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Abstract— Deep packet inspection forms the backbone of any Network Intrusion Detection 
(NID) system. It involves matching known malicious patterns against the incoming traffic 
payload. Pattern matching in software is prohibitively slow in comparison to current network 
speeds. Due to the high complexity of matching, only FPGA (Field-Programmable Gate 
Array) or ASIC (Application-Specific Integrated Circuit) platforms can provide efficient 
solutions. FPGAs facilitate target architecture specialization due to their field 
programmability. Costly ASIC designs, on the other hand, are normally resilient to pattern 
updates. Our FPGA-based solution performs high-speed pattern matching while permitting 
pattern updates without resource reconfiguration. To its advantage, our solution can be 
adopted by software and ASIC realizations, however at the expense of much lower 
performance and higher price, respectively. Our solution permits the NID system to function 
while pattern updates occur. An off-line optimization method first finds common sub-
patterns across all the patterns in the SNORT database of signatures [14]. A novel technique 
then compresses each pattern into a bit vector, where each bit represents such a sub-pattern. 
This approach reduces drastically the required on-chip storage as well as the complexity of 
pattern matching. The bit vectors for newly discovered patterns can be generated easily using 
a simple high-level language program before storing them into the on-chip RAM. Compared 
to earlier approaches, not only is our strategy very efficient while supporting runtime updates 
but it also results in impressive area savings; it utilizes just 0.052 logic cells for processing 
and 17.77 bits for storage per character in the current SNORT database of 6455 patterns. 
Also, the total number of logic cells for processing the traffic payload does not change with 
pattern updates. 

Keywords— Field-Programmable Gate Array (FPGA), Pattern Matching, Network Intrusion 
Detection (NID), SNORT database.  

1. Introduction 
There have been many computer network attacks in recent times which were difficult to detect 

based only on packet header inspection. Deep packet inspection of the payload is needed to detect any 
application level attack. In the area of NID systems, new vulnerabilities are identified on a daily basis 
and appropriate rules are developed for defense. These rules may represent either new signatures or 
changes to existing ones. From October 2007 to August 2008, 1348 new SNORT rules were added 
while 8170 rules were updated (on a daily or weekly basis). The most recent 2.8 version of July 29th, 
2009 contains 15,730 rules that involve 6455 distinct patterns of sequential characters; our evaluation 
uses this version of SNORT. It becomes obvious that robust NID systems should handle pattern updates 
(including additions, deletions and editions) without taking them off-line. Signature matching is also 
relevant to virus detection techniques that look for the presence of specific command sequences (of cha-
racters) inside a program [19]. Although we focus on pattern matching for NID, our approach can be 
extended for virus detection as well where new signatures are added almost daily.  



 

The majority of deep packet inspection systems that try to identify malicious signatures employ 
pattern matching software running on general-purpose processors. The Boyer-Moore [21] and Aho-
Corasick [24] string matching algorithms have been adopted in NID research. The Boyer-Moore algo-
rithm performs matching from right to left by aligning the pattern to be matched with the input stream 
in such a way that the rightmost character of the pattern matches with the stream.  It continues matching 
from right to left, and if a mismatch is encountered, then it skips all the characters upto the next align-
ment of rightmost characters. The Aho-Corasick algorithm builds a finite state machine from keywords 
(i.e., chosen pattern pieces) and processes the input text strings in a single pass. The work in [22] pre-
sented a multi-pattern matching algorithm combining the one-pass approach of Aho-Corasick with the 
skipping feature of Boyer-Moore. Tuck et al. [23] take a different approach to optimizing Aho-Corasick 
by incorporating bitmap and path compression to reduce storage. However, these software approaches 
do not adapt well for hardware realizations even though their database of rules can be updated quite 
easily. Their major disadvantage is the sequential software-driven matching process which is very slow. 
Thus, the pattern matching process cannot keep up with fast network speeds; as a result, some packets 
may be dropped while others may not be inspected at all. Existing hardware-based solutions, FPGA or 
ASIC, on the other hand have the potential to match network speeds but often suffer from flexibility 
issues related to database updates. FPGAs often match network speeds at the cost of complete system 
reconfiguration for pattern updates. The time penalty for complete system synthesis can be on the order 
of several hours, while the penalty for full FPGA reconfiguration can be many milliseconds/seconds [9]. 
Also, reconfiguration can be a tedious process involving digital-circuit redesign to support new rules. 
Therefore, complete system reconfiguration is not prudent for 24/7 active networks. 

Common FPGA-based NID approaches aim to minimize the consumed area, match the network 
speed and rarely reduce the time for updates. The majority of them embed specialized state machines 
where each state represents an input sequence of known characters; state transition information is stored 
in a location pointed to by the next incoming character [4, 7]. Only a few papers [1-3, 20] discuss flexi-
ble solutions that do not require FPGA reconfiguration when adding new patterns. Our pattern matching 
solution attempts to minimize the consumed chip area while operating at a high speed and also provid-
ing for reconfiguration-less runtime pattern updates. A quantitative comparison with the majority of 
these approaches is included in our results and comparisons section (Table II). A quantitative compari-
son with [20] appears later in Section 2. 

In other related work, Baker et al. [5, 6] applied graph-theoretic techniques to partition the rule 
set into groups based on common character sequences; this approach reduces redundant searches across 
patterns and consequently the required area consumption. Similarly, our pattern preprocessing step first 
looks for common sub-patterns in the pattern set. We break the patterns into variable-length sub-
patterns and also encode their positions in the original patterns. The ultimate objective for our designed 
circuit is to create a RAM address based on the incoming stream of characters. If a malicious pattern is 
present then this address points to a value exclusive to the respective pattern.  This process reduces the 
search area to just one location.  

To compress the stored information, a bit vector is created for each sub-pattern to denote its lo-
cation in the entire set of malicious patterns. The resulting dramatic compression in pattern storage is 
due to the fact that a single bit now represents an entire sub-pattern. Also, this approach ultimately con-
denses character-based pattern matching into position-based bit-vector matching, a very efficient 
process. Applying simple AND-SHIFT operations on these bit vectors, complete pattern detection is 
possible without the need for rigid state machines.   
 
 

2. Related Work 
The terms table and RAM are used interchangeably in this paper. The capabilities of FPGAs 

have recently improved tremendously [15-17] so they are now frequently used by NID systems. Sidhu 
et al. [4] proposed a straightforward algorithm to construct non-deterministic finite automata (NFA) 
representing given regular expressions. Hutchings et al. [7] implemented a module to extract patterns 



3 
 

from the SNORT rule set [14] and then generated their regular expressions for NFA realization. Lin et 
al. applied minimization to the regular expressions for resource sharing [13]. To reduce data transfer 
widths, an 8-bit character decoder provides 256 unique outputs; various designs [5, 6, 7, 8, 9] were im-
plemented. Since these designs hard-code the patterns into the FPGA fabric, runtime updates are for-
bidden without complete FPGA reconfiguration. Content-addressable memories (CAMs) that support 
updates were proposed by Gokhale et al. [10]. Sourdis et al. [11] applied pre-decoding with CAM-based 
pattern matching to reduce the consumed area. Yu et al. [12] used ternary content-addressable memory 
(TCAM) for pattern matching. TCAM is a CAM with three possible states for a stored bit, namely ‘0’, 
‘1’ and ‘x’ (don’t care). However, CAM approaches require large amounts of on-chip memory and have 
high power consumption since multiple comparators are activated in parallel; they represent unfavora-
ble choices for large rule sets.  

The lookup mechanism presented in [1] employs a hash table and several Bloom filters for a set 
of fixed-length strings to be searched in parallel by hardware. All of the herein cited FPGA-based 
schemes do not produce false positives, except for [1]. Since the majority of traffic is not normally ma-
licious, an incoming packet can be checked using Bloom filters that never generate false negatives. 
However, the system can be overloaded. More specifically, positive responses by the Bloom filters re-
quire that the packet header be sent off-line to distinguish between a true positive and a false alert. Off-
line processing is then very slow; also, the system can be easily attacked by overloading it with false 
positives. The CRC in [3] reduce the number of logic cells and the memory space. Patterns are first de-
composed into varying-length fragments (for a maximum of 17 characters). They use a wide input, 
hashing a fixed number of characters from the 17-character input stream separately for different length 
fragments and then look up for the fragments in separate RAMs. Their approach limits compression 
opportunities due to actual storage of wide patterns into the memory for final comparison. The work in 
[20] applied Cuckoo hashing scheme. It uses varying-length sub-patterns and supports runtime updates. 
It yields a good compression in terms of stored bits and logic cells per character. However, if a collision 
shows up while inserting a pattern, Cuckoo attempts to recalculate the hashing key. When the number 
of recalculation iterations is maxed out, signifying that a key cannot be generated for distinct place-
ment, rehashing is needed for all the keys, including those for sub-patterns stored previously. This 
process may then suffer from unpredictable penalties. In contrast, our design has higher flexibility in 
resolving collisions faster (Section 4). 

