
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009 953

On the Exploitation of Narrow-Width Values for
Improving Register File Reliability

Jie Hu, Member, IEEE, Shuai Wang, Student Member, IEEE, and Sotirios G. Ziavras, Senior Member, IEEE

Abstract—Protecting the register value and its data buses is cru-
cial to reliable computing in high-performance microprocessors
due to the increasing susceptibility of CMOS circuitry to soft er-
rors induced by high-energy particle strikes. Since the register file
is in the critical path of the processor pipeline, any reliable design
that increases either the pressure on the register file or the register
file access latency is not desirable. In this paper, we propose to ex-
ploit narrow-width register values, which present the majority of
the generated values, for making a duplicate of the value within the
same data item; this in-register duplication (IRD) eliminates the re-
quirement for additional copy registers. The datapath pipeline is
augmented to efficiently incorporate parity encoding and parity
checking such that error recovery is seamlessly supported in IRD
and the parity checking is overlapped with the execution stage to
avoid increasing the critical path. A detailed architectural vulner-
ability factor (AVF) analysis shows that IRD significantly reduces
the AVF from 8.4% in a conventional unprotected register file to
0.1% in an IRD register file. Our experimental evaluation using
the SPEC CINT2000 benchmark suite also shows that IRD pro-
vides superior read-with-duplicate (RWD) and error detection/re-
covery rates under heavy error injection as compared to previous
reliability schemes, while only incurring a small power overhead.

Index Terms—In-register duplication (IRD), narrow-width
value, register file, reliability, soft errors.

I. INTRODUCTION

A LONG with dramatic performance improvements driven
by advancing silicon technologies, future microproces-

sors are becoming even more vulnerable to soft errors induced
by energetic particle strikes such as alpha particles (emitted
by decaying radioactive impurities in packaging and intercon-
nect materials) and high-energy neutrons induced by cosmic
rays [1], [2]. This increasing vulnerability is primarily due to
the continuously reducing logic depth, lowering supply voltage,
decreasing nodal capacitance, and increasing clock frequency
and on-chip integration density at new technologies [3]. Thus,
designing new generation microprocessors against soft errors
has arisen as a major requirement along with performance and
power considerations.

Traditionally, triple-modular redundancy (TMR) [4] is used
to achieve highly reliable fault-tolerant computing at high hard-

Manuscript received September 07, 2007; revised January 26, 2008. First
published May 02, 2009; current version published June 19, 2009. A prelim-
inary version of this work was presented at the International Conference on
Dependable Systems and Networks (DSN-2006)—Dependable Computing and
Communications Symposium (DCCS), VLSI Session, 2006.

The authors are with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail: jhu@njit.
edu; sw63@njit.edu; ziavras@njit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2017441

ware cost. Recently, proposals targeting at soft error problems in
microprocessors have suggested utilizing the inherent resource
redundancy in simultaneous multithreading (SMT) micropro-
cessors and chip-multiprocessors (CMPs) to enhance the data-
path reliability with concurrent error detection [5]–[10]. Some
other research has proposed that designers exploit the redundant
resources in high-performance superscalar out-of-order cores to
enable a reliable processor through instruction-level redundant
execution [11]–[16].

Since: 1) the register file read is within the datapath loose
loops [17]; 2) error-flipped intermediate computation results in
the register file are very likely to propagate to later computa-
tions or to memory hierarchies; and 3) a large register file is a
major die-area consumer increasing its exposure to high-energy
particle strikes [18], designing high-performance error-resilient
register files is of critical importance. Notice that most dual-in-
struction execution (DIE) processors include the register file
within the sphere of replication (SoR) [7]. This is mainly due to
the unbearable access latency and power overhead of ECC-pro-
tected register files [19], [20]. Notice that including the register
file within the SoR effectively halves the size of the register file.
Assuming a parity-protected register file, recent work [19] pro-
posed to use idle/free registers to accommodate duplicate values
and the copy registers can be preempted for regular register re-
naming to avoid any performance loss. Further, it proposed to
use predicted dead registers to improve the duplication rate at a
small performance overhead, based on the assumption that the
register value is first written back to the memory before the reg-
ister is reused. However, the error coverage of these schemes is
significantly limited compared to the full-duplication scheme.

The presence of narrow-width data (with values that can
be represented by fewer bits than the full data width of the
processor) in general-purpose applications is well understood
and has been utilized for power and performance optimizations
[21]–[24]. In this paper, we propose to exploit the produced
narrow-width register values for designing high-performance
error-resilient register files, and protecting the result writeback
bus and the bypass network. In the proposed new processor mi-
croarchitecture, the existing leading-0/1 detection logic within
the functional units is utilized for narrow-width check. Detected
narrow-width results that can be represented by no more than
32 bits automatically duplicate themselves in 64-bit processors
by muxing (copying) the lower 32 bits into the higher 32 bits
before being latched by the pipeline registers. We call this
scheme in-register duplication (IRD). IRD stores two copies of
the narrow-width value in the same register and transmits these
two copies of the value using the bandwidth for a single data
value over the writeback bus and forwarding bus. Thus, IRD
eliminates the need for additional (copy) registers that maintain

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

954 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009

redundant copies of the register value for error detection and
recovery. It also protects the data transfer paths from/to the
register file and the functional units for narrow-width values. To
our best knowledge, this work presents the first effort to exploit
narrow-width values for reliable register file design against soft
errors.

To evaluate the effectiveness of our proposed IRD scheme,
we conduct both architectural vulnerability factor (AVF) mea-
surements for register files with and without IRD, and exper-
imental evaluation under software-implemented soft error in-
jection. Our experimental evaluation using SPEC CINT2000
benchmark suite shows that without sacrificing any performance
IRD achieves a write-with-duplicate (WWD) rate of 94% at the
output of functional units and a read-with-duplicate (RWD) rate
of 95% at the inputs of functional units. In the meantime, IRD
only incurs a small 8.8% increase in the register file power con-
sumption. Based on a detailed register lifetime model, our AVF
analysis shows that our IRD scheme achieves a dramatic reduc-
tion of 98.8% in register file AVF, from 8.4% to 0.1%, on the
average. Under error injection with accelerated error rates of
10 10 per selected bit per cycle, IRD schemes detect vir-
tually all errors in narrow-width and regular values being read
in. To avoid signaling unnecessary errors in the duplicate copy,
IRD is further tuned to only check the parity bit of the lower
32-bit half for error detection and utilize the duplicate in the
upper half for error recovery. Our experimental results show
that IRD detects 99.7% of the erroneous reads for narrow-width
values and successfully recovers 99.7% and 99.2% of detected
errors at error rate 10 and 10 , respectively, using the un-
corrupted duplicate, which makes our in-register duplication a
very cost-effective design for highly reliable register files.

