
On the Characterization and Optimization of
On-Chip Cache Reliability against Soft Errors

Shuai Wang, Student Member, IEEE, Jie Hu, Member, IEEE, and

Sotirios G. Ziavras, Senior Member, IEEE

Abstract—Soft errors induced by energetic particle strikes in on-chip cache memories have become an increasing challenge in

designing new generation reliable microprocessors. Previous efforts have exploited information redundancy via parity/ECC codings or

cacheline duplication for information integrity in on-chip cache memories. Due to various performance, area/size, and energy

constraints in various target systems, many existing unoptimized protection schemes may eventually prove significantly inadequate

and ineffective. In this paper, we propose a new framework for conducting comprehensive studies and characterization on the

reliability behavior of cache memories, in order to provide insight into cache vulnerability to soft errors as well as design guidance to

architects for highly efficient reliable on-chip cache memory design. Our work is based on the development of new lifetime models for

data and tag arrays residing in both the data and instruction caches. Those models facilitate the characterization of cache vulnerability

of stored items at various lifetime phases. We then exemplify this design methodology by proposing reliability schemes targeting at

specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of our approach.

Index Terms—Cache, reliability, soft error, temporal vulnerability factor.

Ç

1 INTRODUCTION

WITH continuous technology scaling down, micropro-
cessors are becoming more susceptible to soft errors

induced by energetic particle strikes, such as high-energy
neutrons from cosmic rays, and alpha particles from decay-
ing radioactive impurities in packaging and interconnect
materials [2], [3]. Due to their large share of the transistor
budget and die area, on-chip caches suffer from an increasing
vulnerability to soft errors [4]. As a critical requirement for
reliable computing [5], protecting the information integrity
in cache memories has captured a wealth of research efforts
[5], [6], [7], [8], [9], [10], [11], [12], [13].

Information redundancy is fundamental to building
reliable memory structures. Various coding schemes are
used to protect information integrity in latches, register files,
and on-chip caches, providing different levels of reliability at
different performance, energy, and hardware costs. For
example, simple parity coding is capable of detecting the
odd number of bit errors but is not able to recover from
detected errors. On the other hand, error-correcting codes
(ECCs) typically provide single error correction and double
error detection (SEC-DED). However, the performance
overhead and additional energy consumption due to ECC
encoding/decoding make ECC a reluctant choice for high-
speed on-chip caches, i.e., L1 data cache and L1 instruction
cache [5]. Another form of information redundancy is to
maintain redundant copies of the data in cache memories [6],
[14]. In these schemes, cachelines are duplicated when they

are brought to L1 caches on read/write misses or on write
operations. During a cache write (store), the replicas should
also be updated with the latest value. On a cache read (load)
operation, multiple copies may need to be read out and
compared against each other to verify the absence of soft
errors or to perform majority voting. Note that maintaining
redundant copies of cachelines presents great challenges to
the bandwidth and power dissipation of the caches [5], [14].

Despite the fact that most of the previous works have
studied trade-offs between performance, energy consump-
tion, area overheads, and the achieved cache reliability for
their proposed schemes, a more systematic study of cache
vulnerability is still needed. Such a study could provide
enough insight into cache reliability behavior, which the
designer could take advantage of to design highly cost-
effective reliable caches. Recent papers [8], [9], [10], [1], [15],
[16] present some initial efforts toward such a cache
vulnerability analysis. However, their cacheline- or word-
based vulnerability characterization used some simple
generation model [17] that could not explore the temporal
vulnerability of the cache, i.e., how different lifetime phases
of the cache data contribute to vulnerability. This temporal
information is of critical importance in determining which
data in the cache should be protected at what time with which
protection schemes, in order to achieve high reliability. In this
paper, we target at providing such a bridge from perception
to practice in designing reliable caches.

For the aforementioned purpose, we develop a detailed
lifetime model for the data arrays in the L1 data and
instruction caches, as the first step, to capture all possible
activities that could involve these data items. A data item
under consideration can be at various granularities such as
cacheline, subblock, word, half word, byte, or even bit. In
the data cache, the new lifetime model distinguishes among
nine lifetime phases for each data item according to the
previous activity and the current one, and further cate-
gorizes them into two groups, vulnerable and nonvulnerable

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009 1171

. The authors are with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, University Heights,
Newark, NJ 07102. E-mail: {sw63, jhu, ziavras}@njit.edu.

