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We investigate the long-wave nonlinear dynamics of an inextensible capacitive elastic
membrane under electric fields. In the lubrication framework we derive a nonlinear equa-
tion for the membrane height with an integral constraint. Linear analysis on the tension-
less membrane in a dc field gives the linear growth rate in terms of membrane conductance
and electric properties in the bulk. The long-wave formulation allows us to analytically
derive the equilibrium membrane profile in a dc field. Numerical simulations of an in-
extensible membrane under ac fields elucidate how variation of the membrane tension
correlates to the non-linear membrane dynamics. Different membrane dynamics, such as
undulation and flip-flop, is found at different electric field strength and membrane area.
In particular a traveling wave on the membrane is found as a response to a periodic ac
field in the perpendicular direction.

1. Introduction

The cellular membrane, comprising mainly of two lipid leaflets, is essential to a wide
range of cellular functions partly because the membrane regulates the transport of par-
ticles (such as ions and macromolecules) between interior and exterior cellular space.
In engineering applications both weak (Antov et al. 2005) and strong electric fields are
used to induce macro pores in the cell membrane for drug and DNA delivery into living
cells (see Sadik et al. (2011) and references therein). External direct current (dc) and/or
alternating current (ac) electric fields have also been used to destabilize planar lipid
membranes to facilitate the formation of vesicles (liposomes, self-enclosing unilamellar
membranes) in electroformation (Angelova & Dimitrov 1986), where the interplay be-
tween external electric fields and the membrane forces (such as membrane tension and
bending forces) underlies the membrane instability. Experimental studies revealed how
a stack of lipid bilayer membranes unbind from the substrate under electric fields (Con-
stantin et al. 2005), and how a free-floating membrane can become unstable under an ac
field below 100 Hz (Lecuyer et al. 2006).

Theoretical studies on membrane destabilization due to electric fields show that both
membrane thickness fluctuations (Weaver & Chizmadzhev 1996) and bending modes
(Sens & Isambert 2002; Lacoste et al. 2007; Schwalbe et al. 2011) can destabilize the
planar membrane. Membrane conductance and mismatch in dielectric fluid properties
are also essential to the linear instability of a planar lipid bilayer membrane in both
dc (Seiwert et al. 2012) and ac (Seiwert & Vlahovska 2013) electric fields. Negative
membrane tension and the ion currents in the diffuse layers near the membrane give
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rise to undulations of an unsupported planar membrane under electric fields. The planar
membrane become linearly unstable and the undulation can be amplified once the electric
field is above a threshold at which the negative tension exceeds the initial tension in the
membrane (Sens & Isambert 2002). The other source of instability caused by the ion
currents near the membrane (Lacoste et al. 2007, 2009; Ziebert et al. 2010; Ziebert &
Lacoste 2010, 2011) gives rise a relaxation rate proportional to wavenumber squared. For
giant vesicles subjected to an electric field, the electric pulse duration and the subsequent
relaxation process are found to be essential to membrane deformation and poration (Riske
& Dimova 2005; Bezlyepkina et al. 2009; Zhang et al. 2013; McConnell et al. 2013).

Long wavelength formulation of the electrohydodynamics of an interface between two
leaky dielectric fluids under dc or ac (see Roberts & Kumar 2009, 2010) fields have
uncovered both the linear instability and weakly nonlinear dynamics related to pillar
formation that are consistent with experiments (Schaffer et al. 2000; Pease & Russel
2002; Thaokar & Kumaran 2005; Wu & Russel 2009). The lubrication theory has also been
successfully applied to understand the elastohydrodynamics of a elastic sheet lubricated
by a thin layer of fluid (Hosoi & Mahadevan 2004). In that analysis the bending force
is dominant over the tension, and the elastic sheet area may vary due to the dynamics.
The balance between bending force and the van der Waals forces was found essential
to the observed bursting in the elastic sheet with a constant flux in the lubricating
layer. More recently Blount et al. (2012) developed a lubrication model to study flow
beneath a semipermeable inextensible membrane and obtained equilibrium solutions and
bifurcation structure as a function of drying parameters. In this work, we apply the
long wavelength analysis to two layers of leaky dielectric fluid separated by an elastic
inextensible membrane which is a sharp-interface model for the lipid bilayer membrane.

The main components of the sharp-interface approximation of the lipid bilayer mem-
brane are its elastic properties, inextensibility, capacitance and conductance. The lipid
bilayer membrane is inextensible because both the area per lipid and the total lipid num-
ber are conserved in each leaflet. In this work we use membrane forces derived from the
Helfrich membrane energy F =

∫
Ω

(
K
2 κ

2 + Σ
)
∂Ω, where Ω is the membrane surface, K

is the bending modulus, and κ is the curvature. The membrane tension Σ is a Lagrange
multiplier to be determined from the constant surface area constraint (Seifert 1995). The
inextensible elastic membrane also acts as a (leaky) capacitor where the trans-membrane
potential varies due to the currents on and across the two leaflets. In biological cells the
trans-membrane currents may be due to pores and ion channels. The currents on the
membrane are the ohmic currents from the bulk to the membrane in the leaky dielectric
model.

Without membrane conductance it is found that asymmetry in fluid conductivities
gives rise to a transient instability in a dc electric field (Schwalbe et al. 2011). With
membrane conductance, the capacitive membrane can be linearly unstable (Seiwert et al.
2012). In an ac electric field a purely capacitive membrane can be rendered unstable at
low field frequencies, while at high frequencies even a conducting membrane can become
stable (Seiwert & Vlahovska 2013). The main goal of this work is to investigate the
dynamics of a conducting capacitive membrane in the long wavelength formulation that
would allow us to examine the membrane stability beyond the linear stability for a flat
membrane.

This paper is organized as follows: The problem description is given in § 2, followed by
§ 2.1 where we formulate the long-wave dynamics of an elastic, inextensible membrane
separating two leaky dielectric fluids. The equilibrium profile for a non-conducting mem-
brane in a dc field is derived in § 2.2, and the linear stability for a flat tension membrane
in a dc field is analyzed in In § 2.3. The numerical implementation of a semi-implicit
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Figure 1. A planar lipid bilayer membrane (at z = h(x, t)) separates two leaky dielectric fluids.
The electric potential Φ is fixed on the top (Φ = 0) and bottom (Φ = −V (t)) walls. n is the
outward unit normal on the membrane, and t is the unit tangent.

scheme for solving the governing long-wave equations is given in § 2.4. In a dc field the
displacement current is negligible and our numerical simulations show that the mem-
brane dynamics (with or without membrane conductance) is always towards the steady
equilibrium that is similar to those described in § 2.2. Therefore in § 3 we focus on the
dynamics of a conducting membrane in an ac field. We first examine the linear stability
of a tensionless flat membrane in an ac field in § 3.1. In the rest of § 3 we study how the
membrane instability and its non-linear dynamics depend on the membrane tension and
the correlation with induced surface charge distribution. In § 3.4 we present a novel “al-
ternating wave” with large membrane excess length under strong ac fields. We summarize
our findings and provide a discussion on the implications of the results in § 4.