The rest of this paper is organized as follows. We discuss
related work in Section II, and review some basics of register
renaming and narrow-width register values in Section III. We
elaborate on our in-register duplication design in Section IV and
introduce AVF analysis model in Section V. In Section VI, we
evaluate the reliability, performance, and power consumption of
the proposed IRD design. Section VII concludes this paper.

II. RELATED WORK

Fault-tolerant designs based on modular redundancy have
been widely used to build highly reliable systems. For example,
cycle-by-cycle lockstepping of dual-processors and comparison
of their outputs are employed for error detection in Compaq
Himalaya [25] and IBM z900 [26] with G5 processors. Other
designs use asymmetric redundancy to include a watch-dog
processor [27] or a low-performance checker processor in
DIVA [28] to verify the correctness of the execution on the
main processor.

Targeting at the increasing processor vulnerability to soft
errors at new technologies, reliable schemes exploiting si-
multaneous multithreading (SMT) architectures have been
extensively studied for both single processors and chip-multi-
processors, such as AR-SMT [5], Slipstream [6], SRT [7], [8],
and SRTR [9]. To reclaim the performance loss due to excessive
resource contentions in these redundant multithreading (RMT)
approaches, recent work [29] has proposed to exploit register
bit reuse and register value reuse to reduce resource redundancy

in the register file. SlicK [30] on the other hand explored a
partial redundant multithreading mechanism that exploits value
and control-flow locality to avoid redundant execution of highly
predictable slices. In the meantime, many research efforts have
also been spent on exploiting the redundant resources in su-
perscalar processors for instruction-level redundant execution
against transient faults. In [11], each instruction is executed
twice and the results from duplicate execution are compared
to verify the absence of transient errors in functional units.
However, each instruction occupies only a single reorder buffer
(ROB) entry. On the other hand, the dual-instruction execution
scheme (DIE) in [12] physically duplicates each decoded
instruction to provide a sphere of replication including the
instruction issue queue/ROB, functional units, physical register
files, and the interconnect among them. Due to the substantially
increased pressure on the hardware resources, dual-instruction
execution in general suffers from significant performance loss.
Follow-up work, such as DIE-IRB [13], SHREC [14], and
PER-IRTR [16], try to alleviate the resource contention in DIE
processors to recover the performance loss.

In [31], the protection schemes were particularly tuned to pro-
tect frequently accessed cache lines which are more error-prone,
in order to reduce the area overhead. Our focus in this work is to
design reliable register files. Previous work [19] has exploited
utilizing free registers or predicted dead registers to maintain a
replica of the value in the register file to increase its error re-
silience. Recent work [32] studied the tradeoffs between per-
formance and reliability of the register file when over-clocking
is applied to increase the operation frequency. Different from
their work, our in-register duplication scheme is based on the
detection and capture of narrow-width register values such that
redundant copies are generated within a single 64-bit data item
to improve the reliability of the register file system, eliminating
the need for copy registers and related hardware enhancements.

III. BASICS OF REGISTER RENAMING AND NARROW-WIDTH

REGISTER VALUES

Superscalar microprocessors dynamically exploit instruc-
tion-level parallelism (ILP) to issue multiple instructions per
cycle for improved performance. Register renaming is one of
the fundamental techniques employed in superscalar micropro-
cessors to increase the ILP by eliminating the two false data
dependences, write-after-read (WAR) and write-after-write
(WAW). Since the register file size limits the effective size of
the instruction window, it presents a major constraint on ILP
exploitation in superscalar microprocessors. We implemented
MIPS R10000 [33] style register renaming, where the archi-
tectural and physical register files are combined. Fig. 1 gives
the superscalar microprocessor model simulated in this paper.
Notice that a physical register is susceptible to soft errors only
after a value is written into the register and before it is freed.

In high-performance 64-bit microprocessors, many generated
register values during the execution of general-purpose applica-
tions do not require the full width of 64 bits. Values that can be
represented by less than 64 bits are called narrow-width values
in this paper. The presence of narrow-width values has been
well studied and exploited for performance and power optimiza-
tions [21]–[24]. Different from the previous work, we exploit

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

HU et al.: ON THE EXPLOITATION OF NARROW-WIDTH VALUES FOR IMPROVING REGISTER FILE RELIABILITY 955

Fig. 1. Datapath and the pipeline stages of the simulated superscalar microprocessor.

Fig. 2. Cumulative distribution of the Register value width.

narrow-width register values for improving the register file reli-
ability against soft errors.

The detailed cumulative data-width distribution given in
Fig. 2 shows that on the average 54% of the generated reg-
ister values have a data-width no more than 32 bits, and the
difference between 32 bits and 33 bits is negligible. However,
there is a significant 40% jump from 33 bits to 34 bits. This
is because the memory address in the Alpha ISA uses 33 bits
(plus 1 sign 34 bits) and memory operations account
for a large portion of the executed instructions. Please notice
that: 1) the operations generating these memory addresses are
different from the address calculation in a load/store instruction
and 2) compiler options or large-size programs may change the
data width of memory addresses. Overall, around 94% of the
integer values can be represented by no more than 34 bits, an
average for SPEC CINT2000 benchmarks, which we exploit
in this work for designing high-performance error-resilient
register files using in-register duplication.

IV. EXPLOITING NARROW-WIDTH REGISTER VALUES

In this section, we present our reliable register file design that
exploits the generated narrow-width register values. Informa-
tion redundancy is the basic idea for protecting memory struc-
tures against soft errors. Instead of duplicating each register
value into two registers, we exploit the majority of narrow-width
values (32 bits and 34-bit memory addresses) to perform
in-register duplication.

