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In a model for rotating non-Boussinesq convection with mean flow, we identify a regime of
spatiotemporal chaos that is based on a hexagonal planform and is sustained by the induced nucleation
of dislocations by penta-hepta defects. The probability distribution function for the number of defects
deviates substantially from the usually observed Poisson-type distribution. It implies strong correla-
tions between the defects in the form of density-dependent creation and annihilation rates of defects. We
extract these rates from the distribution function and also directly from the defect dynamics.

DOI: 10.1103/PhysRevLett.90.134502 PACS numbers: 47.20.Bp, 47.20.Ky, 47.27.Te, 47.54.+r
suggested in direct simulations of the Navier-Stokes
equations of spiral-defect chaos in Rayleigh-Bénard con- � � êez � �r �r4  � � U � r ; (1)
Spatiotemporal chaos is at the focus of experimental
[1–9] and of theoretical [10–16] research in high-
dimensional dynamical systems. Most of the extensive
studies have been devoted to variants of convection in
thin liquid layers [3,6–8,11,14]. Detailed experimental
studies have also been performed on vertically vibrated
fluid layers [4] and chemical systems [2]. Theoreti-
cally, various regimes of spatiotemporal chaos of the
complex Ginzburg-Landau equation have been investi-
gated [12,16].

A striking feature of most spatiotemporally chaotic
states is the appearance of defects in the pattern. In
particular, dislocations have attracted great attention
since they are easy to identify. Investigators have utilized
their statistical, geometrical, and dynamical aspects to
quantify the chaotic states in which they arise. For ex-
ample, the number of dislocations (spirals) in the wave
patterns governed by the complex Ginzburg-Landau
equation has been found to obey Poisson-type statistics
[10]. This suggests the interpretation that this system
behaves as if dislocations were created randomly in pairs
with a fixed probability, after which they diffuse inde-
pendently throughout the system until they annihilate
each other in collisions [10]. The corresponding behavior
and associated distribution function have also been found
in convection experiments [1,8] and in simulations of
coupled Ginzburg-Landau equations for parametrically
excited waves [15].

Geometric aspects of dislocations have been investi-
gated in experiments on binary-mixture convection
where the possibility to reconstruct the patterns from the
dislocations has been explored [7]. In a study of a type of
defect-unbinding transition, the loops formed by the dis-
locations’ world lines in space-time have been investi-
gated [15]. It has been found that the degree of order of
the defected pattern is related to the statistics of the size
of the loops [15].

The dynamical relevance of dislocations has been
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vection [14]. The best evidence for the significance of
defects as dynamical objects has been obtained by ex-
tracting their contribution to the Lyapunov dimension of
the chaotic attractor [13,17].

Most of the detailed analyses of spatiotemporal chaos
and of its defects have been performed in disordered
patterns that are based on stripes (or rolls). Much less
work has been done on spatiotemporal chaos related to
other planforms [2,5,18].

In this Letter, we describe a spatiotemporally chaotic
state that is based on a hexagonal pattern. Its disorder is
closely tied in with the appearance of penta-hepta de-
fects (PHDs), each of which consists of two dislocations
in two of the three modes making up the hexagon pattern
[19–21]. In contrast to most other systems discussed
above, it is not only the instability of the background
pattern that drives the chaotic state, but also the insta-
bility of the PHDs themselves. Thus, in the presence of
PHDs new dislocations are created through induced nu-
cleation. As a consequence, the probability distribution
function for the number of defects is considerably broader
than the Poisson-type distributions reported in previous
studies [1,8,10]. We obtain this persistent, chaotic state
in a Swift-Hohenberg–type model for rotating non-
Boussinesq convection at low Prandtl numbers. While
induced nucleation itself has been reported previously
[22,23], without rotation it did not sustain persistent
dynamics [22].

Motivated by the strong effect of mean flows and
rotation on convection roll patterns [3,6], we have pre-
viously studied their effect on hexagon patterns and their
PHDs using Ginzburg-Landau equations [23,24]. Since
the Ginzburg-Landau equations break the isotropy of the
system, they are not suited for studies of spatiotemporal
chaos. In this paper, we therefore investigate a minimal
extension of the Swift-Hohenberg model [25],
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The quadratic terms proportional to � and � break the
up-down symmetry  ! � and model the non-
Boussinesq effects. The chiral symmetry is broken by
the terms involving � and 
; thus, to leading order these
coefficients are linear in the rotation rate. The mean-flow
velocity and its stream function are given by U and �,
respectively, and j�j increases with decreasing Prandtl
number. We simulate (1) numerically using a parallel
pseudospectral code with periodic boundary conditions.
For a system size of L � 233 (L � 114), we use 256�
256 (128� 128) modes. To reach the chaotic states, we
use mostly initial conditions consisting of an ordered
hexagon pattern with a single PHD pair added; for the
same mean wave numbers hexagon patterns that are only
slightly perturbed (without defects) relax to stationary
ordered patterns. In the chaotic regime, the patterns con-
sist of domains of hexagons with different orientation
separated by domain walls [Fig. 1(a)], where most of the
PHDs are aggregated. Because of the broken chiral sym-
metry, the hexagon patterns in each domain precess
slowly counterclockwise [26]. The corresponding space-
time diagram for the temporal evolution of the radially
integrated Fourier spectrum is presented in Fig. 1(b).