Manuscript received 29 May 2008; revised 5 Jan. 2009; accepted 15 Jan. 2009;
published online 11 Feb. 2009.
Recommended for acceptance by D. Gizopoulos.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-05-0241.
Digital Object Identifier no. 10.1109/TC.2009.33.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

phases. A vulnerable phase is characterized by the fact that
any error that occurs during this phase has the potential to
propagate either to the CPU (by load operations) or to the
L2 cache (via a dirty line writeback). We define the cache
temporal vulnerability factor (TVF) as the percentage of
data items present in vulnerable phases over all possible
data items that the cache can hold, an average along the
time axis. Therefore, the temporal vulnerability factor
indicates how reliable the cache is. A smaller value of
TVF implies that the cache is more resilient to soft errors.

To derive highly cost-effective reliability schemes for on-
chip cache memories, we propose a new design methodol-
ogy driven by TVF characterization and analysis. First, we
perform a cacheline-based TVF analysis on the entire data
array. The results show that the vulnerable phase write-
replace (WPL, the lifetime phase between the last write and
the replacement without any read in between) contributes
the most to TVF in the data cache. A writethrough data
cache can effectively eliminate this phase by immediately
writing back the data to the L2 cache after a store
operation. However, the excessive accesses to the L2 cache
degrade the performance and increase the energy con-
sumption. An alternative to solve this problem is to early
writeback dirty lines, such as the deadtime-based early
writeback (DTEWB) scheme in [7]. Our further analysis
indicated that this cacheline-based analysis cannot fully
capture the nature of CPU accesses to the data cache. Since
the unit size for data cache accesses is the byte, different
bytes in the same cacheline may be in different lifetime
phases at any given time, e.g., some bytes in a dirty
cacheline may be in the clean state. Treating all the bytes in
a cacheline equally may lead to inaccurate calculation of
the cache TVF. We conclude that fine-grain (e.g., byte-
based) lifetime models should be considered for more
accurate TVF characterization. Based on the byte-level
analysis, we also propose the multiple-dirty-bits (MDBs)
scheme to further reduce the WPL vulnerable phase as well
as the energy consumption during the writeback.

After WPL optimization, the vulnerable phase read-read
(RR, the lifetime phase between two consecutive reads of a
clean data item) with the potential to propagate errors to the
CPU raises as another major part in the vulnerability factor of
the data cache. Our study shows that a 87.8 percent majority
of RRs have a short time interval (<¼ 0.5K cycles) and
account for only 15.5 percent of the overall RR vulnerable
intervals. Based on this observation, we propose a clean
cacheline invalidation (CCI) scheme to invalidate clean lines
after being idle for a certain period of time. Note that this
scheme may result in performance loss when the invalidated
cachelines are accessed lately by the CPU. However, by
carefully choosing the invalidation interval, we can keep the
induced performance overhead to a minimum. Our further
analysis on data items in cachelines shows that a significant
portion of stored data is narrow-width data, which complies
with previous research findings [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28]. In this work, we propose to integrate
a narrow-width value compression (NWVC) scheme with the
lifetime models for further reducing the WPL, RR, and other
vulnerable phases. The Combined scheme with DTEWB, MDB,
CCI, and NWVC achieves a significantly reduced TVF of
3.5 percent compared to the original 39.2 percent of the data
array in the data cache at a minor performance loss of
0.7 percent.

Being different from the data cache, the instruction cache
is read-only (from the datapath side) and this read-only
activity dramatically simplifies the lifetime model for the
data array in the instruction cache. In this lifetime model, RR
is the only vulnerable phase. To optimize this RR phase, we
first exploit the CCI scheme, similarly to the data cache.
However, the experimental results show that the perfor-
mance loss due to the instruction cache CCI is much higher
than for the data cache CCI. This is mainly because of the
high pipeline stall penalty due to increased instruction cache
misses incurred by the CCI scheme. To reduce the
performance overhead, we propose a variation of the
cacheline scrubbing (CS) scheme to scrub idle clean lines
from the L2 cache. While reducing the RR phase without
significantly impacting the performance, the scrubbing
scheme dramatically increases the accesses to the L2 cache.
Consequently, we further propose to combine the CCI and
CS schemes to optimize the RR phase while minimizing the
performance and energy overheads. Our evaluation results
show that the CS-CCI scheme effectively reduces the TVF of
the instruction cache data array from 19.9 to 5.3 percent at a
0.9 percent performance loss and a 29 percent energy
increase in the L2 cache.