A. Narrow-Width Value Detection

Based on the data-width analysis presented in the previous
section, our design is particularly tuned to capture three types

Fig. 3. (a) Augmented functional unit datapath with narrow-width flag gener-
ation and in-register duplication logic. (b) The meaning of the value of narrow-
ness flag bits � � .

of narrow-width values: 32-bit positive values ,
32-bit negative values , and 34-bit memory addresses

, where can be either a “1” or a “0”. From now
on, we only refer to these three types as narrow-width data.
To capture narrow-width values, we extract the internal sig-
nals from the existing leading-0/1 detection logic within the
functional units [34] (in order to minimize its timing overhead
in deeply pipelined designs at new technology generations
[35]), indicating whether the newly generated result from the
functional unit is a 32-bit positive value, a 32-bit negative value,
or a 34-bit memory address (positive value). After detection,
two flag bits associated with each register value are set
to indicate the narrowness of the current value. The meaning of
these two bits is given in Fig. 3(b). The block diagram in
Fig. 3(a) shows a slightly modified datapath with added logic
for setting the flag bit and in-register duplication. Notice
that a narrow-width value will have the flag bit set to 1. The
in-register duplication logic (the Mux in the figure) is controlled
by flag bit to either perform duplication for a narrow-width
value (by copying the lower 32-bit half into the higher 32-bit
half) or bypass duplication for a regular value.

B. Exploiting IRD for Error Detection

Once a narrow-width register value is detected, in-register du-
plication is automatically performed by copying the lower 32-bit
half into its higher 32-bit half such that two copies of the value
will be latched into the pipeline register. The incentive of our
reliable register file design is not only to protect the register file
against soft errors, but also to guarantee reliable data transmis-
sion over the writeback and bypass networks. IRD enforces at
any time two copies of the narrow-width value to be stored in

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

956 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009

Fig. 4. Augmented datapath integrating IRD and parity coding to support both error detection and error recovery.

the register file, latched by the pipeline register, or transferred
between the register file and the functional units.

It is important to notice the significant difference between our
TRD and conventional redundancy-based reliable designs. IRD
incurs much less hardware complexity compared to schemes
utilizing idle or predicted dead registers for duplicating a data
value, where the register renaming logic needs to be redesigned
for copy register allocation, the instruction queue is augmented
to hold copy register IDs, and the number of register file
writeports is doubled or a set of copy ports is required [19].
IRD needs none of the previous hardware modifications. More
importantly, our scheme also protects the result writeback bus
and the bypass network by transferring two copies of the value
without increasing the bandwidth requirement. In the schemes
presented in [19], a data value hit by errors when transferring
over the writeback bus will result in two corrupted copies being
stored in the register file due to the use of copy ports. Since
around 50%–70% of the input operands are retrieved from
the bypass network, hardening both the bypass network and
the writeback bus against soft errors is of critical importance,
which is naturally supported by IRD.

Since the probability of the two copies of the narrow value
being corrupted at exactly the same bit position is negligible,
the two copies can be compared against each other to verify the
absence of soft errors very effectively. A follow-up question
is when to perform this comparison. Notice that soft-error
corrupted data only matters when used later in computation
or written out to the memory hierarchy. The probability of
resulting in crashed execution or erroneous outputs can be esti-
mated by the architectural vulnerability factors (AVFs) [36] of
the microarchitectural blocks that the corrupted value is going
through. We choose to perform error detection (comparing the
upper 32 bits against the lower 32 bits of the input operand) at
the execution stage when the operands are fed to the functional
units. Notice that narrow-width operands are restored into
full-width regular values at the inputs of the functional units.
As shown in Fig. 4. the restoration logic, basically a Mux, is
controlled by the 2-bit narrowness flag either to sign extend
the lower 32-bit half or to reform the memory address for

narrow-width values, or to bypass the upper 32-bit half for
regular values.

C. Integrating IRD and Parity Coding

IRD itself is expected to be very effective in soft-error
detection however, is not capable of recovering from an error.
Since IRD already maintains two redundant copies of the value,
providing ECC coding (e.g., Hamming coding) for each 32-bit
half is either over-designed or not feasible considering the ECC
coding/checking latency and power consumption [31]. We
choose to use simple and fast parity coding to supplement each
32-bit half with an additional parity bit. Notice that the flag bits
are included in the parity coding for both 32-bit halves, thus
covered by the same parity bits for the data value. We assume
that parity encoding/checking takes one clock cycle.

To integrate parity coding with IRD, we need to add a sep-
arate pipeline stage to perform parity encoding after the ex-
ecution stage. Fig. 4 shows the modified datapath supporting
both error detection and recovery. The parity bit for each 32-bit
half (and narrowness flag) is generated in the parity encoding

stage. Parity checking for input operands
is overlapped with the first cycle of the execution stage such
that the branch resolution loose loop [17] is not increased. This
also guarantees that detected errors in input operands are sig-
naled before the erroneous result is written back to the register
file since many arithmetic logic unit (ALU) operations take just
one cycle to complete. Input operands read from the register
file come with the parity bits for the two 32-bit halves (and
2-bit flag). Parity checking basically regenerates the parity bit
for each 32-bit half (and 2-bit flag) and compares it against the
one with the data value. However, operands retrieved from the
first stage of the bypass network do not have parity bits gener-
ated yet. In such a case, both parity encoding stage) and
parity regenerating (in stage) are performed simultane-
ously and the parity bits from the stage are bypassed to
the stage for parity bit checking since the comparison
happens in the latter stage of . If the two parity bits for
the lower 32-bit half (and 2-bit flag) match, no error is detected.
Otherwise, the lower half has been corrupted by errors and a

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

HU et al.: ON THE EXPLOITATION OF NARROW-WIDTH VALUES FOR IMPROVING REGISTER FILE RELIABILITY 957

stall cycle is inserted. Now if the parity bits for the upper 32-bit
half (and 2-bit flag) match, then the upper half is copied back to
the lower half to recover the corrupted data. The instruction is
then replayed with the recovered inputs. However, if the upper
half is also corrupted and the error is detected, an exception is
raised for the higher level system(s) to solve the problem.

Since parity encoding takes one additional clock cycle, one
design issue raised here is when to write back the result value
and the parity bits. To avoid increasing the complexity of the
register file read/write ports or the bypass network, we propose
to use a special bit-addressable parity register to hold two parity
bits for each entry in the register file, as shown in Fig. 4. The
parity bits are written into the parity register at stage.

IRD with parity coding is expected to be very effective in de-
tecting and recovering single-bit errors in narrow-width values.
In the presence of multi-bit errors (at a rate of several orders
of magnitude lower than single-bit errors), a more aggressive
detection scheme combining parity checking and duplicate
comparison can be employed. Due to the extremely low pos-
sibility that the two copies are corrupted by multi-bit errors at
exactly the same bit locations, multi-bit errors in narrow-width
values can be effectively detected by duplicate comparison.
However, IRD may lack the capability of recovering from
detected multi-bit errors.