2. Problem formulation

We consider two layers of leaky dielectric fluid under an imposed electric field E0ẑ.
The two fluids are separated by an inextensible elastic planar membrane (at z = h(x, t))
formed by a charge-free lipid bilayer with dielectric constant εm and conductivity σm.
The bilayer thickness d ∼ 5 nm, which is small enough for us to treat the membrane
as a two-dimensional interface with effective capacitance Cm = εm/d and conductance
Gm = σm/d. Each layer of fluid is specified by its permittivity (ε), conductivity (σ) and
viscosity (µ), with the subscripts in figure 1 denoting either top (‘1’) or bottom (‘2’) fluid
layer. The electric field is irrotational, Ej = −∇Φj , and the electric potential Φ satisfies
the Laplace equation

∇2Φj = 0 j = 1, 2, (2.1)

because the bulk fluids become electro-neutral over a charging time tc,j = εj/σj � 1.
Within each layer the two-dimensional fluid velocity uj = (uj , wj) satisfies the incom-
pressible Navier-Stokes equations

ρj

(
∂uj
∂t

+ uj · ∇uj
)

= −∇pj + µj∇2uj , (2.2)

∇ · uj = 0, (2.3)

where j = 1 or j = 2 for the top or bottom fluid. pj is pressure, and ρj is the fluid density
which we assume to be the same for both layers.

In the leaky dielectric model the induced charge of the diffuse layers around the mem-
brane is effectively described as the surface charge density q1 = n · ε1E1 − CmVm at
z = h+ (the membrane interface in contact with fluid 1) q2 = CmVm−n ·ε2E2 at z = h−

(the membrane interface in contact with fluid 2), and q = q1 + q2 = n · (ε1E1 − ε2E2)
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at z = h. In this work we adopt the formulation in Seiwert et al. (2012), and focus on
the limit of fast bulk charge relaxation. From the conservation of currents across the
membrane

n ·
(
σ2E2 + ε2

∂E2

∂t

)
+∇s · (ε2uE2n) = n ·

(
σ1E1 + ε1

∂E1

∂t

)
+∇s · (ε1uE1n) , (2.4)

at z = h with Ein = n·Ei and∇s = (I−nn)∇ the surface gradient. The electric potential
is discontinuous across the biomimetic membrane and the transmembrane potential Vm ≡
Φ1(z = h+)− Φ2(z = h−) is given by

n ·
(
σiEi + εi

∂Ei
∂t

)
+∇s · (εiuEin) = Cm

∂Vm
∂t

+∇s · (uCmVm) +GmVm. (2.5)

The membrane capacitance Cm ≈ 0.01 F/m2 and the membrane conductance Gm ≈
10−3 − 106 S/m2.

2.1. Long-wave formulation

In the long-wave formulation, the aspect ratio of the height (h0) to the characteristic
horizontal length (l) is assumed to be small (ε = h0/l � 1). Similar to the scaling
in Hosoi & Mahadevan (2004), we non-dimensionalize equations 2.1, 2.2, 2.3, and 2.5
by the characteristic length and velocity (h0

ε , h0) and (U0, εU0) in the (x, z) directions,

respectively. The pressure is scaled by µ2U0

εh0
, time by h0

εU0
, and the electric potential by

E0h0. The dimensionless variables (with bars) are

z̄ =
z

h0
, x̄ =

x

h0/ε
, ū =

u

U0
, w̄ =

w

εU0
, p̄ =

p

µ2U0/εh0
, t̄ =

t

h0/εU0
, and V̄m =

Vm
E0h0

.

The dimensionless equations are (after dropping bars)

εRei (∂tui + ui∂xui + wi∂zui) = −µ2

µi
∂xpi + ∂2

zui + ε2∂2
xui, (2.6)

ε3Rei (∂twi + ui∂xwi + wi∂zwi) = −µ2

µi
∂zpi + ε2

(
∂2
zwi + ε2∂2

xwi
)
, (2.7)

∂xui + ∂zwi = 0, (2.8)

∇2Φi = ∂2
xxΦi + ε2∂2

zzΦi = 0, (2.9)

cm

(
∂Vm
∂t

+ u
∂Vm
∂x

)
+ gmVm = E1n + α

(
∂E1n

∂t
+ u

∂E1n

∂x

)
. (2.10)

The dimensionless parameters are

Rei ≡
U0h0

µi/ρi
, α =

ε1U0

h0σ1
ε, cm =

CmU0

σ1
ε, and gm =

Gmh0

σ1
.

There are several time scales involved in this system: The capacitive membrane charges on
a time scale (Seiwert & Vlahovska 2013) tm = h0Cm

σ1

1+σr
1+gm(1+σr) , the balance between vis-

cous stress and the electric shear traction gives tEHD,j =
µj
εjE2

0
, while bending resistance

to changes in membrane curvature gives another time scale tK,j =
µj
Kq3 for a membrane

undulation with wave number q. Typical values for the conductivity σ ≈ 10−6 − 10−3

S/m, ε ≈ 10−10 F/m, K ≈ 10−19 J, h0 ≈ 10 − 100 µm, µ ≈ 10−3 Pa s, E0 ≈ 1kV/m.
We choose U0 = σ1

Cmε
such that cm = 1, and typically U0 ≈ O(1) due to the small

conductivity and large membrane capacitance.
At the bottom wall, we have u2(0) = w2(0) = 0 and Φ2(0) = −ν(t) while at the
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top wall u1(1) = w1(1) = 0 and Φ1(1) = 0. On the elastic membrane z = h(x, t), the
kinematic continuity condition gives

w1(x, h(x, t)) = w2(x, h(x, t)) = ∂th+ u1|z=h∂xh = ∂th+ u2|z=h∂xh. (2.11)

The stress balance on the elastic membrane gives

(−p1 + p2)n + JThd + TelK · n = fm, (2.12)

where J·K denotes the difference between top and bottom layers.
(
Thd

)
ij
≡ µ (∂ivj + ∂jvi)

is the ij-th component of the viscous stress tensor, and
(
Tel
)
ij
≡ ε

(
EiEj − 1

2E
2δij

)
is

the ij-th component of the Maxwell electric stress. For membrane force fm we ignore the
high-order curvature term and the Gaussian curvature term due to the long-wave planar
geometry and write fm = −(−2K∇2

sκ + 2Σκ)n +∇sΣ, with K the membrane bending
rigidity, κ the membrane mean curvature, and Σ the membrane surface tension to be
determined from the membrane incompressibility condition.