Previous work [29] has studied the fault behavior of
content-addressable memory (CAM) tags and provided
single-error-tolerant solutions to protect them. A functional-
level design framework was also proposed in [30] for
implementing a fault-tolerant/self-checking CAM architec-
ture, with a focus on CAM cell designs. To provide a
comprehensive view of cache reliability, we also strive to
study the reliability behavior in the tag array for both the
data and instruction caches. During an access to a set-
associative cache, all tags in the same set are read out and
compared simultaneously with the tag in the CPU-issued
address, which puts the tags of valid cachelines into a
vulnerable phase. However, if a single-bit error is assumed,
Hamming-distance-one analysis (HDO) [31] can be em-
ployed to dramatically reduce the TVF of the tag array. We
develop a new lifetime model for the tag array to extend the
Hamming-distance-one analysis. Furthermore, we study
the effect of the early writeback and clean cacheline
invalidation schemes on optimizing the TVF of the tag
arrays. In summary, the tag array TVF is reduced to 7.72
and 0.08 percent for the data and instruction caches from
their original 46.7 and 0.3 percent, respectively.

The rest of the paper is organized as follows: The next
section describes our experimental setup. In Section 3, we
introduce our lifetime model of the data array in the data
cache. Then, we propose and evaluate several schemes to
reduce its TVF. In Section 4, we analyze the data array
vulnerability to soft errors in the instruction cache and
propose our improving schemes. The study of the tag array
in the data and instruction caches is conducted in Section 5.
Section 6 concludes this work.

2 EXPERIMENTAL SETUP

We derive our simulator from SimpleScalar V3.0 [32] to
model a contemporary high-performance microprocessor
similar to Alpha 21364. In the new simulator, the original
RUU (register update unit) structure is replaced by a
separated integer issue queue, a floating-point issue queue,
an integer register file, a floating-point register file, and an

1172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

active list (a.k.a. the reorder buffer). An MIPS R10000 style
register renaming scheme is adopted in our implementa-
tion. Table 1 gives the detailed configuration of the
simulated microprocessor. Cacti 3.2 [33] is used for energy
profiling (at 70 nm technology) during the simulation.

For experimental evaluation, we use the SPEC CPU2000
benchmark suite [34] compiled for the Alpha instruction
set architecture using the “-arch ev6-non_shared” option
with “peak” tuning. We use the reference input sets for
this study. Each benchmark is first fast-forwarded to its
early single simulation point (gap and ammp use the
standard single simulation point instead of the very large
early single simulation point) specified by SimPoint [35].
We use the last 100 million instructions during the fast-
forwarding phase to warm up the caches if the number of
skipped instructions is more than 100 million. Then, we
simulate the next 100 million instructions in detail.

3 TEMPORAL VULNERABILITY FACTOR

OF THE DATA ARRAY IN DATA CACHES

3.1 A General Lifetime Model of the Data Array

In this section, we introduce our detailed lifetime model of
the data array for the purpose of vulnerability characteriza-
tion. A cacheline is first brought into the L1 data cache on a
read or write miss. The cacheline will be accessed at most a
couple of times, either by reads or writes, and then may wait
for a long time before being replaced [17]. Such a cacheline
generation information can be exploited for cache leakage
optimization [17]. However, it is not sufficient for reliability
analysis. Note that not all of the soft errors that occur in the
data cache will result in a failure. If errors occur in the data
field of invalid cachelines, they are simply masked off by the
invalid bits and have no impact on the correctness of the
execution. Errors occurring in the data field of clean
cachelines after the last read are similarly masked off by the
dirty bit (¼ 0), and therefore, are discarded at replacement.

Other errors may be overwritten by subsequent writes before
a CPU read or a writeback to the L2 cache, thus presenting no
harm to reliability. In our new model, the lifetime of a data
item, e.g., a cacheline, is divided into the following phases:

. WRR: lifetime phase between two consecutive reads
of a dirty data item;

. RR: lifetime phase between two consecutive reads of
a clean data item;

. WR: lifetime phase between a write and its first read;

. WPL: lifetime phase between the last write and the
replacement without any read in between;

. WRPL: lifetime phase between the last read and the
replacement of a dirty data item;

. RPL: lifetime phase between the last read and the
replacement of a clean data item;

. RW: lifetime phase between the write and the last
read before the write;

. WW: lifetime phase between two consecutive writes
without any read in between;

. Invalid: lifetime phase when the data item is in the
invalid state.

Fig. 1 shows the correlation among these lifetime phases
for typical data cache activities. In this paper, we define a
vulnerable phase as a lifetime phase in which errors may
propagate out of the cache, either to the CPU or to the lower
level memory hierarchy, i.e., L2 caches. Clearly, the first five
phases, WRR, RR, WR, WPL, and WRPL, are vulnerable because
errors that occur in phases WRR, RR, or WR will have the
opportunity to be read by the CPU and errors that occur in
phases WPL or WRPL will have the opportunity to propagate
to the L2 cache. RPL and Invalid are nonvulnerable phases
since errors that occur during these two phases will be
discarded or ignored. However, phases RW and WW present
different vulnerability behavior for data items at different
granularities. If the data item is a byte, RW and WW are
nonvulnerable phases. Otherwise, RW and WW are potential
vulnerable phases. We elaborate the vulnerability character-
istics of RW and WW in the following section.