The Cho et al. [2] pattern matching co-processor facilitates updates. Modules that detect sub-
patterns forward the respective sub-pattern indices to state machines registering state transitions for 
contained patterns. Our design employs a first-stage component similar to that in [2], where the hashing 
of fixed-length character streams can identify sub-patterns. However, our design employs fewer logic 
resources and has smaller memory consumption per character in the SNORT database than all of these 
designs. Another major advantage of our design is that the pattern matching module does not normally 
need to increase in size with an increase in the number of malicious patterns. 
 

3. Our Method 
3.1.  Pre-Processing 

Assume a database of known malicious patterns and the need to design an FPGA-based pattern 
matching engine that can facilitate runtime updates without the need for hardware reconfiguration. This 
reliable engine should never produce false positives. Without loss of generality, we will test our imple-
mentation with the complete set of signatures in the SNORT database [14]. Initially we split patterns of 
length greater than a preset Max_Fragment_Length number of characters into fragments (i.e., sequences 
of at most Max_Fragment_Length characters). Although the longest pattern in SNORT contains 213 
characters, 80% of the SNORT patterns contain up to 24 characters. This fragmentation should create 
fragments of length less than or equal to this value. It will be shown in this paper that this fragmentation 
reduces the size of our design considerably. From now on, the term “original pattern” or “O_Pattern” 
will denote a pattern in pattern set before fragmentation. The term “pattern” and “fragment” will denote 



 

patterns from the new pattern set obtained after fragmentation of O_Pattern. 
For our example here we assume that Max_Fragment_Length is 16. Fig. 1 shows sample origi-

nal pattern set with patterns denoted by O_Pattern 1 to O_Pattern 6. O_Pattern 1, which contains 18 
characters, is fragmented into two patterns (patterns 1 and 7) having 9 characters each. We normally try 
to fragment the end of a O_Pattern into two equal halves. If O_Pattern is more than twice the 
Max_Fragment_Length, then we split the pattern in such a way that we produce fragments of lengths 
Max_Fragment_Length characters each (except for the last two tail fragments which will have almost 
identical lengths in terms of number of characters). For example, if a pattern contains 33 characters then 
its three produced fragments will normally have lengths of 16, 9 and 8 characters, respectively. This 
approach targets adequate processing time for the detection of the last two tail fragments. However, in 
some special cases we do not follow this fragmentation rule; these cases are presented in Section 4.1.  
 

 

  After fragmentation, we move into the next stage of pre-processing. This stage involves two 
steps. The first step assigns distinct weights to all the ASCII characters. The second step generates two 
distinct bit vector sets for the known set of malicious patterns.  
STEP 1 (WEIGHT ASSIGNMENT): The ith ASCII character, for 0 ≤ i ≤ 255, is assigned a unique m-
tuple of weights represented by vector W = {weight1, weight2, …, weightm}; let bw be the number of bits 
in a weight element. These weight m-tuples are placed in a character table addressed to by the ASCII 
code of the character (an example is shown in Fig. 2). 
Using these weight tuples we pre-calculate a summation m-tuple for each pattern in the new pattern set 
after fragmentation of the original set. Consider pattern “Badcommand” (pattern 3 in Fig. 1). We calcu-
late the summation tuple for this pattern at static time in the following steps: 
1) Split this new pattern into groups of three contiguous characters, except for the last tail group that is 
left with one character (three looks like an arbitrary number in this example; we discuss the choice of 
this number in another section): 
“Bad”   “com”   “man”   “d” 
2) To derive the summation m-tuples for each of these character groups, apply the following position-
weighted, element-wise summations involving the respective weight-tuples of constituent characters: 
SUM(“Bad”) = W(“B”) + 2 * W(“a”) + 4 *  W(“d”);  
SUM(“com”) = W(“c”)  + 2 * W(“o”) + 4 *  W(“m”); 
SUM(“man”) = W(“m”) + 2 * W(“a”)  + 4 *   W(“n”); 
SUM(“d”)      = W(“d”). 
3) To derive the summation tuples for pattern 3 in Fig 1, apply the following element-wise summations 
involving the respective elements of weight tuples for the encompassed groups: 
SUM(“Badcommand”) = SUM(“Bad”) + SUM(“com”) + SUM(“man”) + SUM(“d”). 

This summation method is carried out on all the patterns. Fig. 3 shows the tuples for a chosen 
character table. The position of individual characters in the group of three is taken into account to create 
different sums (i.e., weight tuples) for patterns like “Badcommand” and “daBcommand” that contain 
identical, but permuted characters. However, sometimes we may have patterns with identical, but per-
muted groups of characters, like “Bad123” and “123Bad”, which will result in identical sums since the 
position of groups is not accounted for in the final summation. This case will be identified in our pre-
processing stage and will be dealt with by appropriately fragmenting one of them; e.g. “123Bad” could 

Original pattern set before 
 fragmentation 
O_Pattern 1: executemalware.exe 
O_Pattern 2:  usernametoolong 
O_Pattern 3:  Badcommand   
O_Pattern 4:  Passwords 
O_Pattern 5:  commandlong 
O_Pattern 6:  codewords 

Pattern set after fragmentation 
Pattern 1:  executema 
Pattern 2:  usernametoolong 
Pattern 3:  Badcommand   
Pattern 4:  Passwords 
Pattern 5:  commandlong  
Pattern 6:  codewords 
Pattern 7:  lware.exe 
 

Fig. 1. Pattern sets before and after fragmentation. 
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be broken into “123B” and “ad”. There is no need for position-based summation for groups when pro-
ducing the m-tuples of patterns since there is substantial flexibility in the selection of encompassed 
groups during pre-processing (as discussed in detail later on in this paper). 

 

 

 

Once we have pre-calculated the summation m-tuple of a pattern, we store the m-tuple in a ta-
ble at a location which is produced by a hash function on this summation m-tuple. For our example we 
create up to 16 distinct tables to deal with 16 types of patterns containing one to 16 characters, respec-
tively. However, since some patterns of certain lengths are lesser in population than others, we can store 
their summation m-tuples into one table instead of having separate tables for each of these lengths. In 
our example of Fig. 1, we place the summation m-tuples of 9-character patterns into TBRAM0 and the 
rest of the patterns containing 10, 11 and 15 characters into the common table TBRAM1. We choose the 
weights of characters in a way that ensures unique summation m-tuples for the patterns in a common 
TBRAM. In addition to the summation m-tuples, we also store two bit values, start_fragbit and 
no_fragbit, and a collision_TBRAM_pointer as shown in Fig. 4. If the start_fragbit is ‘1’ and no_fragbit 
is ‘0’ then this is the first fragment of a longer O_Pattern. If the start_fragbit is ‘0’ and no_fragbit is ‘1’ 
then the pattern is a complete O_Pattern with no fragmentation. Both start_fragbit and no_fragbit are ‘0’ 
if the pattern is a fragment of a longer O_Pattern but is not present at the start.  If a pattern appears as 
the first fragment in a O_Pattern and as another fragment in another O_Pattern, then we change the cho-
sen fragmentation during pre-processing in order to remove this case. There is a separate FRAM memo-
ry block in the O_Pattern match unit which is used to represent the sequences of fragments (i.e., pat-
terns that constitute long O_Patterns). This is explained later in the O_Pattern match unit block section. 
A small collision_TBRAM stores the records of patterns that map to the same location in a TBRAM. 
The collision_TBRAM_pointer points to the first record in the collision list stored in the colli-
sion_TBRAM. 

 Sum1 Sum2 Sum3 Length  
of pattern  

Pattern 1:  108  88 129               9 
Pattern 2:  175 121 144              15 
     .    .   .    .                  . 
     .    .   .    .                  . 
Pattern 7:  106  99 117               9 

Fig. 3. Summation tuples for the pattern set in Fig. 1; 
SUM= (Sum1, Sum2, Sum3). 