D. Protecting Regular Values

As a side benefit of in-register duplication, regular values
(those that cannot be represented by 32 bits plus 2 flag bits)
are also protected by the 2 parity bits. For a detected regular
value, the 2 flag bits are reset to 00. During the
stage, two parity bits are generated for the two 32-bit halves
(and flag bits) in the same way as for narrow-width values. Once
a regular value reaches the input of a functional unit, the flags
bits enforce parity checking for both 32-bit halves
to verify the absence of soft errors. If any half fails the parity
check, an error signal is raised. However, the hardware itself is
not capable of recovering the error-corrupted regular value. No-
tice that a similar scheme as in [19] can be applied to exploit free
registers for duplicating a replica of the regular value, which
provides recovery capability. In such a scheme, the mapping
information between the original register and the copy register
shall be maintained in order to locate the copy register during
recovery. Due to significant modifications required in the reg-
ister renaming logic, the register file, and the issue queue, we do
not explore further this idea in the following discussion.

V. NEW MODELS FOR REGISTER FILE AVF ESTIMATION

To estimate the register file AVF, we will need to calculate
the ACE (architectural correct execution) and un-ACE cycles of
each register value residing within the register file. Inspired by
a previous work [37] that uses lifetime analysis to compute the
AVF for address-based structures exemplified by a data cache,
a data translation buffer, and a store buffer, we exploit the reg-
ister lifetime model as the basis for AVF estimation. As shown
in Fig. 5, the lifetime of a physical register starts with the Idle
state when it is in the free list. Once the register is allocated to
rename a logical (destination) register at the renaming stage, it
changes from the Idle state to the Busy state. The register

Fig. 5. Lifetime model of a physical register.

stays in the Busy state till the result value is written into it.
The time between the write and last read to the register is re-
ferred to as the Live phase. After its last read, the register en-
ters its Dead state. The physical register is then freed when its
unmapping instruction commits. Freeing a physical register puts
it back to the free list and returns it to the Idle state. The reg-
ister lifetime model clearly indicates that except the Live state,
all the other states in a register’s lifespan are un-ACE, i.e., the
register in these states has no impact on the correctness of the
processor architectural state. This is simply because the register
either does not contain valid data or its valid value will not be
used by any later computation if the register is in the Idle,
Busy, or Dead states. Thus the Live phase presents an upper
bound of the register’s ACE cycles. Consequently, a conserva-
tive design for a reliable register file would be protecting the
register value during its Live phase, while most existing pro-
posals [19] allocating copy registers at the renaming stage are
clearly overkill designs.

For more accurate ACE calculation in the register file, a more
detailed and comprehensive analysis model of theLive register
value is required. We propose here a new register value classifi-
cation for ACE calculation purposes. In this classification, a reg-
ister value is either speculative (i.e., produced by a speculative
instruction) or non-speculative (i.e., produced by a non-specu-
lative instruction). Obviously, a speculative register value will
never be committed and thus it is un-ACE. A non-speculative
register value can be dynamically dead (DD) during execution
because it is either first-level dynamically dead (FDD) or transi-
tively dynamically dead (TDD). Different from previous study
[38], [36] that identifies dynamically dead (both first-level and
transitively) instructions for issue queue AVF estimation, this
study sees new challenges in determining FDD or TDD register
values. A register is first-level dynamically dead if: 1) all its con-
sumer instructions are speculative ones, referred to as FDD S or
2) it is not read by any instruction before being freed, referred
to as FDD N. Notice that FDD N registers have a zero Live
cycle. TDD registers can be further divided into three groups:
1) TDD S due to all consumers falling into the TDD S, FDD S,
and/or speculative ones; 2) TDD N due to FDD N and TDD N
consumers; and 3) TDD NS due to a combination of TDD S
and TDD N consumers. If a register cannot be determined as
dynamically dead, it is conservatively assumed to be ACE. The
detailed register classification is given in Fig. 6. All registers in
categories other than ACE Reg are un-ACE registers.

The question is: does the Live time of an ACE register cor-
respond to all ACE cycles? Not necessarily. The reason is quite
straightforward: an ACE register can be consumed as the source
operand in producing both ACE registers and un-ACE registers.
A further breakdown of the Live time of an ACE register is

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

958 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009

Fig. 6. Register level ACE analysis and register value classification for Live
registers. (DD: dynamically dead, FDD: first-level dynamically dead, TDD:
transitively dynamically dead).

Fig. 7. Extracting un-ACE cycles from the Live phase of an ACE register.

given in Fig. 7. During its Live time, a register is to be accessed
once or multiple times by its consumers. The last read to the
register ends its Live phase. If the last ACE read (by an ACE
instruction) to the register is different from its last read, then the
time between the last ACE read and the last read is considered
as un-ACE cycles, while the remaining is ACE cycles indepen-
dent of possible un-ACE reads before the last ACE read. Thus,
the AVF of a register (of this renaming instance) is calculated as
the percentage of its ACE cycles over its overall lifetime. Notice
that each bit of an ACE register within its ACE cycles is counted
as ACE for simplicity without further exploring the masking ef-
fects of ALU operations performed on the register value.

For a base register file without any error detection/protection
scheme, errors happening during a register’s ACE cycles are
likely to result in silent data corruptions (SDCs). Thus, the AVF
of the base register file is also its SDC AVF [36], [2]. If each
register entry is protected by parity coding and only single-bit
soft errors are assumed, then all the errors can be detected by
the parity checking logic; however, they cannot be recovered. In
other words, parity coding the register file converts all SDC er-
rors into detected unrecoverable errors (DUEs). Consequently,
the SDC AVF of a parity protected register file turns into zero
and its AVF is now DUE AVF. With our proposed IRD scheme,
the ACE cycles of a register holding a narrow-width value are
almost halved from the base case, since the upper 32 bits of the
register only contains the duplicate of the narrow-width value.
The 2-bit narrowness flag should be also considered as ACE bits
in this case. Notice that in the IRD register file, any single-bit
error to a register storing a narrow-width value will be detected
and corrected by the duplicate. Thus those “ACE” cycles will
not contribute to the AVF of the IRD register file. Only a regular

TABLE I
PARAMETERS FOR THE SIMULATED MICROPROCESSOR

value (still protected by parity coding) will introduce DUE AVF.
Due to the high percentage of narrow-width register values, we
expect that our IRD scheme will significantly reduce the register
file AVF and thus its vulnerability to soft errors.

