The motion of individual PHDs within the lowest-order Ginzburg—Landau equations has been studied in detail
in [31,32], where in extension of the results for dislocations in roll pattg@B8the dependence of the velocity of a
PHD on the background wave-vectors of the three hexagon modes has been determined semi-analytically. Withir
the framework of an order-parameter equation of Swift-Hohenberg type the motion of PHDs has been investigated
in [34]. The effect of the mean flow on the defect motion has been discussed in more déaiij! lere we turn to
the impact of the other nonvariational terms, specifically the nonlinear gradient terms, on the motion of the PHDs.
In our analysis we closely follow the approach[82]. We factor out the background wave-vectors of the three
hexagon modes by writing; = a; g, Assuming a constant defect veloch; the time derivative in(1) is
replaced by-V - V. We then projec{l) onto the two translation modes, i.e. for egclve multiply (1) by axa;‘ and
8ya;‘, respectively, and add all three equations and their complex conjugates. The resulting projection can be written as

IXXVX + Ixyvy = F, Iyxvx + Inyy = G, (18)

where the components of the mobility tensor are given by

3 3 3
1
i=1 i=1 i=1

and(---) = [/ ---dx dy denotes the integral over the domain. The terms on the right-hand dige @)contribute
to F andG with

3 3 3
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=yF, +qoly + BFg +a1F1+ax2F2 + azF3s. (20)

G is defined analogously t& with 3,7 in front of the square brackets in each of the integrals replaceq djy
The projectiory; of the wave-vectoq onton; is given byg; = q; - ;. To leading order the transverse components
q; - 7; of the wave-vectors do not affect the velocity of the defect. Here we only focus on situationsqykeetg
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is the same for all three amplitudes. Note, that the other terr(fs) itho not contribute t¢20), which can be seen
by integrating by parts and using the appropriate boundary conditions.

In the absence of the nonpotential terms=£ 8 = o1 = a2 = a3 = 0) the PHD is stationary fajg = 0 and
the two dislocations making up the PHD are located at the same position. Without loss of generality, we assume
that the PHD consists of a pair of dislocationsdp and A3. Treating the nonpotential terms perturbatively it is
sufficient to use the potential solution for the stationary defect to evaluate the inhomogeneous tardG. Far
away from the defect core the pattern is well described by the phase equations; rewriting the demodulated amplitude
asa; = p;(r, ¢) €% wherer is the radial distance from the defect core @nis the azimuthal angle around
the core, one obtains th¢B5] p; (r — o0, ¢) — po and

1
=—0- 2 21
61 2\/5( COS(2¢)), 1)
1 J1 21
O =¢ — 2—\/:_% |:§ + COS<2¢) - ?>i| s (22)
101 2
03 =—¢ — 2_\/§ |:§ + COS<2¢ + ?>i| . (23)

This solution is utilized for the far-field contribution to the integrals fomnd G. The numerical solution of the
Ginzburg—-Landaequations (1) and (43 used for the evaluation of the integral in the core region. It can be shown
that the far-field contribution to the integrals, G», and F3 is zero, while that to the integralg,, F», andGs is
nonzero. For example, fa@¥, the angular integral involving; vanishes, and those involvirsg andés cancel each

other, leading to a vanishing contribution@a from the far-field. Numerically, we also found that the core integrals

for G1, G2, and F3 vanish; they are at least 100 times smaller than the core integralg fdt;, andGs. In the
following we ignorer,, andG , ; similar to the integral&1, G2, andF3, the integralg”, andG,, vanishinthe far-field

and amount to very small values when evaluated numerically around the core. Thus, we conclude that to leading
order in the nonpotential terms (and the wavenumgbgthe velocity of an individual PHD is well approximated by

(1xx Ixy)<VX):q<Fq>+ﬂ<Fﬁ>+<a1F1+a2F2)' 24)

To evaluate the mobility tensor on the left-hand sidé€d) it is not sufficient to insert the solution for the stationary
defect in(19) since it leads to integrals that diverge in the far-field. To regularize this singularity the solution for
the moving defect has to be used, at least in the far-f88(B3,36] To leading order, the nonpotential terms can be
neglected in the mobility tensor. Then its off-diagonal terms are much smaller than the diagongB®&ridsing
the numerically determined defect solution of the fdjs. (1) and (2)we also findly, to be much smaller than
either Iy or Iy (by a factor of 100) when we only compute the integral within a box enclosing the defect core and
neglect the far-field contribution.

The effect of the nonlinear gradient terms can now be summarized as follows: since the off-diagonal terms in the
mobility tensor are small, the contributionswf anda2 to the velocity of a PHD with dislocations in amplitudes
A and A3 are in thenq-direction (“glide”), whileas causes such a PHD to travel in thedirection (“climb”).
Furthermore, like the mean flow the nonlinear gradient terms contribute to a shift of the wavenumber at which the
defect is stationary away from the band cemtet 0.