To identify the dislocations and PHDs, we make use
of the fact that despite the disorder of the pattern its
spectrum exhibits six peaks that are clearly separated
most of the time and that are rotated by 120

�
with respect

to each other [cf. Fig. 1(b)]. We demodulate the pattern
using three carrier wave vectors that slowly precess
along with the spectrum,  �

P
3
j�1 Aj exp�iqj�t� � r� �
FIG. 1 (color online). (a) Snapshot of penta-hepta defect
chaos for � � 0:4, � � 2, � � �2:6, 
 � 0:023, R � 0:17,
and L � 233. (b) Corresponding space-time diagram of the
radially integrated Fourier spectrum of the whole pattern. For a
movie of the pattern and its defects, see [26].
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c:c:� � � � . Figures 2(a)–2(c) show the temporal evo-
lution of a small section of the pattern with the roll
systems making up the hexagon pattern indicated by
thin lines [26].

In various experimental and theoretical investigations
of stripe-based disordered patterns, the probability dis-
tribution function for the number of defects has been used
to obtain a first characterization of the defect evolution
[1,8,10]. Except for the case of the ordered chaotic state in
[15], the probability distribution function for the number
of defects was found to be close to a Poisson-type dis-
tribution, indicating that the dynamics are consistent
with the simple diffusive model described above [10]. In
particular, the creation rates depend only little on the
defect density [8]. However, this is not the case for the
penta-hepta defect chaos described here. Figure 3 gives
the distribution function for the number of dislocations
for two system sizes, L � 233 and L � 114 (inset), and
two sets of parameter values. The symbols give the rela-
tive frequency to find n dislocation pairs in one of the
three modes, whereas the dashed line gives the best fit to
the squared Poisson distribution (with the same mean)
corresponding to the uncorrelated dislocation dynamics
[10]. Clearly, in the penta-hepta defect chaos the defect
dynamics are far from uncorrelated.

A more detailed analysis of the defect dynamics re-
veals a strong tendency for dislocations to be created
in the vicinity of already existing PHDs. This is illus-
trated in Fig. 2. Because of the gradient terms involv-
ing � and �, which lead to nonlinear gradient terms in
the Ginzburg-Landau equations [23], the dislocations
making up the PHDs are spatially separated [22,23]
[cf. Fig. 2(a)]. In addition, a PHD in modes A1 and A2,
say, leads to a perturbation in mode A3. For sufficiently
large � and �, the perturbation evolves into a dislocation
pair in mode A3 [marked by the splitting of the cell
between the two initial dislocations in Fig. 2(a)]. The
newly created dislocations then recombine with the op-
positely charged dislocations in the original PHD to form
two PHDs [Fig. 2(c)], which then typically move apart
from each other. Such induced defect nucleation has been
FIG. 2 (color online). Induced nucleation of dislocations.
Enlargements corresponding to the box in Fig. 1(a) at times t �
747, t � 759, and t � 760. Thin black and white lines indicate
the rolls involved in dislocations (marked by symbols).
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FIG. 3 (color online). Probability distribution function for
the number of dislocation pairs in the pattern. Parameters as
in Fig. 1. For the inset L � 114, � � 0:4, � � 3, � � �5,

 � 0:012, and R � 0:09. Solid line is fit to (4).
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found previously in coupled Ginzburg-Landau equations
[22,23] and in a Swift-Hohenberg–type model without
rotation or mean flow [22]. However, in contrast to the
case discussed in [22], in the presence of rotation the nu-
cleation is sufficient to sustain a precessing chaotic state.

To establish a quantitative connection between the
induced defect nucleation and the defect distribution
function, we consider an extension of the simple kinetic
model for the defect dynamics presented in [10]. Since
there are three different modes Aj and because the total
topological charge of a PHD has to vanish [27], the
statistics of the defect dynamics are described by a com-
bined distribution function P 6�n�12; n

�
12; n

�
23; n

�
23; n

�
31; n

�
31�

for the six different kinds of PHDs. Here n�12 denotes, for
instance, the number of PHDs involving a dislocation
with positive charge in mode A1 and a dislocation with
negative charge in mode A2. In principle, there are also
dislocations that are not bound in a PHD. In this kinetic
model, we assume that their dynamics are fast enough to
follow quickly the number of PHDs. The numerical simu-
lations show that the densities are strongly correlated at
equal times, which implies that P 6 is strongly peaked
when its six arguments are equal. Integrating out the
dependence of P 6 on five of its arguments, one there-
fore obtains a closed approximation for the change in
P �n�12 � n� �

