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It is shown that a slender elastic fiber moving in a Stokesian fluid can be susceptible to a buckling
instability — termed the “stretch-coil” instability — when moving in the neighborhood of a hyperbolic
stagnation point of the flow. When the stagnation point is embedded in an extended cellular flow, it
is found that immersed fibers can move as random walkers across time-independent closed-streamline
flow. It is also found that the flow is segregated into transport regions around hyperbolic stagnation
points and their manifolds, and closed entrapment regions around elliptic points.

PACS numbers: 83.60.W¢,91.60.Ba,87.15.Aa,47.57.eb,47.51.+4a,64.75.tg

Simple rheological flows — linear shearing, extensional
straining — are often used to probe the mechanical re-
sponses of deformable media [1]. For a complex fluid even
such simple forcing can induce nontrivial dynamics in the
fluid’s micro-structure. Shearing a suspension of micro-
scopic fibers beyond a critical shear-rate can induce fiber
buckling, leading to the abrupt appearance of normal
stress differences [2-5]. Straining a polymer suspension
can induce coil-stretch transitions [6], a process recently
visualized in strongly mixing elastic flows [7]. The rela-
tion between micro-structural dynamics and macroscopic
mechanical properties of the fluid is essential to under-
standing novel dynamics of elastic turbulence and mixing
[8].

Buckling instabilities of fibers have also arisen as mod-
ulators of transport. Actin filaments (a biological poly-
mer) are observed to be propelled along myosin coated
surfaces [9, 10], showing a meandering dynamics with ap-
parent bucklings driving changes in direction. Conceived
as a technique for assaying the mechanical properties of
such biopolymers, it was proposed that the consequent
wandering, perhaps random, motion resulted from spa-
tial inhomogeneity of myosin density on the plate.

Inspired by such observations, we consider the dy-
namics and transport of elastic fibers in simple time-
independent, incompressible cellular flows. We focus on
2D flows, where cellular flows are generically composed
of a lattice of hyperbolic fixed points connected by sta-
ble/unstable manifolds (converging/diverging flows) and
a set of elliptic fixed points (vortices). Without tempo-
ral variation, such a closed stream-line cellular flow is a
poor mixer as no global mixing between cells can occur
in the absence of molecular diffusion. We show that an
elastic fiber can be transported across such a flow as a
random walker (Fig. 1), with random choices of direction
induced by the internal filament dynamics in the neigh-
borhood of hyperbolic fixed points. This is unlike the
translational diffusion due to interaction of filaments in
dilute or semidilute regimes [11], or the self-diffusion of
flexible filaments [12] (and references therein).

Unlaying this transport is a bifurcation, complemen-
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FIG. 1: (a) For n = 4000 and o = 1/7, the computed trajectory
(for center of mass) of a meandering filament. The box is 100 x 120
cells. The inset shows the stretch-coil instability as the filament
transits through a hyperbolic fixed point (entering/converging from
left-right, exiting/diverging to up-down). The thick dashed curves
separate regions of transport from entrapment, the dynamics in the
latter case shown by the filament shapes within. (b) The histogram
of fiber elastic energy 2€ for this simulation. The peak at large
curvatures corresponds to the persistent stretch-coil transitions at
hyperbolic fixed points. The inset shows a sample evolution of 2&.

tary and inverse to the coil-stretch transition. Above a
critical strain-rate at a hyperbolic point, a straight fila-
ment (the rest state) becomes unstable to buckling and
can become folded, or “coiled” for very large strain-rates.
This configuration allows the fiber to sample the flow
spatially, exiting along one or the other direction of the
unstable manifold, and becoming stretched again as it
moves to the next fixed point.