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1173

TABLE 1
Parameters of the Simulated Processor

Fig. 1. The lifetime of a cacheline with respect to various access

activities.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

3.2 TVF

The cache TVF introduced in this work is defined as the
average rate of data items in vulnerable phases over the total
data items that the cache can accommodate along the
timeline. TVF can be calculated as follows:

TV FCache ¼
Pn

i ðdata itemi �
P

j vul phasejÞP
ðdata item � Exec TimeÞ ; ð1Þ

where data itemi can be a cacheline, a word, or a byte,
vul phasej is the time of jth vulnerable phase of data itemi,
andExec Time is the total time simulated for the benchmark.

We use the vulnerability factor to evaluate the reliability
of the data cache. If the data cache has a high vulnerability
factor, it has more data items in the vulnerable phases during
the execution, and hence, is more vulnerable to soft errors.
Therefore, a main objective in designing a reliable data cache
is to reduce its vulnerability factor. Note that the TVF is
different from the architectural vulnerability factor (AVF)
[36] of the data cache. Since soft errors induced during the
vulnerable phases in the data cache only present the
potential to crash the execution or the lower memory
hierarchies, TVF defines the upper bound on AVF and can
be estimated more accurately than AVF. Further, TVF is also
different from the critical time [15] in that the critical time is
calculated based on the word-level vulnerability analysis
while TVF is derived from a flexible lifetime model for
detailed vulnerability analysis at various granularities, e.g., a
cacheline, a word, or a byte.

3.3 Data Array Vulnerability Characterization

In this section, we perform both cacheline-based and byte-
based vulnerability characterization and analyze the
deficiency of the cacheline-based scheme.

3.3.1 A Cacheline-Based Characterization

In conventional cache designs, each cacheline is associated
with a dirty bit indicating whether it is a clean line or a dirty
one. The dirty bit is set once the cacheline is written by the
CPU. In writeback caches, the dirty cacheline is written back
to the lower level caches upon replacement, as a single unit.
Thus, it is very straightforward to perform data cache
vulnerability analysis based on the cacheline lifetime
information [8]. Applying our lifetime model, the data item
here will be a cacheline. Obviously, the initial phase of all
cachelines in the data cache is Invalid. Upon different CPU
access activities, the cachelines enter different phases, i.e.,RR,
RW, WW, WR, WRR, RPL, WPL, or WRPL, at different time points.

We first analyze the impact of the cacheline size on the
lifetime distribution, and thus, the vulnerability factor of the
data array. Fig. 2 shows the distribution of the cacheline
lifetime under three cacheline sizes, namely, 64, 32, and
16 bytes. For line-based lifetime analysis, previous research
[8] considered onlyWRR,RR,WR,WPL, andWRPL (phase names
here may be different from [8]) as vulnerable and all other
phases as nonvulnerable. However, this is not accurate. As
discussed in Section 3.1, the other two phases, RW and WW,

have the potential to propagate errors to either the CPU side
or the L2 caches. A scenario involving such an error
propagation to L2 caches is illustrated in Fig. 3. If errors hit
the clean bytes of a cacheline before a write updates other
bytes, the error-corrupted clean bytes may also be written
back to the L2 cache at a later replacement. However, if the

1174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 2. The lifetime distribution of the data array in the data cache with

cacheline sizes of 64, 32, and 16 bytes. (a) 64-byte cacheline. (b) 32-byte

cacheline. (c) 16-byte cacheline.

Fig. 3. A scenario of cache accesses and error occurrences that

contribute RW or WW to vulnerable phases.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

erroneous clean bytes are overwritten by subsequent writes
before CPU reads or a writeback operation to L2 caches, they
present no harm to the correctness of program execution.
Thus, we classify RW and WW as potential vulnerable phases.