Character 
input 

Character 
Table  W={weight1,  

weight2, weight3} 

Character Table 
ASCII decimal      Char weight1   weight2   weight3 
    value 
      0            NULL     3 1 1 
       .                .       . . . 
       .                .       . . . 
     65                       A       5 3 5 
     66               B      2 2 2 
     67               C      3 6 7 
      .                .       . . . 
      .                 .       . . . 
     255                ÿ      7 1 6 

Fig. 2. Character table for m=3 and bw=3.



 

 

The maximum number of records per collision stored in collision_TBRAM varies with the implementa-
tion. According to our analysis, it suffices to set the maximum number of pattern collisions to five (one 
record in TBRAM and a maximum of four records stored sequentially in collision_TBRAM). If more 
records are mapped to the same location in a TBRAM, then we fragment patterns further to place them 
in exclusive locations in TBRAM (this process is explained later in Section 4.1). 
STEP 2 (BIT/END VECTOR GENERATION): Our static-time pre-processing divides each pattern 
into contiguous sequences of 1- to N-character sub-patterns. We create two sets of sub-patterns for the 
same pattern set using N=3 and N=4. They are denoted as DSN3 and DSN4, respectively, and are han-
dled exclusively without sharing. Please note that this splitting of patterns into sub-patterns is not con-
nected to the grouping of three consecutive characters for calculating the summation m-tuples as ex-
plained earlier. . Fig 5.a and Fig. 5.b show the breaking of patterns into sub-patterns for N=3 and N=4, 
respectively. Identifying the position of sub-patterns in patterns is crucial to our algorithm. 
 

 
Once all of the patterns have been separated into their sub-patterns, we store all distinct N-

character sub-patterns into a table called GRP(N). If a sub-pattern appears multiple times, then only one 
position is reserved for this sub-pattern in GRP(N). Similarly, we create tables GRP(i), for i = 1, ..., N-
1, where GRP(i) stores all of the i-character sub-patterns that appear in the patterns. We denote all of the 
GRP(i)’s, for i = 1, ..., N, collectively as GRP. A table may be empty if there is no sub-pattern of the 
corresponding length. Note that we could divide the patterns into sub-patterns of any number of charac-
ters from 1 to N, however we try to break the patterns such that we minimize the number of sub-
patterns per pattern. This is not a rigid rule as we use exceptions when dealing with collisions. We dis-
cuss about such exceptions in Section 4.2. We create a bit vector (BV) and an end vector (EV) for every 

Offset     :    1         2          3       4       5          
Pattern 1: exe        cut       ema       
Pattern 2: use        rna       met    ool     ong 
Pattern 3: Bad       com     man     d                         
Pattern 4: Pas        swo      rds   
Pattern 5: com       man     dlo    ng   
Pattern 6: cod        ewo     rds  
Pattern 7: lwa         r         e.          exe

Offset     :   1            2             3         4  5  
Pattern 1: exec       ute           ma 
Pattern 2: user       name        tool     ong  
Pattern 3: Badc      omma      nd                     
Pattern 4: Pass       word        s   
Pattern 5: comm     andl        ong   
Pattern 6: code       word        s  
Pattern 7: lwar        e.ex         e  

(a) 

(b)
Fig. 5. (a) DSN3: The set of seven patterns from Fig. 1 separated
into  sub-patterns for N = 3; (b) DSN4: The set of seven patterns
separated into sub-patterns for N = 4.

TBRAM0 

  HASH 

TBRAM Record: (Sum1, Sum2, Sum3, start_fragbit, no_fragbit, Collision_TBRAM_pointer); Pattern 1 in Fig. 1 will have 
start_fragbit = ‘1’; Pattern 7 will have no_fragbit=’0’ and start_fragbit =’0’; Patterns 2 to 6 will have start_fragbit = ‘0’ and 
no_fragbit=’1’; “collision_TBRAM_pointer” points to the first record in a linear list of four other TBRAM records placed sequen-
tially in case of collision. 

S: Summation 
tuple 

TBRAM record 

collision_TBRAM0

Fig. 4. Summation m-tuples placed in TBRAM tables.
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sub-pattern in GRP. BV shows the position of the sub-pattern in all the patterns that contain it, exclud-
ing their tail. That is, if a particular sub-pattern appears only in the sub-pattern positions 2 and 4 of the 
same or two different patterns, then its BV will contain “010100….0”. Multiple appearances of a sub-
pattern in the same position of multiple patterns are registered only once in its BV. The EV vectors store 
information about the tails of patterns.  If a sub-pattern forms the tail of a pattern, then it will contain ‘1’ 
in the respective position of its EV vector.  

For example, if two patterns exclusively end with a common sub-pattern in sub-pattern posi-
tions 2 and 3, respectively, then the EV vector of this sub-pattern will be “01100….0”. BV is L bits long 
and EV is L+1 bits long, where L+1 is the maximum number of sub-patterns in a pattern. This is be-
cause EV will always store “1” for the tail. As we will see later, using the two sub-pattern sets DSN3 
and DSN4 to derive their BV and EV vectors, we can detect the possible presence of a pattern match. 
This along with a pattern summation tuple match is then used to confirm a pattern match. Although we 
need only three bits for BV and four bits for EV in the case of DSN4, we  have used L=4 for both 
DSN3 and DSN4 for flexibility in breaking a pattern into non-tail sub-patterns of less than N characters 
(sub-patterns at offsets 2 and 3 in pattern 7 of Fig. 5.a). This approach helps us to place sub-pattern 
records in exclusive memory locations as discussed later in Section 4.2 for the purpose of eliminating 
sub-pattern collisions. The BV’s and EV’s for the sub-patterns in DSN3 and DSN4 are shown in Fig. 
6.a and Fig. 6.b., respectively.  

 

 

3.2.  Run-time Pattern Detection 
We have stored the summation m-tuples in the TBRAMs as explained above. We have generat-

ed the BV’s and EV’s. We also have the weight m-tuples for every character stored in the character 
tables. We will now look at the pattern detection unit. The detection unit is made up of the Summation 
Block, Bit Detection Units, Pattern Match Unit and O_Pattern Match Unit. 
a) Summation Block: There are Max_Fragment_Length individual accumulation units, the same as the 
maximum length in characters of a pattern (i.e., fragment of an O_Pattern). For our example with 
Max_Fragment_Length =16 we have sixteen accumulation units, ACC1 to ACC16, as shown in Fig. 7, 
which receive the weight m-tuple as input from the character table for each arriving character and gen-
erate the summation m-tuples for the 16 possible patterns corresponding to the most recent character 

GRP(4)  TABLE 
 SP       BV       EV 
exec 1000    00000 
lwar 1000    00000 
  .    .            . 
  .    .            . 
  .    .            . 
code 1000    00000 
 
GRP(3)  TABLE 
SP       BV         EV  
ong     0000       00110 
ute      0100       00000 
 
GRP(2)  TABLE 
SP      BV      EV  
nd     0000     00100 
ma    0000     00100 
 
GRP(1)  TABLE 
SP      BV         EV  
s        0000     00100 
e        0000     00100 

GRP(3)  TABLE 
 SP       BV        EV  
exe 1000   00010 
cut 0100   00000 
ema 0000   00100 
 .    .      . 
 .    .      . 
 .    .      . 
ewo 0100   00000 
 
GRP(2)  TABLE 
SP       BV            EV  
ng       0000        00010 
e.        0010        00000 
 
GRP(1)  TABLE 
SP      BV        EV  
d        0000    00010 
r         0100    00000 
 

(a) (b) 
Fig. 6. GRP tables for the patterns in Fig. 1, assuming 
(a) N=3 and L=4; (b) N=4 and L=4.  



 

arrivals. ACC1 always creates the summation m-tuple for one character while ACC2 creates the sum-
mation m-tuple for two characters, and so on. These sixteen accumulated values are then forwarded to 
the pattern match unit in parallel for every character input. 
 