Following the procedures in the long-wave analysis for a porous inextensible elastic
membrane (Blount et al. 2012), we expand the dependent variables (u,w, p) in ε and
(Φ,Σ) in ε2. We find that, at the leading order the membrane outward normal n =
(−ε∂xh,1)√
1+ε2∂xh2 ∼ (−ε∂xh, 1), the membrane tangent t = (1,ε∂xh)√

1+ε2∂xh2 ∼ (1, ε∂xh), and the

membrane curvature κ = ε2hxx
(1+ε2∂xh2)3/2

∼ ε2hxx. The leading order electric potential in

the bulk is: Φ1 = A(x, t)(z − 1) and Φ2 = C(x, t)z − ν(t) with ν(t) = V (t)/V0.
The leading order normal stress balance gives a relation between p1 and p2, and the

leading order tangential stress balance gives a relation between the Marangoni stress and
the viscous shear stress. The leading order horizontal velocity field can be written as
ui = µ2

µi

∂xpi
2 z2 + aiz+ bi, where ai and bi are to be determined by the velocity boundary

conditions (Oron et al. 1997):

a1 + b1 = − 1

2µr
(p2 + g + β1)x ≡ D

′, (2.13)

ha1 + b1 − ha2 =
h2

2

[
p2

(
1− 1

µr

)
− g + β1

µr

]
x

≡ E′, (2.14)

µra1 − a2 = h (−g − β1)x −
C̄

2
∂xΣ1 − β2 ≡ F ′, (2.15)

with β2 ≡ β
[
εr
(
AAx(h− 1)−A2hx

)
− (Cxh− Chx)C

]
, g ≡ C̄Σ0∂

2
xh − K̄∂4

xh, and

β1 ≡ β
2

(
εrA

2 − C2
)
. The dimensionless parameters in the above equations are defined

as

β ≡ ε2E
2
0h0ε

µ2U0
=
ε2E

2
0h0Cmε

2

µ2σ1
, K̄ ≡ 2Kε5

µ2U0h2
0

=
2KCmε

6

µ2σ1h2
0

, C̄ ≡ 2γ0ε
3

µ2U0
=

2γ0Cmε
4

µ2σ1
,

(2.16)
where γ0 is a scaling factor for membrane tension, the viscosity ratio µr = µ1/µ2, con-
ductivity ratio σr = σ1/σ2, and permittivity ratio εr = ε1/ε2. The solution (a1, b1, a2) is
computed as

a1 =
D′ − E′ + F ′h

1− h+ µrh
, (2.17)

b1 = D′ − D′ − E′ + F ′h

1− h+ µrh
, (2.18)

a2 =
µr(D

′ − E′)− F ′(1− h)

1− h+ µrh
. (2.19)



6 Y.-N. Young1, Shravan Veerapaneni2 and Michael J. Miksis3

The membrane tension Σ ≈ Σ0+ε2Σ1 remains to be determined from the inextensibility
(constant surface area) of the lipid membrane, which can be recast in terms of the
incompressibility condition for the velocity on the membrane

∇s · ~v = ε (∂xu+ hx∂zu) + ε3
(
−(∂xh)2∂xu+ ∂xh∂xw

)
+O(ε5) = 0. (2.20)

At leading order the surface incompressibility gives

[∂xu+ hx∂zu]z=h =
d

dx
u(x, z = h(x, t)) = 0, (2.21)

which is the condition for the local membrane area conservation. In addition, the total
surface area L

L ≡
∫ L/2

−L/2

√
1 + ε2h2

xdx ∼ L+
ε2

2

∫ L/2

−L/2
h2
xdx+O(ε4).

Consequently, a constant excess area L−L at O(ε2) implies a globally conserved surface
area at O(ε2)

L − L =
ε2

2

∫ L/2

−L/2
h2
xdx = constant. (2.22)

The constant excess area constraint determines the homogeneous membrane tension
Σ0, while the local area area conservation (equation 2.21) gives the gradient of the spa-
tially inhomogeneous tension Σ1x in terms of h and p2x:

Σ1x =
1

C̄
[−(1− h)(gx + β1x)− p2x + 2β2]− 2c1(1 + (−1 + µr)h)

C̄(1− h)h
, (2.23)

where the constant c1 ≡ u(x, z = h(x, t)) is from integrating equation 2.21. Consequently,
the gradient of pressure p2 can be expressed as

p2x =
(−1 + h)3(gx + β1x) + f1

(1− h)3 + µrh3
, (2.24)

where f1 is a second integration constant obtained from integrating the equation that
involves p2xx. Putting everything together in equation 2.11, we obtain the evolution
equation for h as

∂th+ ∂x

[
− (−1 + h)3h3(gx + β1x) + f1h

3

12((1− h)3 + µrh3)
+
c1h

2

]
= 0. (2.25)

In three dimensions, the evolution equation for h(x, y, t) is

∂th+∇

[
− (−1 + h)3h3∇(G+ β1) + ~fh3

12((1− h)3 + µrh3)
+
~ch

2

]
= 0, (2.26)

with ~f = (f1, f2), ~c = (c1, c2), G ≡ C̄Σ0∇2h− K̄∇4h and ∇ ≡ (∂x, ∂y). In the following

we set the integration constants ~f and ~c zero.
The electric field strength A and C satisfy

A+ α
dA

dt
=

1

σr
C +

α

εr

dC

dt
, (2.27)

where d
dt = ∂

∂t+u∂x. The transmembrane potential Vm ≡ Φ1−Φ2|z=h = A(h−1)−Ch+ν
satisfies the following (dimensionless) equation at leading order

cm
dVm
dt

+ gmVm = A+ α
dA

dt
. (2.28)
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At the leading order the convection terms vanish because we set the integration constant
u(z = h(x, t)) = c = 0 in the derivation. As a result d/dt = ∂/∂t in equations 2.27-2.28.
This is consistent with the assumption of vanishing charge convection on the membrane
in the linear analyses for a flat tensionless membrane (Seiwert et al. 2012; Seiwert &
Vlahovska 2013). Furthermore, the convection of the induced surface charge has been
shown to have little effect on the electro-deformation of a viscous drop (Feng & Beard
1991).

Equations 2.25 and 2.28, together with the integral constraint in equation 2.22, are
the governing long-wave equations for an inextensible elastic membrane under an electric
field. Six boundary conditions are needed to complete the problem formulation. In § 3
we will focus on periodic boundary conditions. For our governing long wave equation,
the periodic boundary conditions are closely related to the boundary conditions: hx =
hxxx = (g + β1)x = 0 at x = ±L/2 associated with multiple blisters for a thin film
(Blount et al. 2012). For both the periodic and the multiple blister boundary conditions,
the homogeneous membrane tension Σ0 can be explicitly expressed in terms of h by
taking the derivative of equation 2.22 with respect to time and performing integration
by parts:

Σ0 =

∫ L/2
−L/2 Fhxxx

[
K̄hxxxxx − β

2 (εrA
2 − C2)x

]
dx

C̄
∫ L/2
−L/2 Fh

2
xxxdx

, (2.29)

where the function F is defined as

F = − (−1 + h)3h3

12 [(1− h)3 + µrh3]
. (2.30)

For a dc electric field, the displacement current dA
dt (associated with charge relaxation

on the surface) is small and often neglected because α� 1. Setting α = 0 in equation 2.27
gives C = σrA, and equation 2.28 can be integrated to give

Vm = Vm(0) +
1

cmχ(t)

∫ t

0

− χ(t′)

(1− σr)h− 1
dt′, (2.31)

χ(t) = e
gmt
cm
− 1
cm

∫ t
0

1
(1−σr)h−1

dt′ . (2.32)

In the absence of membrane conductance (gm = 0), the above equation can be easily
recast to give

E(x, t) = E(x, 0)
−1 + (1− σr)h(x, 0)

−1 + (1− σr)h(x, t)
eI(t), (2.33)

with

I(t) =
1

cm

∫ t

0

1

−1 + (1− σr)h(t′)
dt′. (2.34)

It can be easily seen that I(t) < 0 as long as σr ≥ 0 and 0 < h < 1. Therefore the electric
field E → 0 as the non-conducting capacitive membrane charges over time.