Although the temporal vulnerability factor decreases as
the cacheline size is reduced from 64 to 16 bytes, as shown in
Fig. 2, the improvement is not significant. The TVF values for
the data cache with 64, 32, and 16-bytes cachelines are
39.2 percent, 37.3 percent, and 36.3 percent, respectively.
Moreover, if we simply reduce the cacheline size, the
performance normally degrades because of the spatial
locality property. For the default line size (64 bytes), Fig. 2a
shows that the vulnerable phases account for about 39.2 per-
cent of a cacheline’s lifetime, among which, WPL and RR

contribute about 19.3 percent and 9.3 percent, respectively.
The two potential vulnerable phases RW and WW together

account for 3.2 percent. The only truly nonvulnerable phases
of the cacheline are RPL and Invalid. Note that Unknown
represents a phase where the state cannot be determined
because of the limited simulation time. RPL represents the
largest part in the lifetime, around 54.3 percent, which is
nonvulnerable. Therefore, to improve cache reliability, we
should attempt to reduce the time spent by a cacheline in the
WPL and RR phases.

3.3.2 Vulnerability Characterization at Fine Granularities

Since the unit size for CPU data accesses is in the byte, a
write operation does not update the entire cacheline. This
characteristic of the data cache accesses results in different
bytes in the same cacheline in different phases during the
execution. For example, in a clean cacheline, if a byte write
operation occurs, it will only update a particular byte in that
cacheline and bring the entire cacheline to the dirty state.
However, there is only one byte in the dirty state after the
write, while others may still be in the clean state. Therefore,
it is not accurate and efficient to assume that these clean
bytes in a dirty cacheline are actually in the dirty state.
Another problem with the line-based characterization is the
inaccuracy in RW and WW profiling, as illustrated in Fig. 3.
For more accurate data cache vulnerability characterization,
we perform lifetime analysis while scaling down the data
item granularity to a word (8-byte) or a byte. Each data item
can only be in one particular phase at a given time.

Figs. 4a and 4b show the lifetime distribution based on
word-level and byte-level characterization. The TVF based on
word-level characterization is 25.7 percent, compared to
39.2 percent for cacheline-level analysis. This TVF value is
further reduced to 19.9 percent for byte-based characteriza-
tion, as shown in Fig. 4c. It is important to note that there is no
potential vulnerable phase in the byte-based lifetime model.
RW and WW are then true nonvulnerable phases as any error
that occurred in a particular byte should be cleaned/over-
written by the subsequent write to the same byte. However, in
the word-based lifetime model, RW and WW still contribute to
potential vulnerable phases because of the same reason as for
the cacheline-based model. Table 2 summarizes the compar-
ison of the results by using different granularities for
vulnerability characterization.

3.4 The Impact of Different Cache Write Policies

3.4.1 Writethrough versus Writeback

From our cacheline-based lifetime model, phase WPL alone
contributes about 19.3 percent toward the 39.2 percent
temporal vulnerability factor of the data array. A straight-
forward solution to reduce the WPL phase is to use a
writethrough cache, where a write operation updates both
L1 data cache and L2 cache. In a writethrough cache, phase
WPL is effectively converted to the nonvulnerable phase RPL.

However, besides reliability, performance and energy
consumption are also key factors to consider in processor

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1175

Fig. 4. The lifetime distribution of the data array in the data cache for fine

granularity data items, word and byte (a) 64-bit word (b) 8-bit byte (c) An

average of lifetime distribution.

TABLE 2
The Comparison of Vulnerability Characterization at

Different Granularities

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

design. In general, the writethrough cache needs to update
the L2 cache with every write to the L1 data cache. We
performed a similar study as in [14], [8]. Fig. 5a compares
the performance of writethrough and writeback caches. We
implement the writethrough cache with an eight-entry
write buffer in order to alleviate the high pressure on the
bandwidth and to reduce the write stalls. We find that for
the simulated benchmarks, a writethrough cache incurs a
performance loss of 3.8 percent as compared to a writeback
data cache. Furthermore, Fig. 5b shows that the energy
consumption in the L2 cache is more than doubled if the
L1 data cache changes its policy from writeback to
writethrough. Therefore, for applications that require high
performance and low energy consumption, the writeback
cache is still preferable.

3.4.2 MDB Data Cache

From the results of line-based and byte-based vulnerability
analysis, a major contributor to the TVF in a writeback
cache is phase WPL. Based on the same idea as for the byte-
level lifetime model, we find that if the clean bytes in a dirty
cacheline are not written back to lower level caches during a
replacement, any error occurring in clean bytes will be
simply discarded. Thus, the WPL phase can be reduced as
well as other vulnerable phases, as shown in Fig. 4b. To
achieve a similar TVF with the byte-level lifetime model, we
propose an MDB scheme.