VI. EVALUATION

A. Evaluation Framework

We derive our simulators from SimpleScalar V3.0 [39] to
model a contemporary high-performance microprocessor sim-
ilar to Alpha 21464 [18]. Table I shows the detailed config-
uration of the simulated microprocessor. For this evaluation,
we use SPEC CINT2000 suite compiled for the Alpha instruc-
tion set architecture using “-arch ev6 -non shared” option with
“peak” tuning. We use the reference input sets for this study.
Each benchmark is first fast-forwarded to its early single sim-
ulation point (gap uses the standard single simulation point in-
stead of the very large early single simulation point) specified by
SimPoint [40]. We use the last 100 million instructions during
the fast-forwarding phase to warm-up the caches if the number
of skipped instructions is more than 100 million. Then, we sim-
ulate the next 100 million instructions in detail.

B. Duplication Rates and Performance Impact

The ability to recover register values from detected errors de-
pends on the availability and correctness of duplicate copies. We
use the write-with-duplicate (WWD) rate as a first-order estima-
tion to measure the capability of a reliable scheme to duplicate
the register values, and use the read-with-duplicate (RWD) rate
as a first-order estimation to approximate reliable reads of reg-
ister values against soft errors. Fig. 8 shows that by exploiting
narrow-width values alone, in-register duplication achieves a
WWD rate of 94% and a RWD rate of 95%, an average across
SPEC CINT2000 benchmarks, without any performance loss.
This RWD rate is significantly improved over the results (78%
for CE, and 84% for AG at a 0.2% performance loss) reported

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

HU et al.: ON THE EXPLOITATION OF NARROW-WIDTH VALUES FOR IMPROVING REGISTER FILE RELIABILITY 959

Fig. 8. WWD rate (left bar) and RWD rate (right bar) of the IRD scheme.

Fig. 9. Performance comparison of various register file schemes.

in [19]. In the mean time, our in-register duplication scheme
avoids the hardware complexity of the latter schemes.

Considering a full-duplication scheme (Full Dup) that al-
locates a copy register for each result register at the register re-
naming stage, the hardware implementation is much more com-
plexity-effective than the CE/AG schemes [19] since the copy
register is implied. The (Full Dup) scheme achieves a rate
of 100% for both WWD and RWD; however, it suffers from
a significant performance loss, 7.7% on the average, as shown
in Fig. 9. Our IRD IRD scheme duplicates the narrow-width
value within the same register and requires no additional copy
register, thus incurring no performance overhead. Figs. 8 and 9
together show that our schemes are very effective in providing a
high error coverage for applications where the performance and
cost are highly constrained.

C. Power Efficiency of the IRD Register File

To evaluate the impact of the IRD scheme on register file
power consumption, we extend the Wattch power model [41] to
include power profiling for the physical register file. Compared
to the base register file without any protection scheme, our IRD
requires an additional 2-bit narrowness flag to be transferred
and stored with each register value. Integrating parity coding

Fig. 10. Breakdown of the power consumption in the IRD register file.

has added two additional parity bits for each register entry. No-
tice that the parity bits are not stored with the value in the reg-
ister file for the reason discussed in Section IV-C. Since we
exploited input narrowness information and functional unit in-
ternal signals for simple fast narrow-width detection, the major
power overhead due to the IRD scheme will be from transferring
this 2-bit narrowness flag on the result bus and writing/reading
the flag to/from the register file. Similarly, the parity scheme
also introduces power penalties due to parity encoding and de-
coding (parity check) as well as transferring two parity bits (one
for each 32-bit half plus 2-bit narrowness flag) on the result
bus. We have augmented the power models of the register file
and result bus to include the 2-bit flag and two parity bits. We
borrow the published parity encoding/decoding power numbers
from [42] to approximate the power consumption of the (34, 1)
parity scheme in our IRD register file. All the power numbers
are scaled to the 70-nm technology for the simulated micropro-
cessor. Fig. 10 breaks down the power consumption of the IRD
register file. On the average, the IRD scheme alone only causes
a 4.5% power increase (due to the narrowness flag in the reg-
ister file and data bus, flag in RF and flag in DB) to the
base register file, Base RF, and the parity scheme is respon-
sible for additional 4.3% increase (1.3% for parity in DB
and 3.0% for parity Coding). Overall, the IRD register file
is only 8.8% higher in power consumption than the base one,
while significantly improving register file reliability.

D. Register File AVF Estimation

To estimate the AVF of the register file, we introduce a reg-
ister AVF analysis window with 50 000 entries to record infor-
mation (e.g., lifetime information, reads, and source registers,
etc., required for ACE calculation) for the past 50 000 register
values produced by non-speculative instructions. Notice that
whether a non-speculative register value is dynamically dead
(un ACE) or not can only be determined by future instructions
on its dependence chains. Following the AVF analysis model
proposed in Section V, we present the AVF analysis results of
the Base register file in Fig. 11(a). Among the register lifetime,
on the average, the Idle, Busy, and Dead states account for
32%, 21%, and 37%, respectively. Unknown represents those

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

960 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009

that cannot be determined upon completion of the simulation,
which is a very small portion, less than 1% in the figure. The re-
maining 9% is contributed by the Live state, which is the sum
of the live time of Spec Live, FDD S, TDD S, TDD N,
TDD NS, and ACE registers. ACE is further broken down into
AVF ACE and AVF un-ACE cycles. As shown in the Fig. 11(a),
components of the Live time other than AVF ACE form a total
of less than 1%. Thus, the AVF of the register file in the sim-
ulated microprocessor when running SPEC 2000 CINT bench-
marks is 8.4%, the percentage of AVF ACE in the overall reg-
ister lifetime. If it is the base register file without any protec-
tion scheme, its AVF only consists of SDC AVF, which is 8.4%
in this case. While protected by parity coding, the register file
converts SDC AVF into DUE AVF. Reliable register file designs
shall target at reducing AVF ACE for register file AVF reduction
and reliability improvement. The employment of our proposed
IRD scheme successfully eliminates the AVF ACE cycles of a
register holding a narrow-width value, since the error will be
detected by the parity logic and corrected using the duplicate
stored in the upper half of the same register, under the assump-
tion of the single-bit error model. The eliminated AVF ACE por-
tion is referred to as AVF DUP in the IRD register file, which is
no longer ACE. The remaining part constitutes the true ACE
and contributes to DUE AVF. As shown in Fig. 11(b), our IRD
scheme removes 98.8% of the original AVF ACE cycles, which
dramatically improves register file reliability by reducing the
AVF from 8.4% in the base register files to 0.1% in our IRD
register file.