2.2. Equilibrium Profile for a Non-conducting Membrane (gm = 0) in dc Fields

For a non-conducting membrane (gm = 0) in a dc electric field (α = 0), the follow-
ing simple equilibrium analysis gives admissible equilibrium profiles determined by the
volume (area) under the membrane and the total area (length) of the two-dimensional
(one-dimensional) membrane. No such simple equilibrium results are available for a con-
ducting membrane (gm > 0) or in an ac electric field (ν is a function of time).
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For a non-conducting (gm = 0) capacitive membrane in a dc field, the electric fields
A and C decays exponentially to zero as the membrane charges up. At equilibrium the
profile satisfies the simple equation

d

dx

[
F
dg

dx

]
= 0 (2.35)

for x ∈ (−L/2, L/2) with either (1) periodic boundary conditions, or (2) hx = hxxx =
gx = 0 at x = ±L/2. The function F (equation 2.30) is non-zero as long as 0 < h < 1.
In addition the leading-order excess length of the interface and area (or volume in three
dimensions) under the interface must remain constant:∫ L/2

−L/2
(hx)

2
dx ≡ S = constant,

∫ L/2

−L/2
hdx ≡ θ = constant. (2.36)

Integrating equation 2.35 once and setting the integration constant to zero, we obtain

d

dx

[
C̄Σ0

d2h

dx2
− K̄ d4h

dx4

]
= 0. (2.37)

For periodic boundary conditions, the equilibrium profile takes the form

h = a cos

(
2nπx

L

)
+ b sin

(
2nπx

L

)
+
θ

L
, (2.38)

where integer n and membrane tension Σ0 are related via n2 = − C̄Σ0

K̄

(
L
2π

)2
and Σ0 < 0.

a and b are related to S via
(

2nπ
L

)2 (a2+b2)L
2 = S. For hx = hxxx = gx = 0 at x = ±L/2,

the equilibrium profile in equation 2.38 splits into a symmetric profile

h(x) = ±
√

2S/L

2Nπ/L
cos

(
2Nπx

L

)
+
θ

L
, (2.39)

and an anti-symmetric profile

h(x) = ±
√

2S/L

2Nπ/L
sin

(
2Nπx

L

)
+
θ

L
(2.40)

with N2 = − C̄Σ0

K̄

(
L
2π

)2
. N is an integer for the symmetric profiles, and a half-integer for

the anti-symmetric profile.
For a given membrane excess length S and an area θ under the membrane in two

dimensions, m has to satisfy the following inequalities (from 0 < h < 1)

0 < −
√

2S/L

2mπ/L
+
θ

L
,

√
2S/L

2mπ/L
+
θ

L
< 1, (2.41)

with m = n for the periodic boundary conditions and m = N for the blistering boundary
conditions. The corresponding total energy of the membrane interface is computed as

E = K̄

∫ L

−L
(hxx)

2
dx+ Σ0C̄S = −

(
2mπ

L

)2

K̄S. (2.42)

The most stable equilibrium will be given by one of the plausible values of m that
minimizes the membrane energy in equation 2.42. For a capacitive membrane with con-
ductance, no such simple expression for the equilibrium profile was found because of the
nonlinearity from the non-vanishing E at equilibrium. Figure 2(a) illustrates the variation
of m with S for θ/L = 1/2.
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Figure 2. (a) Equilibrium mode number as a function of excess length S for θ/L = 1/2. (b)
Equilibrium membrane tension as a function of membrane conductance from simulations with
parameters. (c) Equilibrium electric field profile Aeq as the membrane conductance increases
(with a multiple of 2) from bottom (gm = 1) to top (gm =∞ for the dashed line).

2.3. Linear Stability of a Tensionless Flat Membrane in a dc Field

Linear stability analysis on a flat capacitive conducting tension-free membrane has been
conducted for both dc (Seiwert et al. 2012) and ac (Seiwert & Vlahovska 2013) fields.
In contrast to the stability of a fluid interface that depends solely on the mismatch of
the fluid dielectric properties (see Craster & Matar 2005; Roberts & Kumar 2009), the
membrane conductance is found to be essential for the linear instability (Seiwert et al.
2012), while the linear growth rate is reduced by the electric field frequency in the ac
field (Seiwert & Vlahovska 2013).

In the long-wave formulation the membrane tension responds to the bending and elec-
tric forces (equation 2.29) to keep the membrane inextensible. We will linearize the
long-wave equations around the base state

h0 = constant, A0 =
gm

1 + gm[σrh0 + (1− h0)]
, C0 = σrA0. (2.43)

The shape fluctuations can be written as h(x, t) = h0 + δheiQx+λt (with Q the wave
number and λ the growth rate) with similar expressions for A and C. Focusing on the
dc field (α = 0 and ν = 1) case, these fluctuations can be substituted into the long-wave
model (equations 2.25, 2.27 and 2.28) and then linearized. For a tensionless membrane,
an analytical form for the growth rate can be found in the limit Q→ 0:

λ ≈
β
(
εr − σ2

r

)
(1− σr)g3

m

96(1 + µr) [1 + (σr + 1)gm/2]
3Q

2 − K̄

96(1 + µr)
Q6, (2.44)

with h0 = 1/2. Equation 2.44 shows that the flat tension-less membrane can be unstable
when (εr − σ2

r)(1 − σr)gm > 0 (assuming that the membrane conductance gm ≥ 0),
consistent with the conclusion in Seiwert et al. (2012). However, the dependence of the
growth rate on Q is quadratic from our long-wave formulation, while a cubic dependence
is reported in Seiwert et al. (2012) for a membrane in free space. From equation 2.44 the
maximum growth rate (λmax) and the corresponding wavenumberQmax can be computed
as

Qmax =
4

√√√√β(εr − σ2
r)(1− σr)
K̄

(
gm(

1 + σr+1
2 gm

))3

∼ K̄−1/4, (2.45)

λmax =
β
(
εr − σ2

r

)
(1− σr)g3

m

144(1 + µr) [1 + (σr + 1)gm/2]
3Q

2
max ∼ K̄−1/2. (2.46)
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In the limit of large membrane conductance gm →∞,

Qmax → 4

√
8β(εr − σ2

r)(1− σr)
K̄(σr + 1)3

, λmax →
β
(
εr − σ2

r

)
(1− σr)

18(1 + µr)(σr + 1)3
Q2
max. (2.47)