In conventional data caches, there is only one dirty bit per
cacheline, which prevents us from identifying whether a
particular byte is dirty or not. In our MDB cache, we provide
each byte with a dirty bit and update these dirty bits
according to the read and write operations. For example,
when the CPU writes an 8-byte word to the data cache, the
eight dirty bits associated with that word in a particular
cacheline are set to one. When a dirty line is to be replaced,
the dirty bits control which bytes should be written back to
the L2 cache. Furthermore, by writing back only dirty bytes
in a dirty cacheline, the cache energy consumption can also
be reduced, due to reduced energy in data transfer bus and
the L2 cache [37]. Notice that the dirty bit of a dirty byte is
vulnerable, because if it flips to zero, the dirty byte will not be
written back to the L2 cache at replacement time. However,
the dirty bit of a clean byte is not vulnerable (when a single-
bit error is assumed), because if a soft error flips that dirty bit,
it will only cause the clean byte to be written back.

Although the MDB scheme may incur an area overhead
similar to that of providing a parity bit for each byte, our
scheme has a negligible performance overhead. If the die
area is highly constrained, we can relax the requirement by
using a dirty bit per each word. As the comparison shown
in Table 2, the vulnerability factor is slightly increased to
25.7 percent if we associate one dirty bit for each word
(8 bytes). On the other hand, the area overhead is reduced
to one-eighth of the byte-level dirty bit scheme. Fig. 6 also
shows the energy savings of 50.6 percent and 32.5 percent,
in the writeback when applying the byte-level and word-
level MDB schemes, respectively.

3.4.3 Dead-Time-Based Early Writeback (DTEWB)

Previous work [7], [8] proposed early writeback schemes to
reduce the vulnerable WPL phase while avoiding a dramatic
increase in the accesses to the L2 cache. Early writeback
schemes can be either LRU-based or dead-time-based [8]. A
major design issue in the early writeback scheme is to
decide when to perform the writeback in order to reduce
the WPL phase as well as the accesses to the L2 cache.

The dead-time-based early writeback (DTEWB) scheme
[8] could be a solution. We conducted a study based on
different dead times. Fig. 7a shows that the dynamic energy
consumption in the L2 cache decreases when the dead time
(the idle time interval for dead prediction) increases from
500 to 4K cycles, on comparing with writethrough and

1176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 5 (a) The comparison of IPCs between writethrough and writeback

caches, and (b) the comparison of dynamic energy consumption in the

L2 cache for writethrough and writeback data caches.

Fig. 6. The energy savings in cache writeback when applying the MDB

scheme at various granularities.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

writeback caches without DTEWB scheme. Fig. 7b shows
how different dead times affect the vulnerable WPL phase.
From these two figures, DTEWB with 2K or 4K cycles can be
good choices, which can dramatically reduce the vulnerable
phase WPL to 0.8 percent or 1.4 percent, at an increase of the
energy consumption of 59 percent or 37 percent in the
L2 cache over the conventional writeback scheme. Notice
that from our simulation results, the DTEWB scheme has a
negligible performance overhead compared to the write-
back cache.

3.5 CCI

In the data array of the data cache, the RR phase, which is
the time between two reads in a clean cacheline, con-
tributes the second largest share to the vulnerability factor.
This share becomes even dominant once the DTEWB
scheme is employed, making the RR optimization of critical
importance to achieving further improvement of TVF.

The basic idea for RR optimization is to reduce the time
that a clean data item, i.e., a cacheline, resides in the data
cache by invalidating the cleanlines after being idle for
some predefined intervals. Notice that if the clean cache-
line is accessed subsequently, additional performance
overhead incurs due to the additional cache misses as
well as the energy overhead. However, if there is no
subsequent access, this invalidation does not cause any
performance loss and neither reduces the RR time. Thus,
there is a clear trade-off between the improved TVF and

the performance degradation. The key is to locate such an
idle interval for RR such that the RR time reduction can be
maximized while the performance loss is minimized.

As shown in Fig. 8a, we profiled the number of instances
with two consecutive reads to the clean cachelines based on
the time interval between the two reads. The figure shows
the cumulative distribution and clearly indicates that most
read-read instances, around 87.8 percent (or 93.1 percent) of
them, have an interval less than 500 (or 1,000) cycles.
However, our results also show that a small number of

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1177

Fig. 7. (a) The comparison of dynamic energy consumption in the

L2 cache at different dead times (b) WPL rates at different dead times.

Fig. 8. (a) Cumulative distribution of the time intervals between two reads
in clean cachelines, (b) the IPC comparison of different invalidation
intervals, and (c) the RR phase comparison of different invalidation
intervals. (ORG is the conventional data cache without the invalidation
scheme.)

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

read-read instances with intervals (>¼ 1;000 cycles) dom-
inate the overall RR time, 84.5 percent on the average. The
profile results convince us that a scheme capturing only
long read-read instances should be able to substantially
reduce RR time while keeping the performance loss to a
minimum. Our experimental results in Figs. 8b and 8c show
that 4K cycles is a good choice for this cleanline invalida-
tion. The performance loss is only 0.7 percent and the RR

phase is reduced from 9.3 percent to 2.6 percent.