E. Error Model and Soft Error Injection

To further evaluate the error resilience of our schemes, we
also conducted soft error injection during the execution-driven
simulation. Software-based error injection flips one bit or mul-
tiple bits in a selected register value. Since the multiple-bit error
rate is several orders of magnitude lower than the single-bit error
rate [20], we assume a single-bit error model in this study. Our
error injection scheme simulates single-event upsets (SEUs) in
the register file, the bypass network, and the result writeback
bus. At each clock cycle, a uniformly distributed random func-
tion is called to locate a register and a specific bit in that register.
Then, an error is injected with a given probability (e.g., 10
[20]), i.e., single-bit soft error rate. During error injection, if the
selected register is receiving a new value which is also being
bypassed to the next execution stage, we flip the bit wire in the
bypass network instead of the bit cell in the register file. Thus,
error detection and recovery can be immediately exercised at the
P Chk stage. If the selected value is transmitting over the result
bus, error injection also flips the corresponding bit wire in the
result bus and the error is propagated to the register entry in the
register file once the value is written. Otherwise, a bit cell in the
register file is flipped to reflect the error-corrupted bit value. No-
tice that each register file write clears out the errors previously
injected into that particular register entry.

To avoid crashing the simulation, each injected error is logged
using a bitmap for each register entry instead of flipping the real
bit value and the error history is also recorded. During simu-
lation, the soft error bitmap and error history information of a

Fig. 11. Register lifetime breakdown for AVF measurement in: (a) a base reg-
ister file, and (b) our IRD register file, a zoom-in view of its Live phase break-
down. (a) Base register file. (b) IRD register file.

given register value are used to perform error detection and re-
covery at the execution/P Chk stage.

F. Error Behavior Under Soft Error Injection

We evaluated the IRD schemes with a wide range of error
rates (per bit per cycle) from 10 (suggested in [20]) to 10 .
Due to the limited simulation of 100 million instructions, error
injection with a rate of 10 injects very few errors and errors
are rarely being read in. At this error rate, only single-bit er-
rors can happen to a register and AVF measurement itself can
be a very good tool for analyzing the reliability of the IRD
scheme. To exercise the IRD register file’s resilience to double-
or multi-bit errors as in extremely harsh environments, a higher
error rate is required for the injection. For illustration purposes,
we only present our results for error rates of 10 (shown as
“e-5”) and 10 (“e-4”). Notice that these again are accelerated
rates for very rare single-event upsets (SEUs).

Erroneous input operands can be either read from the register
file or retrieved from the bypass network. This experiment tries
to identify the contributions of these two error sources. Notice
that erroneous reads are instances of retrieved input operands
with errors, which are different from the cumulative bit errors

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

HU et al.: ON THE EXPLOITATION OF NARROW-WIDTH VALUES FOR IMPROVING REGISTER FILE RELIABILITY 961

TABLE II
CHARACTERIZATION OF ERRONEOUS READS FOR INPUT OPERANDS

in the input operands. For example, an input value with mul-
tiple bits flipped due to soft errors (multiple-bit errors) is only
counted as one instance of erroneous read. Table II shows that
the majority of the erroneous reads, for both soft error rates
of e-5 and e-4: 1) around 89% on the average, are due to the
corrupted value read from the register file (RF) and 2) the re-
maining 11% are due to wire flips when the value is being for-
warded by the bypass network (FWD). Thus, the register file is
still the major source of erroneous reads. A second breakdown
of erroneous reads in Table II shows that most readin errors are
single-bit errors (SE), 99.8% (99.4%) at this very high error rate
e-5 (e-4). This is because the live time (between writeback and
the last read) of a register value is quite short [43], during which
the same register entry is rarely hit by multiple errors.

G. Error Detection and Recovery From Detected Soft Errors

Integrated with parity coding, IRD checks the parity bits for
both 32-bit halves at the first stage of execution. If any half fails
this check, erroneous data is detected. This scheme covers both
narrow-width values and regular values. However, this parity
coding scheme is not capable of detecting an even number of
bit errors in a 32-bit half. Fig. 12 presents results for IRD using
parity checking. P H Detected and P F Detected corre-
spond to detected readin errors in narrow-width values and reg-
ular values, and P H Fail and P F Fail represent undetected
readin errors, respectively. IRD using parity checking detects all
readin errors in regular values and only fails less than 0.3% of
the time for narrow-width values.

Notice that our in-register duplication scheme restores the
full 64-bit value of a narrow-width input by only using its lower
32-bit half. This is to say that, for narrow-width values the IRD
scheme is further tuned to use the parity checking result of the
lower 32-bit half to detect soft errors and the parity checking
of the upper half to determine whether it can be used to recover
the value once the lower half is detected as error-corrupted.
Of these readin erroneous narrow-width values, IRD detects
99.7% of the errors, which is very encouraging. Once errors are
detected, IRD makes the following decision: if the duplicate
in the upper 32-bit half passes the parity check, IRD uses
the duplicate for error recovery; otherwise, IRD generates
an ERROR exception and lets the operating system handle

Fig. 12. Soft error detection in the IRD scheme by parity checking. (Left bar
for e-5 and right bar for e-4).

error recovery. We introduce an additional 1000 cycles for this
ERROR exception handler. Notice that each detected erroneous
regular value will also trigger this ERROR exception. However,
during IRD recovery, if the duplicate was also corrupted but yet
succeeded in parity checking (even number of bit errors), IRD
is forced to perform a false recovery using the corrupted dupli-
cate. Fig. 13 shows, that, of the detected errors in narrow-width
input operands, IRD recovers 99.7% (99.2%) of the errors with
non-corrupted duplicates, IRD True Recovery. The false
recovery rate, IRD False Recovery, is 0% (0.1%) at error
rates e-5 (e-4). The operating system takes care of the remaining
0.3% (0.7%) of the detected errors. A performance comparison
was shown early in Fig. 9. The performance overhead due to
error recovery is negligible at these two error rates.