2.4. Numerical Implementation

The evolution equation for the membrane height (equation 2.25) is a sixth-order nonlinear
differential equation. As a result, an explicit time-marching scheme has stringent stability
constraint and will be impractical to simulate the physics even in the one-dimensional
case. To overcome the restriction on time-step, we formulate a semi-implicit scheme
similar to that of Veerapaneni et al. (2009). In this scheme, the tension is treated explicitly
and the terms with highest-order derivatives in equation 2.25 are treated implicitly.
Suppose we have evolved the membrane position until n4t and we need to march to
(n+ 1)4t. First, we compute the tension Σ0 at the nth level using equation 2.29 as

Σn0 ∼
(Sn − S0)/4t+

∫ L/2
−L/2 Fhxxx

[
K̄hxxxxx − β

2 (εrA
2 − C2)x

]
dx

C̄
∫ L/2
−L/2 Fh

2
xxxdx

, (2.48)

where 4t is the time step, S0 is the initial excess area and Sn is the excess area in
equation 2.36 evaluated with hn. The term (Sn−S0)/4t in the numerator is the penalty
term that adjusts the tension based on the deviation of membrane area from the initial
value S0. A similar term has been used for an inextensible elastic filament (Tornberg &
Shelley 2004). Second, the membrane position is updated via a semi-implicit time-step
as

hn+1 +4t
[
Fn
(
C̄Σn0h

n+1
xx − K̄hn+1

xxxx

)
x

]
x

= hn−4t
[
Fn

β

2
(εr(A

n)2 − (Cn)2)

]
x

, (2.49)

where Fn ≡ F (hn). Third, the evolution equation for the electric field A (equation 2.28)
is discretized as(

1 +
gm
cm
4t
)[

(An − Cn)hn+1 −An+1
]
− α

cm
An+1 =

(
4t
cm
− α

cm
− 1

)
An + (An − Cn)hn

−4t
(
ν′ +

gm
cm

ν

)
. (2.50)

Cn+1 = σrA
n+1 for α = 0, for α 6= 0 we update the electric field C by solving the

discretized evolution equation

Cn+1 =
εr4t
α

[(
1− α

4t

)
An +

α

4t
An+1 −

(
1

σr
− α

εr4t

)
Cn
]
. (2.51)

We solve for hn+1, An+1 and Cn+1 simultaneously using the GMRES method.
For the periodic boundary conditions the spatial derivatives are computed using the

spectral method (Canuto et al. 1986). Appropriate 4t and grid spacing 4x are chosen to
keep the error in excess length S smaller than 0.1% of the initial excess length throughout
the simulations. In the following we focus on periodic boundary conditions with L = 2π
unless otherwise specified.

The code is validated to be second-order in time and spectral in space. We numerically
recover the analytical equilibrium profiles for a non-conducting membrane in a dc field.
For a conducting membrane in a dc field, the same equilibrium profiles are numerically
found for a given combination of (θ, S) while the equilibrium membrane tension Σ0 now
depends on the membrane conductance gm as shown in figure 2(b). Figure 2(c) shows
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Figure 3. Linear growth rate for a tensionless flat membrane for β = 1. Solid curves are the
linear growth rate λ for a dc field (equation 2.44), and symbols are from simulations. (a) Linear
growth rate λ versus Q in a dc field with (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1, 300, 0). (b) λ versus

Q in an ac field with ω = 0.75, ν =
√

2 sin(ωt), (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1).
(c) λ versus ω for Q = 3.25 and (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1).

the equilibrium profile for the electric field Aeq as the membrane conductance increases
from bottom to top (gm →∞ for the dash-dotted line).

3. Results

The linear instability of a flat planar membrane has been quantified (Seiwert & Vla-
hovska 2013) in terms of membrane conductance gm, mismatch of fluid dielectric permit-
tivity εr and conductivity σr, electric capillary number Ca and electric field frequency
ω. In our long-wave formulation the time scale is based on the membrane charging time
(cm = 1), as a result their dimensionless (starred) parameters are related to ours as:

Ca∗ = 2εrβ
K̄

ε, ξ∗ = C̄
K̄
ε2, and β∗ = εrβ

µr
ε−3. In most electroformation experiments E0 is

often a few kV/m and h0 is of the order of mm, with σ1 ∼ 10−4 S/m and ε = 0.3 the
range of β is computed as 1 ≤ β ≤ 2. β can be as large as 600 for h0 ∼ 10 mm and
E0 ∼ 30 kV/m.

In § 3.1 we focus on the linear growth rate from numerical simulations for a tensionless
flat membrane in both dc and ac fields. Based on the linear results we perform simulations
to investigate the nonlinear dynamics of the membrane at different values of β in § 3.2
and excess length in § 3.3. In § 3.4 we demonstrate the alternating traveling wave on an
inextensible membrane under an ac field. All the results are presented with T = t/(2π/ω),
the time scaled to the period of the underlying ac field to help infer the underlying
mechanisms.

3.1. Linear Stability of a Tensionless Flat Membrane in an ac Field

The membrane conductance destabilizes the planar membrane while the the linear growth
rate is found to decrease with the frequency ω of the harmonic ac field from the Floquet
analysis in (Seiwert & Vlahovska 2013). Here we first present numerical results to validate
our code against the linear growth rate (equation 2.44) for a tensionless, flat membrane
in dc electric field. We then present some numerical results to qualitatively compare with
the Floquet results in figure 3 and figure 4 of Seiwert & Vlahovska (2013).

For the following calculations we use an initial membrane profile h(x, 0) = 0.5 +
0.01 cos(Qx) and 0 for both A and C. Figure 3(a) shows the linear growth rate under a
dc field computed from the time evolution of the Fourier transform of h from simulations
with (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1, 300, 0). The solid curve is from equation 2.44
and the symbols are from numerical simulations of a tensionless flat membrane. Fig-
ure 3(b) shows the growth rate under an ac field with ω = 0.75 and ν(t) =

√
2 sin(ωt)
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Figure 4. Membrane dynamics over one period for β = 990, ω = 0.75, ν(t) =
√

2 sin(ωt)
(dashed line in panels (b) and (d)) and (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1). β = 990
for the top row, and β = 6600 for the bottom row. (a) and (c): Time-space plot of h. (b) and
(d): The membrane height at x = 0 over one period.

for (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1). The solid curve is the dc growth
rate from equation 2.44 with the same parameters. Figure 3(c) shows the dependence
of the growth rate on the ac field frequency for Q = 3.25, (εr, σr, µr, gm, K̄, α) =
(1, 10, 1, 1.25, 10−2, 0.1) and ν(t) =

√
2 sin(ωt).

Our dimensionless frequency ω is the same as that in Seiwert & Vlahovska (2013)
because we use the membrane charging time for the time unit. The electric potential
for the base state is for an infinite domain in Seiwert & Vlahovska (2013), while for our
analysis the base state electric potential is for a finite domain. As a result we focus on
qualitative comparison here. The growth rate versus ω in figure 3(c) is in qualitative
agreement with figure 3 of Seiwert & Vlahovska (2013): The linear growth rate decreases
to zero as the frequency increases. The wave number dependence in figure 3(b) is also in
qualitative agreement with results in figure 4 of Seiwert & Vlahovska (2013).