3.6 Narrow-Width Value Compression (NWVC)

We also observed that value awareness can be exploited for
reliability enhancement [23], [24]. Narrow width as one
form of value awareness has been exploited for energy and
performance optimization [18], [19], [20], [21], [22], [25], [26],
[27], [28]. In [23], [24], narrow-width values are duplicated
in the register file and the data cache, thus improving their
reliability with both error detection and recovery capabil-
ities via information redundancy. Different from these
duplication approaches, we explore lifetime-model-driven
reliability optimization through narrow-width value com-
pression (NWVC), which is adopted from the narrow value
identification schemes in [24]. NWVC uses additional
narrow tag bits to mask leading zeros in a narrow-width
value. The narrow tag bit masking can be applied at
different granularities, for each 8-bit (byte), 16-bit, 32-bit, or
64-bit (word) data item. For instance, byte-level masking
sets the narrow tag bit to one if the corresponding byte
contains all zeros. Otherwise, the tag bit is reset to zero.
When the data in the cacheline is accessed, the narrow tag
bits are checked. If the tag bit is one, it means that the
corresponding byte contains all zeros. If any error occurred
in this byte, it is simply masked off by the narrow tag bit.
Therefore, all the bits in the zero byte are converted into a
nonvulnerable state, leading to lower TVF. Moreover, the
energy consumption in the data cache can be also reduced
with NWVC schemes [38], [39] since reading all-zero bytes
can be avoided. Fig. 9 shows the percentage of narrow-
width values in L1 data cache at different granularities. For
the byte, 16-bit, 32-bit, and word-level narrow tag scheme,
the percentage of narrow values is 43.8 percent, 37.0 percent,
25.5 percent, and 17.7 percent, respectively, implying the
potential for TVF reduction at similar level. Notice that the
narrow tag bit of a nonzero item is vulnerable, because if it
flips to one, the nonzero item will be mistreated as zero.

However, the narrow tag bit of a zero item is nonvulnerable
if a single-bit error is assumed. This is because if the error
occurs in the tag bit, the zero item will be treated as a
regular value that is still zero, and will not be affected by
that single-bit error.

3.7 The Combined Scheme

With the above schemes each targeting at a particular aspect
in the lifetime model, we propose to evaluate the possibility
and effectiveness of combining the DTEWB, MDB, CCI, and
NWVC schemes so as to further improve the data array
reliability, i.e., reducing the TVF of the data array. In our
evaluation, we choose a 4K-cycle interval for both deadness
prediction and cleanline invalidation. We use a similar
implementation as in the cache decay scheme [17]. Each
cacheline maintains a 2-bit local counter which is ticked
every 1K cycles by a global counter. Both the dead-time-
based early writeback scheme [7], [8] and the clean
cacheline invalidation scheme use the same local counter.
The dirty bit of the cacheline controls whether a simple
invalidation or an early writeback should be performed
when the local counter saturates. Considering the hardware
and energy overheads, we choose the word-level tag bits for
both the MDB and NWVC schemes, which associate each
64-bit word with two tag bits. For the energy evaluation, all
additional tag bits are included. Fig. 10 presents the
temporal vulnerability factor, performance, and cache
energy consumption for data caches with and without the
combined scheme. By combining DTEWB, MDB, CCI, and
NWVC, we achieve a vulnerability factor as low as
3.5 percent, which significantly improves the data array
reliability in the data cache, at a small performance loss of
0.7 percent. The total dynamic energy consumption in
L1 data cache and L2 caches almost remains the same
because of the energy saving from the MDB and NWVC
schemes. Table 3 summarizes the overhead of our combined
scheme.

4 ANALYZING THE DATA ARRAY

OF THE INSTRUCTION CACHE

4.1 The Lifetime Model

The lifetime model of the data array in the instruction cache
is much simpler compared to that of the data cache, because
of the read-only property. There are only three phases in
this model: RR, RPL, and Invalid, with the same definition
as in the model for the data cache. The only vulnerable
phase in this model is RR, i.e., the time between two reads.

Unlike the data cache, all data items accessed in the
instruction cache are of the same size, which is the 32-bit
instruction in our simulated processor. Therefore, in a fine-
granularity characterization, the 32-bit based model is
accurate enough for the data array in the instruction cache.
Fig. 11 shows that the TVF of the data array in the instruction
cache is 19.9 percent and 16.2 percent for the cacheline-based
and 32-bit-based models, respectively. We notice the small
reduction in the vulnerability factor when applying 32-bit
characterization. This can be explained by the access
behavior in the instruction cache, which usually exploits
the spatial locality for sequential accesses to instructions in
the same cacheline.