Overall, these results confirm that our in-register duplication
scheme that exploits narrow-width values is very effective in
detecting and recovering from soft errors occurring in the reg-
ister file, the bypass network, or the result writeback bus, while
only incurring some minor microarchitectural modifications. It
is important to notice that this high error detection/recovery rate
in the IRD register file is achieved under the extremely high
error injection rates that are unlikely to happen in the real world.
Thus, for realistic applications experiencing significantly low

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

962 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 7, JULY 2009

Fig. 13. Error recovery rate of detected errors in IRD scheme, under error in-
jection rates of 10 (left bar) and 10 (right bar) per selected bit per cycle.

error incidents, it is of crucial importance that reliable designs
only incur minimal cost/overhead in terms of hardware, perfor-
mance, and power consumption.

VII. CONCLUSION AND FUTURE WORK

We propose in this work to exploit narrow-width register
values for designing high-performance reliable register files.
Instead of allocating an additional copy register for storing the
duplicate, our IRD scheme creates a replica of the narrow-width
value in its upper 32-bit half, thus eliminating the hardware
complexity required for acquiring and maintaining copy reg-
isters in previous schemes. AVF measurement based on a
new analysis model has shown that our IRD scheme achieves
an extremely low AVF of 0.1% in the register file, a 98.8%
reduction over a base one. Evaluation via software-based error
injection shows that our IRD scheme demonstrates superior
error detection and recovery rates at minimum hardware cost,
making it a suitable design choice in high-performance, highly
reliable microprocessors. For future work, we plan to extend
the current IRD framework to also support hardware recovery
for error-corrupted regular values. Another interesting direction
is to apply the idea of in-register duplication for protecting the
data cache.

REFERENCES

[1] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin,
“IBM experiments in soft fails in computer electronics (1978–1994),”
IBM J. Res. Development, vol. 40, no. 1, pp. 3–18, Jan. 1996.

[2] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques
to reduce the soft errors rate in a high-performance microprocessor,” in
Proc. ISCA-31, 2004, pp. 264–275.

[3] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Mod-
eling the effect of technology trends on the soft error rate of combina-
tional logic,” in Proc. Int. Conf. Dependable Syst. Netw., Jun. 2002, pp.
389–398.

[4] R. E. Lyons and W. Vanderkulk, “The use of tripple-modular re-
dundancy to improve computer reliability,” IBM J., vol. 6, no. 2, pp.
200–209, Apr. 1962.

[5] E. Rotenberg, “Ar-smt: A microarchitectural approach to fault toler-
ance in microprocessors,” in Proc. Int. Symp. Fault-Tolerant Comput.,
Jun. 1999, pp. 84–91.

[6] K. Sundaramoorthy, Z. Purser, and E. Rotenburg, “Slipstream proces-
sors: Improving both performance and fault tolerance,” in Proc. 9th
Int. Conf. Arch. Support for Program. Lang. Operat. Syst., 2000, pp.
257–268.

[7] S. Reinhardt and S. Mukherjee, “Transient fault detection via simulta-
neous multithreading,” in Proc. 27th Annu. Int. Symp. Comput. Arch.,
Jun. 2000, pp. 25–36.

[8] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design
and evaluation of redundant multithreading alternatives,” in Proc. 29th
Annu. Int. Symp. Comput. Arch., May 2002, pp. 99–110.

[9] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery
via simultaneous multithreading,” in Proc. 29th Annu. Int. Symp.
Comput. Arch., May 2002, pp. 87–98.

[10] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Tran-
sient-fault recovery for chip multiprocessors,” in Proc. Int. Symp.
Comput. Arch., Jun. 2003, pp. 98–109.

[11] A. Mendelson and N. Suri, “Designing high-performance and reliable
superscalar architectures: The out of order reliable superscalar (o3rs)
approach,” in Proc. Int. Conf. Depend. Syst. Netw., Jun. 2000, pp.
473–481.

[12] J. Ray, J. Hoe, and B. Falsafi, “Dual use of superscalar datapath for
transient-fault detection and recovery,” in Proc. 34th Annu. IEEE/ACM
Int. Symp. Microarch., Dec. 2001, pp. 214–224.

[13] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, “A complexity-
effective approach to ALU bandwidth enhancement for instruction-
level temporal redundancy,” in Proc. 31st Annu. Int. Symp. Comput.
Arch., Jun. 2004, pp. 376–386.

[14] J. Smolens, J. Kim, J. C. Hoe, and B. Falsafi, “Efficient resource sharing
in concurrent error detecting superscalar microarchitecture,” in Proc.
ACM/IEEE Int. Symp. Microarch. (MICRO), Dec. 2004, pp. 257–268.

[15] J. S. Hu, G. M. Link, J. K. John, S. Wang, and S. G. Ziavras, “Resource-
driven optimizations for transient-fault detecting superscalar microar-
chitectures,” presented at the 10th Asia-Pac. Comput. Syst. Arch. Conf.
(ACSAC), Singapore, Oct. 2005.

[16] M. Gomaa and T. N. Vijaykumar, “Opportunistic transient-fault detec-
tion,” in Proc. 32nd Annu. Int. Symp. Comput. Arch. (ISCA), Jun. 2005,
pp. 172–183.

[17] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,”
in Proc. HPCA-8, Feb. 2002, pp. 270–281.

[18] R. P. Preston, R. W. Badeau, D. W. Bailey, S. L. Bell, L. L. Biro, W.
J. Bowhill, D. E. Dever, S. Felix, R. Gammack, V. Germini, M. K.
Gowan, P. Gronowski, D. B. Jackson, S. Mehta, S. V. Morton, J. D.
Pickholtz, M. H. Reilly, and M. J. Smith, “Design of an 8-issue su-
perscalar RISC microprocessor with simultaneous multithreading,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2002, pp. 266–267.

[19] G. Memik, M. Kandemir, and O. Ozturk, “Increasing register file im-
munity to transient errors,” presented at the DATE, Munich, Germany,
May 2005.

[20] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“Soft error and energy consumption interactions: A data cache perspec-
tive,” in Proc. ISLPED, 2004, pp. 132–137.

[21] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proc.
HPCA-5, Jan. 1999, pp. 13–22.

[22] G. H. Loh, “Exploiting data-width locality to increase superscalar ex-
ecution bandwidth,” in Proc. MICRO-35, 2002, pp. 395–405.

[23] M. H. Lipasti, B. R. Mestan, and E. Gunadi, “Physical register in-
lining,” in Proc. ISCA-31, Jun. 2004, pp. 325–335.

[24] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, “Register packing:
Exploiting narrow-width operands for reducing register file pressure,”
in Proc. MICRO-37, Portland, OR, 2004, pp. 304–315.