3.2. Effects of ac field magnitude β

In this subsection we fix ω = 0.75 and L = π/Q with Q = 3.25 where the linear
growth rate λ is close to maximum for (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1)
and ν(t) =

√
2 sin(ωt) in figure 3(b) and (c). The excess length is fixed at S = 0.1389 as

we increase β.
For small to moderate excess length S, the following dynamics is found as we vary the

electric field strength β: For small β (top row in figure 4) the membrane profile stays
close to the equilibrium profile under a dc field (determined by S = 0.1389 and θ = 0.5)
most of the time, except when the electric potential approaches zero and the membrane
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Figure 5. (a): Membrane tension Σ0 over one period. From bottom to top, β = 990, 4950, and

6600. (b) Σ0 (solid line) for β = 990 and
〈
κ2
〉
≡
∫ L

−L
κ2dx (dashed line). (c) Σ0 (solid line) and〈

κ2
〉

(dashed line) for β = 6600. Bottom row: Dynamics of the induced surface charge q (panel
(d)) and transmembrane potential Vm (panel (e)) from T = 1.5 to T = 1.6 with ∆T = 0.1
between two curves. Dashed curves are for β = 990 and solid curves are for β = 6600.

undergoes fast undulation as shown in figure 4. For large β (bottom row in figure 4) the
fast membrane undulation leads to flip-flop of the membrane profile from h to 1 − h.
On the right panels (b) and (d) show the membrane height at x = 0 versus time (solid
curves) with the dashed curves for the electric potential ν(t). For β = 990 we observe fast
temporal oscillation around ν(t) ∼ 0, while for β = 6600 the membrane height overshoots
as the profile flip-flops and then gradually reaches the equilibrium height.

The corresponding temporal variation of the membrane tension is shown in the top
row of figure 5. Panel (a) shows Σ0 for different values of β, and the correlation between

Σ0 and
〈
κ2
〉

=
∫ L
−L κ

2dx near the minimum of Σ0 for β = 990 and β = 6600 are shown
in panels (b) and (c), respectively. In panels (b) and (c) there are 10 time steps between
two symbols with ∆t = 1/500 for panel (b) and ∆t = 1/800 for panel (c). Every half
a period the membrane tension Σ0 reaches a minimum, during when the membrane
deformation amplifies. This is clearly illustrated by the concurrence of peaks in

〈
κ2
〉

(dashed lines in panels (b) and (c)) and the minimum in Σ0 (solid lines in figure 5).
The bottom row of figure 5 shows the variation in the surface induced charge density
q and the transmembrane potential Vm. Depending on whether the membrane flip-flops
or undulates (at high or low β) when Σ0 is close to minimum, the distributions of q
and Vm also vary with time differently: Vm (q) remains minimum (maximum) at x = 0
for the flip-flopping membrane, while the extrema of Vm (q) oscillate for the undulating
membrane.

The above results show that the nonlinear dynamics of an inextensible elastic mem-
brane in an ac field is closely related to the temporal variation of membrane tension Σ0,
which is in sync with the external ac field ν(t) for small and moderate S. The membrane
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Figure 6. Flip-floping dynamics of membrane with different excess length: S = 0.139, 0.556,
0.868, 1.050 for curves 1, 2, 3, and 4, respectively. β = 4950, ω = 0.75, ν(t) =

√
2 sin(ωt) and

(εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1). Top row: temporal variation of h, Σ0 and q at
x = 0. Bottom row: Flip-flopping of h for S = 0.139 (left) and S = 1.050 (right) when Σ0 ∼ 0.

deformation gets amplified when Σ0 is around the minimum and ν(t) is around its mean.
This may be understood by the linear instability of a tensionless membrane: When Σ0 is
close to zero the tensionless membrane is linearly unstable for (εr − σ2

r)(1− σr)gm > 0.
At large β the undulation of membrane is replaced by the flip-flop of membrane profile,
and we observe overshoot in membrane height at x = 0 before and after the flip-flop.
In addition we find higher surface charge density at x = 0 in figure 5(d), where the
membrane height overshoots the most before and after the flip-flop (see figure 4).

At other times when Σ0 are large, the membrane profile stays close to the analytic
equilibrium membrane profile under a dc field. From simulations for higher membrane
conductance we find that while membrane undulation still gets amplified when Σ0 ∼ 0,
higher electric field is needed for the membrane flip-flop.

For (εr, σr, µr, gm, K̄, α) = (1, 10, 1, 1.25, 10−2, 0.1) the ac field strength has to be
increased to very high values for different nonlinear membrane dynamics to kick in.
However, based on the above results the nonlinear dynamics ensues only after the mem-
brane turns linearly unstable when the membrane tension is almost zero. As the linear
growth rate depends on β, σr and εr, it is reasonable to expect (and indeed we ob-
serve numerically) that the same nonlinear membrane dynamics can be found at smaller
β, which is more physically realizable in the laboratory. For example, both the un-
dulation and membrane flip-flop dynamics can be observed for β less than 200 when
(εr, σr, µr, gm, K̄, α) = (1, 50, 1, 0.01, 10−6, 0.1).

3.3. Nonlinear dynamics at different excess length S

Here we investigate how membrane flip-flopping dynamics under a strong ac electric
field may depend on the membrane excess length S. Figure 6(a) shows the variation of
membrane height at x = 0 for four values of S (see caption). At β = 4950 we observe
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Figure 7. Variation of surface charge (top row) and transmembrane potential (bottom row)
from the simulations in figure 6.

the overshoot in membrane height and the associated membrane flip-flopping for all four
values of S. In addition we find that the overshoot in membrane height (when Σ0 is close
to zero, around its minimum) is enhanced as the excess length S increases from 0.1389 to
1.0501, as shown in figure 6(a). Figure 6(b) and (c) show the corresponding variation of
Σ0 and q at x = 0, where we see Σ0 ∼ 0 every half a cycle, corresponding to the overshoot
in membrane height in figure 6(a). From (b) we note that the magnitude of Σ0 increases
with increasing S. Figure 6(d) and (e) show the space-time plots of the membrane profile
when the membrane flip-flops.

We also observe that, even though the membrane flip-flops every half a cycle when
Σ0 ∼ 0, the membrane height overshoots more when ν is positive. When ν is negative,
Σ0 reaches maximum and therefore stabilizes the membrane and suppresses the overshoot
before and after the flip-flop. Such asymmetry between the ν > 0 half cycle and the ν < 0
half cycle is also reflected in the surface charge density: q dependence on S is amplified
only when ν < 0.