 

For an arbitrary complete stream “abcdefghij” at a cycle t, of ten consecutively arriving characters, 
where “a” is the first character, the accumulation units generate summation m-tuples in the following 
manner: 
ACC1t= W(“j”); 
ACC2t = W(“i”) + 2*W(“j”) = ACC1t-1 +2* W(“j”); 
ACC3t =W(“h”) + 2*W(“i”) + 4*W(“j”) =ACC2t-1 + 4*W(“j”); 
ACC4t = ACC3t-1 + W(“j”); 
ACC5t = ACC4t-1 +  2*W(“j” ); 
. 
. 
ACC10t = ACC9t-1 +W(“j”);  
ACC11t, ACC12t,…, ACC16t =0; 
In the next clock cycle suppose a character “x” is inputted then the accumulations will now have the 
following result 
ACC1t+1= W(“x”) ; 
ACC2t+1 = ACC1t +2* W(“x”) ; 
. 
. 
ACC10t+1 = ACC9t +W(“x”)  
ACC11t+1 = ACC10t + 2*W(“x”)  
ACC12t+1,…, ACC16t =0; 
 

b) Bit Detection Units: The input stream of characters arrive at the bit detection units one at a time in 
parallel. We have two bit detection units for the DSN3 and DSN4 generated vectors. We will denote the 
two detection units as BDN3 and BDN4, respectively. BDN3 has the GRP(1), GRP(2) and GRP(3) 
tables generated using N=3 (Fig. 6.a) whereas BDN4 has GRP(1), GRP(2), GRP(3) and GRP(4) tables 
generated using  N=4 (Fig 6.b.). Every record in a GRP table contains the sub-pattern itself and the cor-
responding BV and EV vectors. Every bit detection unit has a shift register (window) of N characters 
that interfaces the input stream. Each cycle samples 1 to i consecutive characters in this window, where 
i is the total number of available characters (i=N for a full window); all possible sub-pattern matches 
are attempted against the N GRP tables. The input is hashed to generate addresses in the GRP tables, 
except for the GRP(1) table which can be addressed directly using the ASCII character. Thus, there are 
N-1 hashing blocks HB(i), for i = 2 to N, in both of the bit detection units, as shown in Fig. 8. The hash-
ing implementation is simple and made up of XOR and ADD operations on the incoming input. The 
method we use to eliminate sub-pattern collisions in hashing is explained in Section 4.2. On a sub-
pattern match, the respective BV and EV are forwarded from the GRP table to the AND-SHIFT-OR 
unit; otherwise a zero-vector (“000…0”) is forwarded. The AND-SHIFT-OR unit has its own bit vec-
tors, namely, detection vector DV and end detection vector EDV. The (L+1)-bit DV vector keeps track 

Character 
input Character 

Table

W= {w1, w2, w3}
ACC1 

Summation Block

To 
Pattern 
Match 

ACC2 

ACC16

Fig. 7. Summation Block. 
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of individual sub-pattern matches. The (L+1)-bit EDV vector detects pattern tails. The MSB of DV is 
originally set to ‘1’ (in fact it is always ‘1’) whereas the remaining bits are initialized to ‘0’. There are N 
different DV and EDV vectors which take care of a pattern starting at any of the N different offsets in 
the input stream of characters. These N vectors represent N different phases that repeat in a cyclic man-
ner for every character input. 

Pattern detection involves simple SHIFT, AND, OR and COMPARE operations on these binary 
vectors. The SHIFT operation is where the DV bit vector is right shifted (represented by >>) by one 
with a ‘1’ entering into the MSB (equivalent to ORing of “1000…0”). In addition to DV and EDV, there 
is one position bit vector PV per DV that keeps track of the character offset in a partial pattern match. 
The bit detection units, BDN3 and BDN4, output two more position bit vectors PVN3 and PVN4, re-
spectively that keep track of a complete pattern match. PVs indicate the character offsets of patterns 
corresponding to a ‘1’ in DV while PVN4 and PVN3 indicate the character offset of the pattern corres-
ponding to a ‘1’ in EDV. PV contains Max_Fragment_Length bits. The position of a ‘1’ in PVN3 or 
PVN4 indicates the length of the pattern matched by the BDN3 or BDN4, respectively. Thus, an AND 
operation on these vectors indicates the length of the common, final pattern match which still needs to 
be verified by checking the accumulated sum in the TBRAMs. 

 

Bit Detection Unit for N=4 (BDN4): For detection in BDN4 which has BV and EV generated using N= 
4, there are four PV, DV and EDV vectors. The four DV vectors reflect on partial pattern matches, 
EDVs reflect on pattern tail matches and PVs reflect on the length of a pattern match (pseudocode to 
calculate all these bit vectors is shown in the Appendix). The DVs and EDVs are calculated using the 
following formulas (Note: to make BV and DV of equal length, a ‘0’ is appended as the least significant 
bit of BV before performing all the AND and OR operations): 
 
DV1 = “100...0” OR (((DV2  AND  BV3 ) OR (DV3  AND  BV2 ) OR (DV4  AND  BV1 ) OR (DV1  AND  
BV4 )) >> 1); for offset (modulo) N = 1; i.e., offset=1, 5,…,etc 
EDV1= ((DV2  AND  EV3 ) OR (DV3  AND  EV2 ) OR (DV4  AND  EV1 ) OR (DV1  AND  EV4 ));  for 
offset (modulo) N = 1; i.e., offset =1,5,…,etc 
 
DV2 = “100...0” OR (((DV3  AND  BV3 ) OR (DV4  AND  BV2 ) OR (DV1  AND  BV1 ) OR (DV2  AND  
BV4 )) >> 1); offset (modulo) N = 2; i.e.,  offset= 2,  6,  10,…, etc  
EDV2 = ((DV3 AND  EV3 ) OR (DV4 AND  EV2 ) OR (DV1  AND  EV1 ) OR (DV2  AND  EV4 )); offset 
(modulo) N = 2; i.e.,  offset= 2, 6, 10,…, etc 
 
DV3 = “100...0” OR (((DV4 AND  BV3 ) OR (DV1  AND  BV2 ) OR (DV2  AND  BV1 ) OR (DV3  AND  
BV4 )) >> 1); offset (modulo) N = 3; i.e.,  offset=3, 7, 11, …, etc  
EDV3 = ((DV4 AND  EV3 ) OR (DV1  AND  EV2 ) OR (DV2  AND  EV1 ) OR (DV3  AND  EV4 )); offset 
(modulo) N = 3; i.e., offset=3, 7, 11, …, etc 
 
DV4 = “100...0” OR (((DV1 AND  BV3 ) OR (DV2  AND  BV2 ) OR (DV3  AND  BV1 ) OR (DV4  AND  
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Fig. 8. Bit Detection Unit for N=4, 3. 



 

BV4 )) >> 1); offset (modulo) N = 1; i.e., offset= 4, 8, 12,…, etc 
EDV4 = ((DV1 AND  EV3 ) OR (DV2  AND  EV2 ) OR (DV3  AND  EV1 ) OR (DV4  AND  EV4 )); offset 
(mod) N = 1; i.e.,  offset= 4, 8, 12,…, etc. 
Offset in these formulas represents the position of a character in the input. At any offset only one DV-
EDV-PV set is active. That is, we store the result of all the AND-OR operations in one DV-EDV-PV set, 
suppose DV1-EDV1-PV1; then for the next character input DV2-EDV2-PV2 will be active. This contin-
ues in a cyclic manner. This unit sends PVN4 to the pattern match unit (see the pseudocode in the Ap-
pendix for calculating PVN4). PVN4 contains ‘1’ in the position representing that of the pattern being 
found if the active EDV is non-zero; otherwise, it is zero. 
 
Bit Detection Unit for N=3 (BDN3): BDN3 is identical to BDN4 except that there are three PVs, DVs 
and EDVs since N = 3; hence it has three phases. It also forwards its own character offset pointer PVN3 
to the pattern match unit. 
 
c) Pattern Match Unit: This unit takes in the ACC inputs from the summation block and also the PV 
inputs from BDN3 and BDN4. If the EDVs from both the bit detection units are non-zero while having 
a common offset pointer (i.e., a non-zero bit in the same position of PVN4 and PVN3), then BDN3 and 
BDN4 have detected a possible pattern match of identical length starting at the same position. The pat-
tern match unit forwards the appropriate summation m-tuple (in the above example it will forward 
ACC9 containing the summation m-tuple of pattern “Passwords”) outputted by the summation block to 
the FIFO queues at the input of the TBRAM block. 