[25] Compaq, Palo Alto, CA, “HP nonstop himalaya,” 1997 [Online]. Avail-
able: http://nonstop.compaq.com/

[26] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T.
J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F. Webb,
“IBM’s S/390 G5 microprocessor design,” IEEE Micro, vol. 19, no. 2,
pp. 12–23, Mar./Apr. 1999.

[27] M. Namjoo and E. McCluskey, “Watchdog processors and detection of
malfunctions at the system level,” CRC, Tech. Rep. 81-17, Dec. 1981.

[28] T. Austin, “Diva: A reliable substrate for deep submicron microarchi-
tecture design,” in Proc. 32nd Annu. IEEE/ACM Int. Symp. Microarch.,
Nov. 1999, pp. 196–207.

[29] S. Kumar and A. Aggarwal, “Reducing resource redundancy for
concurrent error detection techniques in high performance micropro-
cessors,” in Proc. 12th Int. Symp. High-Perform. Comput. Arch., Feb.
2006, pp. 212–221.

[30] A. Parashar, A. Sivasubramaniam, and S. Gurumurthi, “Slick: Slice-
based locality exploitation for efficient redundant multithreading,” in
Proc. 12th Int. Conf. Arch. Support for Program. Lang. Operat. Syst.
(ASPLOS-XII), 2006, pp. 95–105.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

HU et al.: ON THE EXPLOITATION OF NARROW-WIDTH VALUES FOR IMPROVING REGISTER FILE RELIABILITY 963

[31] S. Kim and A. Somani, “Area efficient architectures for information
integrity checking in cache memories,” in Proc. Int. Symp. Comput.
Arch. (ISCA), May 1999, pp. 246–255.

[32] G. Memik, M. H. Chowdhury, A. Mallik, and Y. I. Ismail, “En-
gineering over-clocking: Reliability-performance trade-offs for
high-performance register files,” in Proc. Int. Conf. Depend. Syst.
Netw. (DSN), 2005, pp. 770–779.

[33] K. C. Yager, “The MIPS R10000 superscalar microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28–40, Apr. 1996.

[34] D. R. Lutz and D. N. Jayasimha, “Early zero detection,” in Proc. Int.
Conf. Comput. Des. (ICCD), 1996, pp. 545–550.

[35] M. S. Hrishikesh, D. Burger, S. W. Keckler, P. emkishore Shivakumar,
N. P. Jouppi, and K. I. Farkas, “The optimal logic depth per pipeline
stage is 6 to 8 fo4 inver ter delays,” in Proc. 29th Annu. Int. Symp.
Comput. Arch., May 2002, pp. 14–24.

[36] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proc. 36th Annu.
IEEE/ACM Int. Symp. Microarch., Dec. 2003, pp. 29–40.

[37] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing architectural vulnerability factors for
address-based structures,” in Proc. 32nd Annu. Int. Symp. Comput.
Arch. (ISCA), 2005, pp. 532–543.

[38] J. A. Butts and G. Sohi, “Dynamic dead-instruction detection and elim-
ination,” in Proc. 10th Int. Conf. Arch. Support for Program. Lang. Op-
erat. Syst. (ASPLOS-X), 2002, pp. 199–210.

[39] D. Burger and T. M. Austin, “The Simplescalar tool set, Version 2.0,”
Comput. Sci. Dept. Univ. Wisconsin-Madison, Tech. Rep. 1342, 1997.

[40] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. ASPLOS X, Oct.
2002, pp. 45–57.

[41] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for ar-
chitectural-level power analysis and optimizations,” in Proc. Int. Symp.
High-Perform. Comput. Arch., 2000, pp. 83–94.

[42] R. Phelan, “Addressing soft errors in arm core-based SOC,” ARM Ltd.,
ARM White Paper, Dec. 2003.

[43] G. S. S. J. Adam Butts, “Use-based register caching with decoupled
indexing,” in Proc. 31st Annu. Int. Symp. Comput. Arch. (ISCA), 2004,
pp. 302–313.

Jie Hu (S’02–M’04) received the B.E. degree in com-
puter science and engineering from Beijing Univer-
sity of Aeronautics and Astronautics, Beijing, China,
in 1997, the M.E. degree in signal and information
processing from Peking University, Beijing, China,
in 2000, and the Ph.D. degree in computer science
and engineering from the Pennsylvania State Univer-
sity, University Park, in 2004.

He has been an Assistant Professor with the Elec-
trical and Computer Engineering Department, New
Jersey Institute of Technology, Newark, since 2004.

His research interests include the areas of computer architecture, power-aware
systems design, power-efficient memory hierarchy, high-performance micro-
processors, complexity-effective processor microarchitecture, power-efficient
reliable systems, compiler optimizations for performance and power consump-
tion, and reconfigurable computing architecture.

Shuai Wang (S’07) received the B.S. degree in
computer science from Nanjing University, Nanjing,
China, in 2003. He is currently pursuing the Ph.D.
degree in electrical and computer engineering from
the New Jersey Institute of Technology, Newark.

He is a member of the Computer Architecture
and Parallel Processing Lab (CAPPL), New Jersey
Institute of Technology. His research interests in-
clude power/thermal-aware systems design, reliable
circuits and systems, reconfigurable computing
architectures, and embedded systems.

Sotirios G. Ziavras (S’83–M’90–SM’96) received
the Diploma in electrical engineering from the
National Technical University of Athens, Athens,
Greece, in 1984, the M.Sc. degree in computer engi-
neering from Ohio University, Athens, in 1985, and
the D.Sc. degree in computer science from George
Washington University, Washington, DC, in 1990.

He was a Distinguished Graduate Teaching
Assistant with George Washington University. He
carried out research in supercomputing for computer
vision at the Center for Automation Research in the

University of Maryland, College Park, from 1988 to 1989. He was a visiting
Assistant Professor at George Mason University in Spring 1990. He is currently
a Professor with the Electrical and Computer Engineering (ECE) Department,
New Jersey Institute of Technology, Newark, and also the ECE Associate
Chair for Graduate Studies. He has authored about 140 research papers. He
is listed, among others, in Who’s Who in Science and Engineering, Who’s
Who in America, Who’s Who in the World, and Who’s Who in the East. His
main research interests include advanced computer architecture, reconfigurable
computing, embedded computing systems, parallel and distributed computer
architectures and algorithms, and network router design.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:40 UTC from IEEE Xplore. Restrictions apply.