R
P 6 dn�12 . . .dn

�
31 during a time interval �t

involving the creation and annihilation rates ��
n ,

P �t� �t; n� � P �t; n� � �tf ��
n�1P �t; n� 1�

� ��
n�1P �t; n� 1�

� ���
n � ��

n �P �t; n�g: (3)

In steady state, the distribution function satisfies detailed
balance, P �n� 1���

n�1 � P �n���
n . Assuming a fixed

rate for the induced nucleation triggered by a given
PHD, the rate for processes of the type shown in Fig. 2
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depends linearly on the density of the PHDs involving
the rolls marked by thin black lines. This process creates
two dislocations which are marked by white lines and
the subsequent formation of two ‘‘black-white’’ PHDs
eliminates the original PHD. This suggests a linear con-
tribution to the dependence of the creation and the anni-
hilation rate on the defect density. The reverse process
originates from two PHDs and therefore contributes qua-
dratic terms. Including also the spontaneous creation of
dislocations, which then form PHDs, we make the ansatz

��
n � a1n� a2n

2; ��
n � c0 � c1n� c2n

2: (4)

The steady-state solution to (3) with (4) is then given by

P �n� � P �0�
Yn�1

j�0

c0 � c1j� c2j2

a1�j� 1� � a2�j� 1�2
; (5)

with P �0� determined by the normalization condition. As
shown in Fig. 3, the fits of the numerical simulation
results to (5) are very good for both system sizes. For
L � 114, we obtain c0 � 31:8a2, c1 � 3:3a2, c2 � 0:4a2,
and a1 � 5:0a2, confirming the strong dependence of the
creation rate on the number of defects.

By tracking each dislocation from its creation to its
annihilation, we can also determine the creation and
annihilation rates directly from the numerical simula-
tions. Figure 4 shows these rates for a dislocation in a
given mode as a function of the number of dislocation
pairs in the same mode for a system of size L � 114
(same parameters as in inset of Fig. 3). In principle, the
rates should be given as functions of the number of PHDs
involving the other modes. However, due to the finite
distance between the dislocations within a PHD, the
grouping of dislocations into PHDs is not always unique.
Because the numbers of dislocations in the three modes
are strongly correlated, taking the number of dislocations
in the same mode provides a good approximation. The
large scatter in the data for larger defect numbers is due to
the lack of statistics for events of that kind (cf. inset of
Fig. 3). Similarly, there are only few events with few
defects. Clearly, in the intermediate range of n, not only
the annihilation rate but also the creation rate depends
strongly on the defect number.

To connect the directly measured rates with the dis-
tribution function (4), the solid curves in Fig. 4 give the
creation and annihilation rates as determined from fitting
the distribution function for the defect number using the
form (3). For this comparison, the overall time scale
(i.e., a2) is adjusted to fit the time scale of the simula-
tions. The rates inferred from Fig. 3 agree quite well
with the directly measured ones over the statistically
reliable range of n and confirm the interpretation of the
distribution function’s deviation from the squared Poisson
distribution.

The creation rate for dislocations does not vanish for
n � 0, i.e., when no PHDs are present. This indicates the
134502-3
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FIG. 4 (color online). Creation (squares) and annihilation
(circles) rates of dislocations as a function of the number of
dislocation pairs in the same mode. Parameters as in inset of
Fig. 3 (L � 114). Inset: Wave number distribution function with
stability limit for hexagons according to weakly nonlinear
theory (dashed).
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spontaneous creation of dislocation pairs directly from an
instability of the hexagonal pattern despite the fact that
the mean wave number of the pattern is inside the stabil-
ity balloon. However, the distribution function for the
local wave number (inset of Fig. 4) shows that in the
chaotic state the distribution function extends noticeably
beyond the low-q stability limit, as determined by a
weakly nonlinear analysis of (1). This suggests that
some dislocation pairs are created through a sideband
instability in regions where the local wave number is low.

In conclusion, in a model for rotating non-Boussinesq
convection we have identified a spatiotemporally chaotic
state that is dominated by the dynamics of penta-hepta
defects of the underlying hexagon pattern. In contrast to
previously analyzed chaotic states, which are stripe
based, the defect statistics of this penta-hepta chaos in-
dicate strong correlations between the defects.We identify
the origin of the correlations as the induced nucleation of
dislocations due to the presence of penta-hepta defects.
From the defect statistics, we extract the dependence of
the creation and annihilation rates of defects on the defect
density and find good agreement with the rates measured
directly by following the defects in the simulations. In
ongoing direct simulations of the Navier-Stokes equa-
tions for rotating non-Boussinesq convection, we have
found cases of induced nucleation of dislocations [28].
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