 

Due to the pre-processing of the patterns, the PVN4 AND PVN3 operation will not generate a 
non-zero output every clock cycle. There will be a minimum gap of five clock cycles. No more than 
two bits of PV will ever be non-zeros, out of which only one can be because of a true pattern. The 
summation m-tuple is hashed and the output is used as an address for the TBRAM which is looked up 
to check if the summation m-tuple matches the pre-stored one at that location. We also look into the 
collision TBRAMs to see if there is a match. The veracity of a match is confirmed if there is a final 
match. The address of the TBRAM for a match, if found, is then forwarded to the O_Pattern match unit. 
The block diagram of our complete system is shown in Fig. 9. 
d) O_Pattern Match Unit: This unit contains the FRAM block and uses appropriate delay cycles to 
join appropriately, matches of patterns that constitute an O_Pattern. The FRAM block is addressed by 
hashing the matched pattern address output of the TBRAMs. If the start_fragbit value of a pattern 
matched in TBRAM is ‘1’ and no_fragbit is ‘0’ , then  this is the first fragment of a longer O_pattern, 
and thus the FRAM block is looked up to find out the remaining fragments of the O_pattern. The 
FRAM block consists of two RAMs (FRAM1 and FRAM2). FRAM1 stores address pointers to the lo-
cations in FRAM2 and the respective TBRAM addresses of the first fragment of fragmented 
O_patterns. FRAM2 stores the subsequent fragments’ TBRAM addresses. If there is a match in 
FRAM1, then we access FRAM2 to fetch the subsequent fragments using the pointer to FRAM2. Using 
appropriate delay cycles we connect all the fragments in the O_Pattern match unit to match the longer 

BDN3 

BDN4 

Character 
Table/ 
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Block 

ACC1 

ACC2 

ACC16 

Pattern  
Match 
Unit 

TBRAMs 

PVN3

Character 

O_Pattern 
Match Unit 

PVN4 

Alert 

Fig. 9. Block diagram of complete pattern detection system. 
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pattern. The data structure used for FRAMs is shown in Fig. 10.  
The first node of a pattern is stored in FRAM1 and the others are stored in FRAM2. We set the 

maximum number of nodes which can have the same prefix fragment to four. If the number is more 
than four, then we move the final pattern concatenation process to software. We disconnect the link and 
make the “start_fragbit = 1” and “no_fragbit = 1” for that fragment in TBRAM which means that the 
joining of fragments for that O_Pattern is done at the higher layer i.e. the software in the host. Although 
in the SNORT database there exist quite a few O_Patterns with common prefixes, we do not come 
across in our experiments with common prefix fragments because of our choice of 
Max_Fragment_Length=24; this choice makes fewer O_Patterns to be fragmented since more than 80% 
of the O_Patterns have lengths less than or equal to 24 characters. Also, O_Patterns having common 
prefixes and containing more than 24 characters have different lengths and hence our rule of dividing 
the O_Pattern into fragments of almost equal lengths causes the later to contain different patterns 
(O_Pattern 5 in Fig. 10). Thus we do not normally have two or more O_Patterns with the same pattern 
prefix in FRAM2. If the O_Pattern is not fragmented (“start_fragbit = 0” and “no_fragbit = 1”), then the 
O_Pattern match unit forwards the TBRAM address directly to the higher software layer indicating a 
match. 

 

 

 
4. Eliminating Pattern Collisions and False Positives 
4.1.  Eliminating Pattern Collisions 

A collision in the pattern RAM will show up if multiple patterns hash to the same location in 
the TBRAMs.  As explained before, we keep a collision_TBRAM to take care of collisions. The num-
ber of collisions allowed is set at five. But if the list in the Collision_TBRAM is full with four summa-
tion m-tuples, then we fragment the pattern differently. Fig. 11 shows an example using pattern 3 and 
pattern 4 of Fig.1. Now if there is another pattern “abcdefghij” which has to be added at runtime and 
hashes to location 4 in TBRAM1, while the linear list is full with four records in it, then we break up 
the new pattern as per our convenience into appropriate fragments that remove this collision.  
 

 Patterns with the same first
fragment 
O_Pattern 1: abcde12345000 
O_Pattern 2: abcdefgh56 
O_Pattern 3: abcdefgh12 
O_Pattern 4: abcdefghxy 
O_Pattern 5: abcdexyz 

After fragmentation 
Max_Fragment_Length=5

     Pattern set 
Pattern 1: abcde
Pattern 2:12345 
Pattern 3: 000 
Pattern 4: fgh56
Pattern 5: fgh12
Pattern 6: fghxy
Pattern 7: abcd 
Pattern 8: exyz 

TBRAM 
(“abcde”) 

TBRAM (“1234”)

TBRAM (“fgh56”)

TBRAM (“fgh12”) 

TBRAM (“fghxy”)

TBRAM (“5000”) 

FRAM1 FRAM2 

TBRAM  
(“abcd”) TBRAM (“exyz”)

TBRAM (“5000”): Address of  summation m-tuple of pattern “5000” 
in TBRAM

Fig. 10. FRAM Block data structure.   



 

 

Some of the choices for fragmentation are (“abcdef” and “ghij”, “abc” and “defghij”, “abcd” 
and “efghij”, and “abc”, “defg” and“hij”). Note that this process also fragments the patterns. In Fig.1 
our criterion of fragmenting an O_Pattern into patterns was the length. But now we further fragment 
patterns of the new pattern set (i.e., Fig. 1.b) to avoid collisions. Once this fragmentation is complete, 
we have new summation m-tuples for these newly formed patterns which are stored appropriately. 
These cases are rare since we can achieve an optimal placement of patterns at static time using appro-
priate values for the weight tuples; such a case can only be encountered for the addition of new patterns 
at run time. 

 
 
4.2.  Hashing and Eliminating Collisions for Sub-patterns 

We use plain hash functions containing XOR and ADD operations to place the sub-patterns in 
the GRP RAMs. For the sake of efficiency, we use separate hash functions and RAMs for different GRP 
tables. There is no real need for hashing with GRP(1) due to the uniqueness of single characters that 
requires 28 (i.e., 256) distinct locations. Our hash functions apply simple operators to the input to gener-
ate an address; they do not need separate key inputs. We hash the character window containing N cha-
racters separately using N characters for GRP(N), N-1 characters for GRP(N-1) and so on as shown 
before. The important requirement for our design is that the GRP RAMs should output BV and EV ever 
clock cycle. Hence we should avoid any collisions in the GRP RAMs. We use a maximum of four hash-
ing functions in a hash block HB(i), for i=2, …,N (this number varies depending on the size of the GRP 
RAM needed; we also want to take advantage of the Xilinx Block RAMs that come in 18 Kbit chunks). 
The outputs of the hash functions access the corresponding RAMs in the GRP(i) RAMs, for i= 2,…, N-
1. Fig. 12 shows a hashing block for a GRP(3) RAM in bit detection unit BDN3. The four RAMs in the 
GRP(3) RAM take care of collisions. 

 

Since we have different length sub-patterns, we also have the additional flexibility of splitting 
the pattern into sub-patterns in such a way that avoids collisions. For example, if the arbitrary pattern 
“abcdef” has to be added, and the pattern split is “abc”-“def” and “abc” cannot be placed into any of the 
four GRP(3) RAMs because of collision (i.e., all four RAMs have no vacancy in the hashed location of 
“abc”) then we try to change the way the pattern is split. For example, we can split it as {“a”-“bc”-
“def”} or {“ab”-“c”-“def”} or {“a”-“bcd”-“ef”} or in some other way such that we can place the sub-
pattern records in non-vacant locations in the GRP RAMs.  

H1 
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H2 
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Fig. 12. Hashing Block of the GRP3 RAM in BDN3.  
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Fig. 11. Pattern collisions in TBRAM. 
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4.3.  Eliminating False Positives for Patterns 
Once the whole process of weight distribution and BV-EV generation for DSN3 and DSN4 is 

done, we check for pattern-related false positives with our method. If found at static time, we then take 
appropriate action to eliminate them. False positives will be possible only if there exists a fictitious pat-
tern for which both EDVs (in BDN3 and BDN4) are non-zero, the AND operation of their position vec-
tors (PVN3 and PVN4) produces non-zero resultant vector, and also the summation m-tuples are iden-
tical to a true pattern. Also, the length of the two patterns should fall into the same group; i.e., patterns 
of different lengths which are placed together and their summation m-tuples are stored in the same 
TBRAM. In Fig. 13.a, we show fictitious patterns which will generate non-zero EDVs. We can deduce 
from the Fig. 13.a that a fictitious pattern with non-zero EDV can be generated only if the first offset of 
a pattern in one set (suppose DSN4) has identical characters to the first offset and partial part or a whole 
part of the second offset in another set( suppose DSN3).  