The corresponding space-time plots for q and Vm are shown in figure 7, where we
observe the transmembrane potential is out of phase with q. As S increases, we observe
the charge density to focus more at x = 0 around T ∼ 1.8, right before the sudden
overshoot in the membrane height and the fast change in at T ∼ 2. In addition we observe
the transmembrane potential at x = 0 has fast temporal variation when the membrane
height flip-flops during the positive half cycles. During the negative half cycles, Vm has
fast temporal variation at the end points.
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Figure 8. Non-periodic dynamics for S = 0.1138, θ = 0.2, β = 300, ω = 0.05π,

ν(t) =
√

3
2

+
√
2

2
sin(ωt) and (εr, σr, µr, gm, K̄, α) = (1, 60, 1, 0.01, 10−6, 0.1). Top row: temporal

variation of Σ0, h and q at x = 0. Bottom row: Time-space plots of membrane height, surface
charge and transemembrane potential from T = 59 to T = 60.

3.4. Nonlinear “traveling” wave on an inextensible elastic membrane

For a given set of physical parameters (εr, σr, µr, gm, K̄, α), the nonlinear membrane dy-
namics with sufficiently large electric field strength β and the membrane excess length S is
no longer the periodic undulation or membrane flip-flop in § 3.2 and 3.3. Here we present
an example from simulations for S = 0.1138, θ = 0.2, β = 300, (εr, σr, µr, gm, K̄, α) =

(1, 60, 1, 0.01, 10−6, 0.1), ω = 0.1π and ν(t) =
√

3
2 +

√
2

2 sin(ωt). 256 modes and ∆t = 1/100
are used in the simulations.

Here the membrane is placed closer to the bottom electrode (θ = 0.2), which is similar
to the experimental setup for electroformation. At the beginning the membrane undergoes
undulation when Σ0 approaches minima. Very quickly the translational symmetry is
broken and a direction for lateral movement (from right to left) is dictated by the initial
condition, which is h(x, 0) = 0.2 + 0.15 cos(x) + 0.015(cos(5x) + sin(6x)). The membrane
moves oppositely from left to right as we invert the initial condition.

Figure 8(a) shows the temporal variation of Σ0 (solid line) and
〈
κ2
〉

(dashed line),

which illustrates the correlation between maxima in
〈
κ2
〉

and minima in Σ0. Figure 8(b)
shows the membrane height at x = 0 (solid line) versus time for five periods, and the
corresponding charge density is shown in panel (c). The dashed line in (b) and (c) is the
electric potential ν(t). We see that Σ0 reaches the minimum around the times when ν
reaches its mean. While the tension Σ0 remains positive within a cycle, a larger maximum
is reached in the first half cycle than the second in (a). The variation of membrane height
at x = 0 with T in (b) shows a maximum height is reached every half a cycle, with a
clear indication of double-periodic dynamics. In (c) the surface charge density q at x = 0
oscillates with the same periodicity T with a slightly decreasing amplitude. Figure 8 (d),
(e) and (f) show the time-space plots for h, q and Vm, respectively, over one period from
T = 59 to T = 60.

Figure 9 shows the lateral membrane movement. In the top row we show the profiles of
h, q and Vm at multiples of T from T = 31 (dashed curve) to T = 42 (solid curve). The
inserts show a zoomed region from T = 31 (dashed curve) to T = 34. In (a) the insert
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Figure 9. Temporal evolution at multiple periods of the ac field. Top row: Evolution of the
membrane ((a)), surface charge ((b)) and transmembrane potential ((c)) from T = 31 to T = 42.
Inserts show how Bottom row: Space-time plots of h in (a), q in (b), and Vm in (c).

shows that the membrane first makes a big step to the left from T = 31 to T = 32, then a
small step to the right at T = 33 and then again a big step to the left at T = 34. Similar
dynamics is found for q and Vm in (b) and (c), respectively. In the bottom row we show
the time-space plots sampled at multiples of the periods. We clearly see a net movement
from right to left in h in panel (d), q in panel (e) and Vm in panel (f). The membrane
height can be quite close to the bottom electrode. Careful numerical convergence tests
have been conducted to ensure that the nonlinear translational dynamics is not affected
by h getting close to zero.

In deriving the long wave equation the horizontal velocity on the membrane is set to
zero for local membrane inextensibility at the leading order. Consequently the alternating
wave is actually a “coordinated” movement in the vertical direction like a Mexican wave
in the soccer game: As the audience stand up and sit down in a rhythmic way, there
appears to be a “traveling wave” moving in a directed fashion. The nonlinear dynamics
conspires to coordinate such “dancing steps” for a traveling wave.

Increasing β further to β = 600, we find that the unidirectional traveling wave is
replaced by a sloshing wave moving back and forth, almost in sync with the ac field.
However it is not clear how physically realizable it is to have β = 600 in the microflu-
idic laboratory. We are now conducting thorough numerical investigation of the whole
parameter space in (εr, σr, µr, gm, K̄, α) to check if all these non-linear dynamics may be
reproduced for physically reasonable electric field strengths.

4. Summary

In this work we investigate the long-wave nonlinear dynamics of an inextensible capac-
itive leaky (conducting) elastic membrane under electric fields. Using the sharp-interface
approximation, the inextensible membrane behaves as a capacitive elastic sheet with a
conductance due to ions leaking through the membrane. We derive a sixth-order nonlinear
equation with an integral constraint from the membrane inextensibility in the long-wave
limit. In a dc field where the displacement current is negligible, we analytically derive the
equilibrium profile of a non-conducting membrane for a given excess length S and the
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area θ under the planar membrane. We implemented a semi-implicit iterative scheme to
numerically investigate the nonlinear dynamics of the membrane. Our long-wave model
captures the linear behavior for a flat tensionless membrane, and we examine the dif-
ferent nonlinear dynamics under varying electric field strengths and excess length with
physically relevant parameters in the simulations.

In our numerical simulations, both time step and grid spacing are adjusted to ensure (1)
the error in the excess length is never exceeding 1% of the initial excess length throughout
the simulations, and (2) numerically convergent solutions are obtained. Results in § 3.2
demonstrate the important role of membrane tension Σ0 in membrane dynamics: Periodic
undulation and flip-flopping of membrane are direct consequences of the linear instability
of the membrane when the tension is close to zero. Results in § 3.3 show that the flip-
flop of membrane profile gives rise to overshoot in membrane height when the external
electric potential ν is increasing, and the magnitude of overshoot increases with the
excess length S. During the membrane flip-flop we also find the surface charge density
focusing at x = 0 where the membrane height overshoots. Such charge focusing at the
highest-curvature location of the membrane is reminiscent of the Taylor cone formation
in electrohydrodynamics (Fernandez de la Mora 2007).

Pillar formation at fixed locations is commonly observed for a fluid interface in an ac
field (Roberts & Kumar 2009, 2010), where the fluid interface can be stretched indefinitely
until the lubrication theory breaks down. At large excess length and under strong ac field,
we find that after two cycles of membrane flip-flop the membrane height can get very
close to the bottom wall, where min(h) ≈ 10−3 for results in figure 8(d). The membrane
then takes on an traveling motion from the double-periodic dynamics of the membrane
movement of the sequence: a big step to the right, a small step to the left and then a
big step to the right. Careful numerical convergence tests have been conducted to ensure
that sufficient numerical resolutions are used to guarantee numerically convergent results
and the traveling dynamics is not a numerical artifact. Within our long wave formulation
we provide an explanation of the “Mexican Wave” for the “coordinated” traveling wave
moving in 2 − 1 steps. In our on-going research we include both (1) the Van der Waals
force between the membrane and electrodes, and (2) the disjoining pressure to investigate
the traveling wave and sloshing wave.