Formulation: Consider a slender, inextensible and elastic
filament of radius 7, length L, and rigidity F, moving in
a Stokesian fluid of viscosity p with a background veloc-
ity field (W+)U(x/W). Here W is the cell size and ¥
a strain-rate at a hyperbolic point. The Brownian, in-
ertial, and gravitational forces scale as kT/L, ppy2L*,
and g(ps — ps)r2L, respectively for rod-shaped colloidal
particles of density ps. In most applications these forces
are negligible, and thus are not included in the formu-
lation. We denote the fiber position by its centerline
position X (s, t), where s is arclength, and scale space on
the length L, and time on §~!. According to slender-
body theory [13, 14], as used in many other studies (e.g.
[2, 15]), the leading order dynamics is governed by a local
balance of drag forces with the force of the filament upon
the fluid:

7’]D (Xt - OéilU(OéX)) = - (Xssss - (U(S)XS)S) (1)

where D =T — (1/2)X;X; is an anisotropic drag tensor
(D™! = I+ X X), a = L/W is the ratio of filament
length to cell size, and n = 8wuyL*/Ec is the effective
viscosity (with ¢ = —log(e?e) where € = r/L << 1).
Filament forces (per unit length) are described by Euler-
Bernoulli elasticity: f = Xgg55 — (0(5)Xs)s. The line
tension o is determined by the constraint of inextensi-
bility, expressed as X, - X;s = 0, which yields a 2™?-
order boundary value problem that closes with the con-
ditions ¢ = 0. Zero total force and torque on the
filament is satisfied by the “free” boundary conditions
Xss = Xgss = 0. Note that with the choice of scal-
ing, « drops out of the dynamics for any linear back-
ground flow (e.g. simple strain or linear shear). This sys-
tem can be posed variationally with Rayleigh dissipation
function D = (n/2) [ds X;DX;, and (elastic) energy,
& =(1/2) [ ds X2, (decaying in the absence of forcing).

The Hasimoto transformation is utilized to convert
Eq. (1) to an equation for the complex curvature of the
filament centerline [16, 17]. The resultant system is nu-
merically integrated (with 2"?-order in space and time)
to simulate the filament motion in a given background
flow U.

We focus on a simple time-independent, spatially pe-
riodic 2D cellular flow, U = (sinz cosy, — cosz siny, 0),
with hyperbolic fixed points at (nm, mm,0) for m, n in-
tegers (e.g., near (0,0,0), 2U(ax) ~ (—x,y,0))). The
basic periodic structure contains four cells, or vortices,
each of width 7, and is similar to a four-roll mill flow
[4, 18]. This sets a = L’ /m, with L’ the relative filament
length.

For n = 4000 and « = 1/7, Fig. 1(a) shows the “me-
andering” trajectory of an initially straight filament re-
leased near a stable manifold (xr = n7 or y = mm). Its
dynamics is roughly this: the filament aligns with the
stable manifold as it approaches a hyperbolic fixed point
(as in the inset of Fig 1(a)). The viscous stresses pro-
duced by the local straining flow begin to compress the

e
extensional

Lot 4
8- | y _
[ . ~ B=TU4 |
F ! -

I i/ |
[ 'buckling instabilit uckling instability 1

| : - - :

(O]
K
= 6cbmpraﬁyey/ mprvethi(adrant N
% 4;1 "i;:—rm
(D E : extensional 1
g 2: n IS 1
C S I - -
= I E: even mode
L O: odd mode
O:' ._._._._._._._._._4_._._._._._._._._._._._._._._._4_._.i
0 2000 4000 6000 8000
n

FIG. 2: Linear growth rate versus 7 for filament with § = 0 at
the center of the linearized hyperbolic flow (solid line). The thick
dashed line is the growth rate for a filament in planar shear flow.
The “E” and “O” labels whether the dominant eigenfunction is
even or odd about the filament center point. The inset schematic
shows the regions of compressive flow (potentially yielding a buck-
ling instability) and extensional flow around the hyperbolic fixed
point for the straining flow U = (—z, y, 0).

filament along its axis, and if sufficiently high, the fila-
ment buckles. The now coiled filament samples the lo-
cal velocity field around the hyperbolic point, and exits
along its unstable manifold, the direction chosen with ap-
parent randomness (downward in Fig. 1(a) inset). The
consequence of these stretch-coil transitions is filament
transport across space as a random walker.