For example, the first pattern in Fig.1 for N=4 has “exec” at the first offset and the first pattern 
in BDN3 has “exe” at first offset. Now we have to search for a pattern (other than first one) in BDN3 
which has a sub-pattern that starts with character “c” at the second offset. We find that pattern 3 has 
“com” at the second offset. Thus, if a string like “execommand” comes in, then we will get a non-zero 
EDV in BDN3 and BDN4, with identical PVs. We then have to make sure that the sum generated by 
such a fictitious pattern is not the same as any of the true patterns in TBRAM that stores the patterns of 
10 characters (as “execommand”). This is possible with careful assignment of m-tuple weights. We can 
also counter this by fragmenting the pattern or by breaking the pattern into sub-patterns differently. Let 
us suppose that the first fictitious pattern generates a false positive and is difficult to avoid such a situa-
tion even by changing the weight m-tuples of the characters. We can easily avoid such a situation by 
fragmenting the original pattern 1 into two separate pattern fragments “exec” and “utema” of length 4 
and 5, respectively.  This is then broken into sub-patterns as shown in Fig 13. b. We can now see that 
the above given fictitious pattern cannot be generated with the new pattern set. Fragmenting the patterns 
again looks similar to the approach in Section 4.2; however, here we target the different problem of 
false positives. For the SNORT database, our sub-pattern creations for N=4 and N=3 along with the un-
iqueness of the summation m-tuples avoid false positives. This approach is only to add new patterns. 
 

5. Results and Comparisons with Eatlier Work 
5.1.   Pre-processing and Simulation Results 

All the patterns in the available SNORT rule set (version v2.8, July 29th, 2009) were chosen for 
analysis to prove the viability of our proposed pattern matching design. This version of SNORT has 
6455 distinct patterns; the longest pattern contains 213 characters and the median length is 12 charac-
ters. We did some analysis to selecting Max_Fragment_Length. We can easily infer that the LUT usage 
in the target FPGA will increase with an increase in Max_Fragment_Length since the number of ACC 
units will increase. However as we increase Max_Fragment_Length the number of patterns that are 
fragmented will decrease since we can now provide pattern matching for a longer fragment.  

Fig. 14 shows pre-processing results for various fragment lengths. The LUT usage for an im-
plementation will almost remain constant irrespective of the number of patterns we add. Thus, we are 
more concerned with BRAM usage for higher compression. We have developed a method to select the 
value of Max_Fragment_Length, as it is unique to our implementation. Our objective is to fit the design 
in a single FPGA while also providing high utilization of resources towards yielding high performance. 
A value decrease produces shorter bit vectors, which require smaller computational blocks (i.e., compa-
rators and units for logic operations). However, this decrease yields more fragments and consequently 
more summation m-tuples. Thus, a tradeoff is necessary. As discussed earlier, our analysis shows that 
80% of the SNORT patterns contain up to 24 characters. As observed in Fig. 14, increasing the value of 
Max_Fragment _Length from 16 to 24 reduces considerably the memory consumption (1411 fewer 
fragments, resulting in substantially reduced summation m-tuples stored in BRAMs). In contrast, the 
change is much smaller as the value of Max_Fragment_Length is increased from 24 to 32. Also, there is 
a rather small difference in logic cell usage for the implementations where Max_Fragment _Length is 



 

16 or 24. For  Max_Fragment_Length=16, the design consumes  4733 flip-flops and 5132 LUTs. These 
numbers for Max_Fragment _Length=24 are quite similar, being 5162 flip-flops and 5569 LUTs. The 
pre-processing job on these patterns was carried out off-line using a C-program script. The script identi-
fies the unique character sub-patterns, creates their corresponding sub-pattern records and assigns 
unique weight m-tuple to every ASCII character. It then calculates the summation m-tuple for every 
pattern. We use grouping of three consecutive characters for the summation. The difference between 
using three-character grouping and any other higher number of characters is that the summation m-tuple 
value will be higher in the latter case thereby requiring more bits per summation m-tuple. However, 
three-character grouping is sufficient to produce exclusive summation m-tuples in our case.  

 

 

 

 

If two patterns belonging to the same TBRAM group have the same summation m-tuple, then 
we change the weight m-tuple value of the character and recalculate the summation m-tuples. If after a 
fixed number of attempts a solution is not obtained, we fragment the pattern and repeat the check. Once 
the check is done successfully, we generate pattern addresses such that we can place the pattern with no 
more than four collisions. These records are also kept in an off-line database to facilitate efficiency in 
future updates involving new patterns. To add new patterns, the available database information is com-
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Fig. 14. Pre-processing for Max_Fragment_Length= 32, 24 and 16. 
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Fig. 13. (a) Fictitious patterns which generate non-zero EDV; 
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pared with the sub-patterns extracted from the new patterns. For each newly extracted sub-pattern that 
already exists in the database, its newly generated bit vectors are bitwise ORed with those of its identic-
al sub-pattern in the database; the results are stored in the on-chip RAM as well as they are modified in 
the database. If a newly extracted sub-pattern is not present in the database, then the new sub-pattern 
along with its bit vectors and other relevant information are stored in the GRP table and the pattern 
RAM. The script could be run by the system administrator on the console. Complete pre-processing of 
the 6455 SNORT patterns on the host, that interfaces the FPGA board, consumes just 114 msec; the host 
has an Intel Pentium 4 processor running at 3 GHz, and having 1024KB total cache and 1GB RAM. 

To test our design for future pattern additions, experiments were carried out in two parts. In Part 
I, we generated the sub-patterns, their respective vectors and the pattern addresses for 5834 patterns 
from the SNORT rule set. These patterns contained a total of 96,977 characters. In Part II, once the for-
mer GRP records were loaded into the on-chip RAMs and the design operated under normal working 
conditions, we enabled a modification of the already loaded set of patterns by adding the remaining set 
of 621 patterns. Information extracted for Parts I and II of our experiments is shown in Table I. 
 

Table I. Pre-processing results for adding  O_Patterns using Max_Fragment_Length = 24 

(Number of) Part  I Part II Total 

O_Patterns 5834 621 6455 

Characters 96,977 8786 105,763 

 

DSN4 

 GRP(4) records 9486 933 10419 

GRP(3) records 803 168 971 

GRP(2) records 776 126 902 

GRP(1) records 126 1 127 

 

DSN3 

GRP(3) records 9125 669 9794 

GRP(2) records 707 138 845 

GRP(1) records 170 2 172 

Number of Fragments 
FRAM1 

1217 58 1275 

Number of Fragments 
FRAM2 

1520 61 1581 

 

5.2.  VHDL System Synthesis/Implementation and Rule Insertion/Deletion 
The synthesis and simulation of our design worked flawlessly. We implemented the design with 

Max_Fragment_Length 24 characters. We will discuss the parameters for the design with 24 characters 
for Max_Fragment_Length. The length of BV for BDN3 and BDN4 was set to 8 bits and EV was set to 
9 bits. Also, our off-line experiments for weight assignments to m-tuples revealed that unique summa-
tion m-tuples could be carried out with m=3 and bw = 3 bits which will also give a unique summation 
m-tuple to patterns. While calculating summation we group three characters at a time. With the maxi-
mum value of 7 per weight tuple, a group can have a maximum value of 49 per group (7 +2*7 + 4*7). 
With a maximum of 8 groups possible, the largest possible summation weight requires 9 bits. For the 
10,419 GRP(4) records, we deduced that there were only 225 distinct BV-EV combinations. Hence, we 
moved the BV-EV combination into a separate smaller RAM with 256 locations. Thus, instead of stor-
ing an 8-bit BV and 9-bit EV for every record, we stored only an 8-bit pointer per record which points 



 

to this BV-EV combination and results in considerable memory savings. The same was done for other 
records of BDN4 and BDN3. Fig. 15 shows the chosen parameter values for system synthesis. For 
GRP(1), we do not need a  BV and EV pointer since BV and EV are stored directly in the record. The 
maximum number of collisions allowed in TBRAM0 is set at 3 while in other TBRAMs it is set to 5. 
  We also grouped patterns of varying lengths into a single TBRAM in such a way that they are 
equally distributed in the TBRAMs. Fig. 15 shows the different TBRAMs and the grouping of patterns 
of different lengths placed in them. For pattern of lengths 1 to 3 characters and most of the 4-character 
patterns we use the GRP tables. Since they are already stored in one of these tables using a single bit 
field in the GRP RAM can tell us whether the GRP record is also a pattern of interest. Hence we do not 
need a separate TBRAMS for them. We used VHDL to program the architecture. BRAMs were used to 
store the GRP records and the summation triplets of the patterns. BRAMs were also used to weight trip-
lets and FRAM records. It’s a pipelined design with a latency of 21 clock cycles. The bit detection units 
have a latency of 11 clock cycles. The pattern match unit has a maximum latency of 5 clock cycles and 
the O_Pattern match unit has a maximum latency of 5 clock cycles.  
 