We are also extending the long-wave model in two directions: We are replacing the
leaky dielectric fluids with electrolyte solutions where the bulk charges are not zero and
the charges may accumulate away from the membrane. The membrane is found to be
more linearly unstable in the presence of these charges near the membrane (Bazant et al.
2009). We are investigating how the membrane behave non-linearly in the electrolyte
solutions. In addition we are also incorporating the membrane asymmetry due to the
mismatch in lipid composition between the two leaflets. It will be interesting to examine
how the asymmetry in the two leaflets might lead to different membrane dynamics and
equilibrium shapes under external forces.
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sion with P. M. Vlahovska. SV acknowledges support from NSF grant DMS-1224656.
MJM acknowledges support from NSF grant DMS-1312935. The simulations were con-
ducted on the NJIT computing cluster, supported by NSF/MRI grant number DMS-
0420590.

REFERENCES



Dynamics of a Planar Membrane in an Electric Field 19

Angelova, M. I. & Dimitrov, D. S. 1986 Liposome electroformation. Faraday Discuss. Chem.
Soc. 81, 303–311.

Antov, Y., Barbul, A., Mantsur, H. & Korenstein, R. 2005 Electroendocytosis: Exposure
of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules.
Biophysical Journal 88, 2206–2223.

Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. 2009 Towards an understanding
of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv.
Coll. Int. Sci. 152, 48–88.

Bezlyepkina, R. Dimova N., Jordo, M. D., Knorr, R. L, Riske, K. A., Staykova, M.,
Vlahovska, P. M., Yamamoto, T., Yang, P. & Lipowsky, R. 2009 Vesicle in electrid
fields: some novel aspects of membrane behavior. Soft Matt. 5, 3201–3212.

Blount, M. J., Miksis, M. J. & Davis, S. H. 2012 Fluid flow beneath a semipermeable
membrane during drying processes. Phys. Rev. E 85, 016330.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1986 Spectral Methods in
Fluid Dynamics. New York: Springer-Verlag.

Constantin, D., Ollinger, C., Vogel, M. & Salditt, T. 2005 Electric field unbinding of
solid-supported lipid multilayers. Eur. Phys. J. E 18, 273–278.

Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky
dielectric films. Phys. Fluids 17 (3), 032104.

Feng, J. Q. & Beard, K. V. 1991 Three-dimenionsional oscillation characteristics of electro-
statistically deformed drops. J. Fluid Mech. 227, 429–447.

Fernandez de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech.
39, 217–243.

Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic
sheet. Phys. Rev. Lett. 93, 137802.

Lacoste, D., Lagomarsino, M. C. & Joanny, J. F. 2007 Fluctuations of a driven membrane
in an electrolyte. Europhys. Lett. 77, 18006.

Lacoste, D., Menon, G. I., Bazant, M. Z. & Joanny, J. F. 2009 Electrostatic and elec-
trokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E 28,
243–264.

Lecuyer, S., Fragneto, G. & Charitat, T. 2006 Effect of an electric field on a floating lipid
bilayer: A neutron reflectivity study. Eur. Phys. J. E 21, 153–159.

McConnell, L. C., Miksis, M. J. & Vlahovska, P. M. 2013 Vesicle electrohydrodynamics
in dc electric fields. IMA Journal of Applied Mathematics 78, 797–817.

Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev.
Mod. Phys. 69, 931–980.

Pease, L. F. & Russel, W. B. 2002 Linear stability analysis of thin leaky dielectric films
subjected to electric fields. J. Non-Newtonian Fluid Mech. 102, 233–250.

Riske, K. A. & Dimova, R. 2005 Electro-deformation and poration of giant vesicles viewed
with high temporal resolution. Biophys. J 88, 1143–1155.

Roberts, S. A. & Kumar, S. 2009 Ac electrohydrodynamic instabilities in thin liquid films.
J. Fluid Mech. 631, 255–279.

Roberts, S. A. & Kumar, S. 2010 Electrohydrodynamic instabilities in thin liquid trilayer
films. Phys. Fluids 22, 122012.

Sadik, M. M., Li, J., Shan, J. W., Shreiber, D. I. & Lin, H. 2011 Vesicle deformation and
poration under strong dc electric fields. Phys. Rev. E 83, 066316.

Schaffer, E., Thurn-Albrecht, T., Russell, T. & Steiner, U. 2000 Electrically induced
structure formation and pattern transfer. Nature 603, 874–877.

Schwalbe, J. T., Vlahovska, P. M. & Miksis, M. 2011 Lipid membrane instability driven
by capacitive charging. Phys. Fluids 23, 04170.

Seifert, U. 1995 The concept of effective tension for fluctuating vesicles. Z. Physik. B 97,
299–309.

Seiwert, J., Miksis, M. J. & Vlahovska, P. M. 2012 Stability of biomimetic membranes in
dc electric fields. J. Fluid Mech. 706, 58–70.

Seiwert, J. & Vlahovska, P. M. 2013 Instability of a fluctuating membrane driven by an ac
electric field. Phys. Rev. E 87, 022713.



20 Y.-N. Young1, Shravan Veerapaneni2 and Michael J. Miksis3

Sens, P. & Isambert, H. 2002 Undulation instability of lipid membranes under an electric
field. Phys. Rev. Lett. 88, 128102.

Thaokar, R. M. & Kumaran, V. 2005 Electrohydrodynamic instability of the interface be-
tween two fluids confined in a channel. Phys. Fluids 17, 084104.

Tornberg, A.-K. & Shelley, M. J. 2004 Simulating the dynamics and interactions of flexible
fibers in stokes flows. J. Comp. Phys. 196, 8–40.

Veerapaneni, S. K., Gueffier, D., Zorin, D. & Biros, G. 2009 A boundary integral method
for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d. J.
Comp. Phys. 228 (7), 2334–2353.

Weaver, J. C. & Chizmadzhev, Y. A. 1996 Theory of electroporation: a review. Bioelec-
trochem. Bioenerg. 41, 135–160.

Wu, N. & Russel, W. B. 2009 Micro- and nano-patterns created via electrohydrodynamic
instabilities. Nanotoday 4, 180.

Zhang, J., Zahn, J. D., Tan, W. & Lin, H. 2013 A transient solution for vesicle electrode-
formation and relaxation. Phys. Fluids submitted.

Ziebert, F., Bazant, M. Z. & Lacoste, D. 2010 Effective zero-thickness model for a con-
ductive membrane driven by an electric field. Phys. Rev. E 81, 031912.

Ziebert, F. & Lacoste, D. 2010 A poisson-boltzmann approach for a lipid membrane in an
electric field. New J. Phys. 12, 095002.

Ziebert, F. & Lacoste, D. 2011 A planar lipid bilayer in an electric field: membrane instability,
flow field, and electrical impedance. Advances in Planar Lipid Bilayers and Liposomes 14,
63–95.