Fig. 1(b) shows the (normalized) histogram of elastic
energy &£ accumulated over long time. Persistent filament
buckling along its meandering trajectory corresponds to
repetitive stretch-coil transitions, which appear as the
high-curvature peak in the histogram. The temporal
dynamics of these transitions is illustrated in the inset,
showing the time evolution of 2£. Its episodic rise and
fall, roughly over an order of 10 time units, corresponds
to the coiling and stretching of the filament.

The rapid temporal growth in elastic energy results
from a buckling instability near the fixed point and can
be quantitatively analyzed, as has been done in the
shearing case [2, 19]. Firstly, an initially straight fila-
ment remains so while moving in any linear background
flow. Consider then a nearly straight filament in the
straining flow (z,—y) (dropping the third dimension).
The linearized dynamics for the perturbation y from the
straight filament is ny; = —¥Vssss + 205Ys + 0Yss, where
o(s) = ncos(20)/4(s®> — 1/4) (—nsin(20)/8(s? — 1/4) for
planar shear flow), and 0(t) is the filament angle with the
x axis. If 6(¢) varies slowly, this linear equation can be
taken as a homogeneous, constant coefficient PDE lin-
ear in y and is amenable to standard eigenvalue analysis,
results from which are shown in Fig. 2.

This analysis reveals that a filament can undergo a
compressive buckling instability if moving towards the
fixed point in the quadrant —7w/4 < 6 < 7/4 around
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FIG. 3: Frequency of residence time for n = 4000 and o = 1/.

The dashed line is a prediction from Eq. (2). The inset schematic

shows an idealized filament trajectory across the network of hyper-

bolic points. The vertical dashed lines correspond to the frequency
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the stable manifold, as illustrated in the inset of Fig. 2.
This instability appears at finite 7 (i.e., for a sufficiently
flexible filament, or sufficiently high strain-rate, etc.); for
a = 1/m, as in the simulation of Fig. 1, the instability
appears for n > 7., with n. ~ 328. We refer to the in-
stability boundary in (n, ) as the stretch-coil transition
boundary, and it is plotted (bottom dashed line) in Fig. 5.

It is this instability that drives the meandering dynam-
ics observed in Fig. 1. For this simulation Fig. 3 shows the
residence time frequency, where residence time is the time
a fiber moves within a particular cell. This frequency plot
is multiply peaked and shows an overall exponential de-
cay. A very simple model of this dynamics is as a walker
moving on the lattice of hyperbolic points, as illustrated
in the Fig. 3 inset. If we assume that the choice of par-
ticle exit direction (up or down at open circles; left or
right at closed circles) is made with equal probability of
1/2, and is independent of the previous choice, then ne-
glecting recurrences the discrete probability distribution
for residence time T is given by

P(T) = (n2/AT)(1/2)7/27 (2)

where T'= NAT with AT the transit time between lat-
tice points. With no a priori estimate available, the value
of AT in the exponential distribution plotted in Fig. 3
is taken as the location of the first and highest peak of
the residence time frequency. The discrete probability
captures the successive peaks in the frequency plot, each
corresponding to successive direction choices that keep
the filament within a single cell.

Given the average transit time AT, the effective fil-
ament diffusivity is given by D = a~2/4AT. Taking
AT ~ 6.5 and a = 1/7 gives D ~ 0.38. The effective
filament diffusivity can also be estimated from the fiber
dispersion d?(t) [11], which for a Brownian walker satis-
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FIG. 4: Filament dispersion versus time for « = 1/7 and various
n, each estimated by an ensemble average of eighty simulations.
The dashed line is the dispersion estimate for a random walker,
d?(t) = 4Dt, using the estimated diffusion D = 0.38 for n = 4000
(¢f. curve 2).