 

The hardware synthesis was done using Synplify Pro 9.1 as well as Xilinx ISE, with the para-
meters shown in Fig. 15. Our design was implemented on a Xilinx Virtex-II Pro XC2VP70 FPGA. For 
Max_Fragment_Length=24, it employs 102 18-Kbit BRAMs (Block RAMs), 5162 Flip Flops and 5569 
LUTs, and operates at 300.1 MHz. A random pattern generator also interleaves patterns from the 
SNORT database. The design was tested in three phases. The first phase involved simulation of the 
VHDL code. The second phase focused on the post-synthesis output of the Xilinx synthesis and Synpli-
fy Pro tools. The third phase of testing involved the post-place and route output generated by the Xilinx 
Place and Route tools. 

 

 

The process to insert a new pattern is as follows. The Amirix Systems PCI-based FPGA board 
used in our implementation has a 64-bit data bus. Due to the dual-ported BRAMs in our design, and the 

GRP(i) record( i = 2, 3, 4):  
Word 1:  Sub-pattern, BV-EV pointer 
Word 2:  Bit Vector, End Vector 
GRP(1) record:  
Word 1:  Bit Vector, End Vector 
 
Pattern Record: 
Word 1: TBRAM record 
Word 2: FRAM1 record (If pattern is fragmented)
Word 3: FRAM2 record 

Fig. 16. Parameters needed to add a pattern. 

DSN4: 
GRP(4) RAM: 14336 location RAM
GRP(3) RAM: 1536 location RAM 
GRP(2) RAM: 1536 location RAM 
GRP(1) RAM: 256 location RAM 
 
record: (sub-pattern, BV-EVpointer)
GRP(4): (32 bits, 8 bits) 
GRP(3):    (24 bits, 6 bits) 
GRP(2):    (16 bits, 6 bits) 
 
GRP(1):  (BV,EV): (8 bits, 9 bits) 

DSN3  
GRP(3) RAM: 12288 location RAM
GRP(2) RAM: 1024 location RAM 
GRP(1) RAM: 256 location RAM 
 
record: (sub-pattern, BV-EVpointer)
GRP(3): (24 bits, 10 bits) 
GRP(2): (16 bits, 8 bits) 
 
GRP(1):  (BV,EV): (8 bits, 9 bits) 

TBRAM 0: patterns of lengths 4, 5, 6, 7, 8 and 9; total of 1639 patterns  
TBRAM 1: patterns of lengths 10, 11, 12, 13 and 14; total of 1714 patterns
TBRAM 2: patterns of lengths 15, 16, 17 and 18; total of 1735 patterns 
TBRAM 3: patterns of lengths 19, 20, 21, 22, 23 and 24; total of 1506 
patterns 

FRAM1: four 512-location RAMs 
FRAM2: 2048 location RAM

Fig. 15. Parameter values for system synthesis. 
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fact that reading and writing are independent of each other, BRAM updates can proceed while packets 
are being processed. We group various record fields for the 64-bit bus. The different words needed to 
add a GRP record are shown in Fig. 16. A 64-bit word can be loaded into the BRAM in one clock cycle. 
Weight tuples for all the 256 byte-character patterns, once assigned during the initial phase when the 
database is loaded, are not tampered with. We do all the placement of the patterns and fragmentation 
based on these weight values. New patterns will not be available in matching until the pattern RAM is 
updated (after all the involved sub-pattern records are updated). Hence, we add the sub-patterns and 
BV-EV pointers first followed by the BV-EV values, FRAM records, if any, and then the summation 
tuples. When a new pattern is added we only need to place the new GRP records, if any, or edit the old 
ones and also place the pattern sums and FRAM records if the pattern is a fragmented one.It takes up to 
two clock cycles to add as well as update a sub-pattern record in the GRP(4), GRP(3) or GRP(2) RAM. 
It takes up to one clock cycle to add as well as update a sub-pattern record in the GRP(1) RAM. Simi-
larly, it takes one clock cycle to add the pattern summation tuples. Now, if an O_Pattern is fragmented, 
then we need to store the information of the pattern fragments (pattern addresses in the TBRAM as 
shown in Fig. 10) in the FRAMs. This will be equal to twice the number of fragments in terms of clock 
cycles (one for the summation m-tuple of the fragment and the other to store its address information in 
FRAM). The addition of the 621 new patterns takes 14.855 µsec. The details are shown in Fig. 17. In 
contrast, the work presented in [20] requires around 12,600 clock cycles, or 64 microseconds, to insert a 
reduced number of 381 patterns. 

To remove a pattern, the process is as follows. The respective entry in the pattern RAM is first 
invalidated in a single clock cycle. Its constituent sub-pattern records are then accessed subsequently. 
For every sub-pattern, a two-dimensional linked list is kept on the host; the first dimension contains its 
BV bits whereas the second dimension contains the pointers to the patterns that contain it in the corres-
ponding bit offset.  

 

 

Existing records updated(DSN4): 
GRP(4) records updated: 995 => 
701 records: 1 clock cycle to  
update = 701 cycles; 294 records: 0
clock cycles to update  
GRP(3) records updated: 97 
87 records: 1 clock cycle to update 
= 87 cycles; 10 records: 0 clock
cycles to update  
GRP(2) records updated: 11 
11 records: 0 clock cycles to update 
GRP(1) records updated: 4 
4 records: 0 clock cycles to update 

New records added(DSN3): 
GRP(3): 669 => 
638(records) * 1 (cycles) = 638 cycles;
 31(records) * 2 (cycles) = 62 cycles  
GRP(2): 138 =>  
133(records) * 1 (cycles) = 133 cycles; 
5(records) * 2 (cycles) = 10 cycles  
GRP(1): 2   =>  
2(records) * 1 (cycles) = 2 cycles;  
 

621 summation tuples :  
621(records) * 1 (cycle) =  
621 cycles 

58 records in FRAM1: 58 cycles 
61 records in FRAM2: 61 cycles 

Total number of clock cycles needed to add 621 new patterns: 4461
Total time: 4461 * 3.33 nsec = 14.855 µsec 

New records added(DSN4): 
GRP(4): 933 => 
922(records) * 1 (cycles) = 922 cycles ; 
11(records) * 2 (cycles) = 22 cycles  
{922 records point to existing BV- EV, 
11 records point to new BV-EV combi-
nation} 
GRP(3): 168 =>  
167(records) * 1 (cycles) = 167 cycles; 
1(records) * 2 (cycles) = 2 cycles  
GRP(2): 126 =>   
126(records) * 1 (cycles) = 126 cycles;
GRP(1: 1    =>   
1(record) * 1 (cycles) = 1 cycle 

Existing records updated(DSN3):
GRP(3) records updated: 2123 => 
811 records: 1 clock cycle to update
= 811 cycles; 1312 records: 0 clock
cycles to update  
GRP(2) records updated: 59 
37 records: 1 clock cycle to update 
= 37 cycles; 22 records: 0 clock
cycles to update  
GRP(1) records updated: 14 
14 records: 0 clock cycles to update

Fig. 17. Total time to add 621 new patterns. 



 

Fig. 18 shows the list for sub-pattern “abc” (from DSN3) in a hypothetical set of patterns. This 
figure shows that “abc” is present in position 1 of pattern 1, and position 2 of patterns 2 and 13. Now 
assume the deletion of pattern 13 that contains this sub-pattern. Since “abc” is also present at the same 
offset in pattern 2, its BV will not be changed. However, to delete pattern 1, after the summation tuples 
for pattern 1 are invalidated in pattern RAM, we then delete the node for “abc” in position 1 (as shown 
in fig. 18. b). The other sub-patterns are removed in the same manner in subsequent clock cycles. To 
modify a pattern, we delete the old pattern and then add the modified pattern. The flexibility of updating 
or changing a pattern in the database without re-calculating hashing keys works to our advantage as 
compared to the approach in [20]. 