The above conclusion is confirmed in direct numerical simulatiori$)cdind (2) In Fig. 14we plot the velocity
of a PHD with charges0, —, +) for u = 1,90 = 0,y = 0.2, and8 = 0 as a function of the strength of the
nonlinear gradient terms. As expected from the discussid84)f if only a1 or a2 are nonzero the defect glides,
whereas it climbs if onlys is present. The velocities change sign if the charges of the PHD are reversed.
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Fig. 15. Dependence of the defect velocity on the wavenumlier .« = 1,v = 2 andB = 0. «; = 0 except as indicated;; = 0.3 (circles),
az = 0.3 (triangles)wz = 0.3 (squares). Dotted line is for the variational cage= a2 = a3 = 0.

Fig. 14indicates that the linear dependence of the velocity o lierestricted to a range; | < 0.2. Itis found,
however, that the direction of the defect motion remains the same foutside that range, i.e; anday cause
defects to glide while defects climb duedsg. In comparison, in previous numerical simulations we found that the
mean flow causes the PHDs to perform a combined climb—glide mf#&jnThis indicates that botlis andGg
are nonzero icq. (24) Fig. 15shows the dependence of the defect velocity on the wavenumber«s # 0, the
defect performs a mixed climb—glide motion if the wavenumber is not at the band centely i-¢.qGf

6. Conclusion

The variational character of the minimal Ginzburg—Landau equations for steady hexagon patterns can be broker
in various ways. Quite generally, at cubic order two nonlinear gradient termdqarigs8]. If the chiral symmetry
of the system is broken (e.g. by rotation) a third nonlinear gradient term is poidiplén Rayleigh—Bénard and in
Marangoni convection the mean flow driven by deformations of the pattern introduce a further nonvariational term
in the form of a nonlocal coupling of the roll modes (d1y,39). In this paper we have studied the combined effect
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of the mean flow and of rotation (including the respective nonlinear gradient term) on the stability and dynamics of
hexagon patterns as well as on the stability and motion of their penta—hepta defects.

Rotationinduces a coupling of the two long-wave phase modes that can generate along-wave oscillatory instability,
which in the absence of nonlinear gradient terms is, however, usually screened by a steady short-wave instability
[10]. The mean flow is only driven by the transverse phase nfib@le Our results indicate that it suppresses the
rotation induced coupling of the phase modes that leads to oscillatory behavior.

The various nonvariational terms influence the motion of penta—hepta defects in different ways. While the non-
linear gradient terms that preserve the chiral symmetry contribute to a gliding motion of the defects, the nonlinear
gradient term introduced by rotation induces a climbing motion. This is to be contrasted with the effect of the mean
flow, which leads to a mixed climbing—gliding motion.

The most interesting result of this paper is associated with the fact that the nonlinear gradient terms lead to a
separation of the two dislocations making up a penta—hepta defect and can destdBbizéMbre specifically, in
simulations we find that penta—hepta defects induce the nucleation of new dislocations in the defect-free amplitude.
Even a weak mean flow can enhance this instability significantly. Moreover, with a sufficiently strong nonlinear
gradient term that breaks the chiral symmetry)(the induced nucleation can lead to an ever-increasing transverse
wave-vector component of the hexagon patterns. As in the case without medadlpwe interpret this growth,
which eventually leads to the break-down of the Ginzburg—Landau equations, as the signature of a persistent
precession of the disordered pattern on average. In Fourier space, the wave-vector spectrum of such a precessing
pattern would drift along the critical circle. In the lowest-order Ginzburg—Landau equations used here the critical
circle is replaced by its tangents at each of the three modes making up the hexagons, which are transverse to
the respective wave-vectors. We expect therefore that in this regime the physical system would exhibit persistent
penta—hepta defect chaos driven by induced nucleation.

To overcome the limitations of the Ginzburg—Landau equations, we are currently investigating penta—hepta defect
chaos using a suitably modified Swift-Hohenberg type equations coupled to a med§#jods expected from
the simulations of the Ginzburg—Landau equations presented in the present paper, the penta—hepta defect chao:
persists and on average the disordered hexagon patterns precess indefinitely. As in the Ginzburg—Landau case, the
chaotic state is due to the induced nucleation of penta—hepta defects, which is apparently only possible when the
nonlinear gradient terms are included. These simulations also indicate that the induced nucleation is not contingent
on the oscillatory side-band instability; rather it is the separation of the dislocations in a penta—hepta defect that
renders them unstable and induces the nucleation. To obtain persistent chaos the resulting defect proliferation has
to be strong enough compared to the annihilation rate and apparently the chiral symmetry has to be broken.
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