fies d?> ~ 4Dt for large t. Fig. 4 shows d? estimated by an
ensemble average of eighty simulations for different ini-
tial filament placements (same location for the filament
center but different filament angle with the z-axis), for
a = 7~ ! and for various 1. Each plot shows a roughly lin-
ear increase in time, consistent with random walk statis-
tics. The plot for n = 4000 (curve 2) is overlaid by a
dashed line of slope 4D with D = 0.38, showing consis-
tency with the estimate of D found using the residence
time frequency distribution. The figure also suggests
that the effective diffusion remains almost identical for
4000 < 1 < 7000 (curves 2, 3, and 4), but decreases for
1 = 527.4 (curve 1), which is slightly above 7., the crit-
ical value for instability. For increasing 7, the implied
diffusion is non-monotonic, increasing towards n = 8000
(curve 5), then monotonically decreasing at yet higher
values (curves 6 and 7). For n = 15708 the filament is
curved and trapped inside the cell, as shown schemati-
cally in Fig. 5, and no diffusive transport is found.

Fig. 5 depicts the transitions in filament dynamics in
the 7 — « plane. For all values of a, no buckling in-
stability occurs for n below 7., which almost coincides
with the lower boundary of transport (solid line) from
simulations. Below the lower boundary a filament either
settles to a fixed point or stays trapped within a cell. For
Ne < 1 <~ 1.5 x 10%, diffusive filament transport (me-
andering) is found if the filament is released not too far
from the manifolds. The inset graph shows the estimated
probability of a filament being trapped in the cell as a
function of its initial distance to a manifold. We define
the size of the transport region by the distance that corre-
sponds to 50% for the trapping probability. For a« = 1/7
this distance is ~ 0.2 (see the dashed curves in the inset
of Fig. la), and seems insensitive to 7. For yet larger
7 the region of transport collapses, and the filament is
trapped in the interior as illustrated in the inset.

Finally, to seek some comparison with experimental
observation, Fig. 6 shows the computed distributions for
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FIG. 5: Phase diagram of filament dynamics in cellular flow. For a
given filament length (scaled to the cell size), there exists a range of
effective viscosity for meandering elastic filament. The dashed line
is the threshold to stretch-coil instability. Inset on the lower left
shows the probability for the meandering filament to be trapped in
the cell as a function of initial distance to the manifold for o = 1/7.
Inset on the upper right corner is for filament length o = 1.5/ and
n = 80000. Animations of filament dynamics for different values of
n and a = 1/7 can be found at [20]
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FIG. 6: The probability of filament center-of-mass speed at differ-
ent values of effective viscosity.

the speed of meandering filaments, again for & = 1/7 and
for various 7. These distributions are essentially bimodal,
as was observed in the actin transport experiments of
Bourdieu et al. [9, 10] at higher myosin densities. The bi-
modality reflects the basic dynamics underlying filament
transport. The sharp peak for all distributions near speed
of unity is that associated with transport between suc-
cessive hyperbolic point. The secondary peak at lower
velocities reflects the “loitering” of filaments near hy-
perbolic points as the buckling instability develops, and
which seem to be influenced by its geometric details. For
1. < n < 2000 the buckling instability is manifested by
an even mode (Fig. 2), with the secondary peak moving
to the right as 7 increases in this range. For n > 2000,
competition between even and odd modes can lead to
a more complex distribution (n = 4000 for example),

and the more prominent the odd mode the more the sec-
ondary peak moves towards lower speeds. As the even
mode takes over for 1 above 4250, the secondary peak
shifts towards the right.

We have found similar dynamics in three-dimensional
cellular flows, though the details can depend on the par-
ticular choice made. We are currently studying the 3D
case more deeply, as well as the nature of extra-stress
contributions made by action of the stretch-coil transi-
tion. On this, an interesting question is whether dynam-
ically complex flows can be generated by suspensions of
semi-flexible polymers [21], as has been demonstrated for
dilute polymer-coil suspensions, and if so, what is the role
of microstructural instabilities as studied here.
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