 

 

5.3. Comparison with Earlier Approaches 
Table II shows a comparison with the most prominent efforts in the area of pattern matching 

with FPGAs or ASICs. The first three designs force complete reprogramming of the FPGA to load new 
malicious patterns and hence do not employ BRAM. The results assume an input channel of eight bits 
(i.e., the incoming rate is one character per clock cycle), thus providing a common platform for compar-
ison. Our design is the most comprehensive so far as it employs the largest freely available SNORT da-
tabase (as of July 29th, 2009).  

The approach in [1] uses on-chip memory only for Bloom filter table realization. It stores all 
the patterns in slow off-chip RAM of several Megabytes capacity. Since Cho’s [2] is an ASIC imple-
mentation, it has a large clock frequency at the cost of rigidity to updates. Also, another ASIC solution 
in [18] involves memory tiles where a 2-bit input selects one of four finite state machines. Although 
[18] does not list the number of patterns in the implementation, it contains a comparison with the design 
proposed in [11] that assumes 1466 rules with 18,031 characters. The work in [18] uses 3200 Kbits of 
memory, yielding a memory consumption ratio of 181.7 bits per character which is quite high compared 
to our design (see Table II). Also, our updating process is very simple as it does not require intricate 
knowledge of our design. An off-line script just simply creates sub-pattern records and pattern ad-
dresses. We can easily conclude that our design provides very substantial memory compression (i.e., in 
terms of stored bits per input character) compared to other methods that also facilitate runtime pattern 
updates. It also operates at a substantially high frequency and requires by far the least logic cell usage 
per character, while also yielding very high throughput. Finally, our analysis is comprehensive as it in-
volved a larger number of SNORT rules than earlier approaches.  

 

6. Conclusions 
We presented a novel design for pattern matching with FPGAs that can be utilized by NID sys-

tems. This approach can also be exploited by other pattern-matching oriented applications, such as the 
detection of virus signatures. It is a memory-oriented, high-throughput, compression-based design that 
incorporates a simple pattern detection technique. It differs substantially from earlier approaches since 
it does not require long-distance routing of information inside the processing chip. Another major ad-
vantage of our approach is that it supports runtime updates for the set of stored patterns without a need 
to reprogram the FPGA. This is a necessity for NID systems operating at a 24/7 schedule as the data-
base of stored malicious patterns may require frequent updates. Our evaluation was comprehensive, 

abc  1    2   3……24

1 2 

 13 

Pattern 
 number 

Bit position in BV 

 (a)  (b)

abc  1    2   3……24

2 

 13 

Bit position in BV 

Fig. 18.  Linked list for updates with sub-pattern “abc”. 
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involving a larger number of rules than earlier approaches. 
 

Table II. Comparison with other designs (N/A: not available or not applicable). 

Design,  

Year 

FPGA  

Device 
PatternsCharactersMHz

Throughput

(Gbps) 

BRAM

Memory

(Kbits)

Logic cells/

Character 

BRAM bits/

character 

Baker [6],  

2004 

(no new rules) 

Virtex-II Pro

100 
361 8263 250 1.790 0 0.35 0 

Sourdis [11], 

 2004 

(no new rules) 

Virtex-II 

3000 
1466 18,031 335 2.680 0 0.97 0 

Clark [9], 

 2004 

(no new rules) 

Virtex 8000 1512 17,537 253 2.024 0 1.7 0 

Gokhale [10], 2002 
Virtex E 

1000 
N/A 640 N/A 2.180 24 15.19 37.5 

Cho [2],  

2005 
ASIC 2107 22,340 893 7.144 864 0.5 38.6 

Lockwood [1], 2006 Virtex-4 2259 N/A 250 1.96 94 N/A N/A 

Pnevmatikatos [3], 2006 
Virtex-II Pro

XC2VP30
2187 33,613 306 2.448 702 0.06 21.4 

Our method,  

2009 

(Max_Fragment_Length=24) 

Virtex-II Pro

XC2VP70
6455 105,763 300.1 2.408 1836 0.052 17.77 
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APPENDIX 
 
Calculation of PVN4, PVN3, PV, DV, EDV 
• Assume Bit Detection Units BDN4 and BDN3 with N= 4 and N=3, respectively.  
• DV and EDV are (L+1)-bit vectors. 
• tempDV and tempEDV are temporary vectors of L+1 bits. 
• tempPV, PVB and PVE are temporary vectors of Max_Fragment_Length bits 
• One of the N-vector combinations of DV-EDV-PV is active in every clock cycle. It is the i-th vector in the following 
code for the i-th iteration of the FOR_i loop.. 
• The following loop is executed in every clock cycle.  
 
FOR_i: for i= 1 to N loop 
{ 
    tempDV= “000…0”; tempEDV= “000…0”;   
 // initialize vectors to 0 
    PVB= “000…0”; PVE= “000…0”;   tempPV= “000…0” 
   //The following for loop takes care of the AND-OR operations in the DV and EDV equations 
   FOR_N: for k=1 to N loop   
    { 
        if (k ≥ i)  
//this if loop selects the appropriate BV and EV to be ANDed  with DVk 
      X= N-k+i;  
// X variable stores the appropriate subscript of BV, EV to be ANDed with DVk 
     else 
      X= i-k; 
     end if; 
     tempDV = tempDV OR (DVk AND BVX); 
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 //tempDV stores temporary value of active DV 
     tempEDV=tempEDV OR (DVk AND EVX);  
// tempEDV stores temporary value of active EDV 
// the following program statements are used to update the length of the partially matched pattern due to the presence of sub-
patterns. 
      tempPV= “000…0”;      // reset the temporary vector 
    if (DVk(0) AND BVX(0)) ≠ 0  
// this means that a possible first sub-pattern of a pattern is detected; length of the sub-pattern is X characters.  
         tempPV(X) = ‘1’;   // make that bit ‘1’; 
      else     
         tempPV = “000..0”;  
      end if; 
 
PVB= PVB OR tempPV;   
 // assign the length of first sub-pattern to PVB. 
tempPV= “000…0”;      // reset the temporary vector    
// BV is an L-bit vector used to search for sub-patterns except tails; 
//Now we look for the sub-patterns other than the first using the BV output 
 
    FOR_DL: for v in 1 to L-1 loop    
   { 
       if (DVk(v) AND BVX(v)) ≠ 0 
       { 
// The following loop is used to move the offset position of the partial matched pattern by same number of bits as the matched 
sub-pattern length to the right, thus increasing the length of the partially matched pattern by X bits. The appropriate PVk is 
shifted. The sub pattern is found if the above DV AND BV operation is non-zero. 
         FOR_DV:  for m in v to N*v+N-1 loop 
         {        
   tempPV= “000…0”; // reset tempPV 
         if (m+v< Max_Fragment_Length) 
       tempPV(m+X) = PVk(m);   
       end if; 
 PVB= PVB OR tempPV;  
// store the calculation result in PVB 
         } 
         end for FOR_DV; 
      } 
      end if; 
  } 
 end for FOR_DL; 
 
tempPV= “000…0”; 
// The calculations below are the same as the ones above except that we now get the length of a complete pattern match instead 
of partial matches; search for tails and the vector is moved by (length of the tail) bits. The resultant ‘1’ in the PVE vector indi-
cates the length of the complete pattern. 
 if DVk(0) AND EVX(0) neq 0 
       tempPV(X) = 1; 
    else 
       tempPV = “000..0”; 
 end if; 
 PVE= PVE OR tempPV; 
 FOR_EL: for v in 1 to L loop 
 { 
      if (DVk(v) AND EVX(v)) ≠ 0  
      { 
FOR_EV: for m in v to N*v+N-1 loop 
   { 
     tempPV= “000…0”; 
           if (m+v< Max_Fragment_Length) 
          tempPV(m+X) = PVk(m); 
           end if; 
    PVE= PVE OR tempPV; 
                  } 
 end for FOR_EV; 



 

     } 
     end if; 
     } 
     end for FOR_EL; 
} 
end for FOR_N; 
 
PVi   = PVB;  
//Assign the PVB which contains the length of the partial pattern matched to the active PV 
DVi= “100…0” OR (tempDV >>1); 
// Perform shift and OR operations and assign the temporary vectortempDV to the active DV; Similarly, assign tempEDV to the 
active EDV 
EDVi= tempEDV;  
// for BDN4 N=4 and hence the length of the matched complete pattern is given by PVN4 while in BDN3 it is given by BDN3. 
Hence, assign PVE to PVN4 for N=4 and to PVN3 for N=3, respectively. 
 
PVN3=PVE; // In BDN3 
PVN4 = PVE; // In BDN4 