1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 9. The percentage of narrow-width values in active cachelines at

different granularities.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

4.2 CCI Scheme for TVF Optimization

Since the RR phase is the only contributor to the TVF of the
instruction cache data array, the proposed clean cacheline
invalidation (CCI) scheme can be the option for TVF
optimization. We evaluate the CCI scheme for the instruction
cache with the invalidation interval ranging from 1K cycles to
16K cycles. The results shown in Fig. 12 indicate a clear trade-
off between TVF and performance. If a 1K-cycle interval is
used, though the TVF can be significantly reduced to
0.9 percent from the original 19.9 percent, the performance

overhead is also tremendous, 20 percent performance loss, on
the average. This extremely high performance loss is mainly
because of the high pipeline stall penalty due to increased
instruction cache misses incurred by the CCI scheme and is
not affordable in high-performance designs. On the other
hand, if a 16K-cycle interval is chosen, the performance loss is
well under 0.9 percent, while the TVF goes back to 8.0 percent.
Even with a 4K-cycle interval, CCI achieves a TVF of
4.1 percent at a performance loss of 5.8 percent. Therefore,
simply applying CCI to the instruction cache will not be as
effective as for the data cache. We seek solutions in next
section specifically to address the performance issue in the
CCI scheme for the instruction cache.

4.3 CS

An accessed cacheline in the instruction cache is very likely
to be accessed again due to the temporal locality property.
The CCI scheme, on the other hand, invalidates the
cacheline after it has been idle for a predefined time
interval and incurs performance loss due to an extra cache
miss if the line is to be reaccessed after the invalidation. To
avoid this performance loss while still optimizing the TVF,
we propose to consider cacheline scrubbing instead of
invalidation, i.e., a cache miss is triggered to refetch the
cacheline from the L2 cache. For this study, we assume that
the L2 cache is protected by some means of ECC coding,
and therefore, is error-free. To minimize the performance
overhead, the cache miss to refetch the cacheline can be
scheduled during cache idle cycles. Notice that our
scrubbing scheme is different from the schemes in [40],
[31], [41] that scrub the data by recomputing the ECC

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1179

TABLE 3
Overhead of the Combined Scheme

Fig. 11 The temporal vulnerability factor of the data array in the

instruction cache at different granularities of a cacheline or 32-bit data.

Fig. 10. The comparison between the data cache employing the

combined scheme and the conventional data cache for the (a) TVF,

(b) performance (IPC) impact, and (c) energy consumption in L1 data

cache and L2 cache.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

codes to eliminate single-bit errors based on a fixed
scrubbing interval.

Fig. 13a shows the TVF of the instruction data array
employing the CS scheme with different scrubbing intervals.
With a 4K-cycle scrubbing interval, the TVF is reduced to
5.5 percent. If the scrubbing interval increases to a larger
one, such as 32K cycles, the TVF also increases to
10.0 percent. Furthermore, if smaller intervals are chosen,
there will be a huge increase in the number of accesses to the
L2 cache. As shown in Fig. 13b, the energy consumption in
the L2 cache is 14.3 times that of the original one if the
instruction cache scrubs with a 4K-cycle interval. Even if the
interval increases to 32K cycles, the energy consumption in
the L2 cache still becomes 1.4 times that of the original one.
Once again, we are facing a reliability-energy trade-off.
Without a solution to this energy issue, cacheline scrubbing
may not be acceptable in energy-efficient designs.

4.4 The Combined (CS-CCI) Scheme

CCI benefits the most from capturing large RRs, while
cacheline scrubbing (CS) optimizes relatively small RRs
with negligible performance impact. To exploit the
strength of both CCI and CS, we propose to explore
combining CCI and CS for TVF optimization in the
instruction cache. In the proposed combined scheme, we
first scrub an idle cacheline after a small time interval. If
the cacheline continues to be idle for a long interval, we

invalidate it in order to prevent further (unnecessary)
scrubbing. From our simulation results, we choose a
4K-cycle interval for CS and a 16K-cycle interval for CCI.
The results in Fig. 12b show that the TVF of the CS-4K-
CCI-16K combined scheme is 5.3 percent compared to the
8.0 percent of the CCI-16K scheme. Further, the perfor-
mance of the CS-4K-CCI-16K scheme is almost the same as
for the CCI-16K scheme, which is within 0.9 percent of the
original scheme. Fig. 13b shows that the L2 cache energy
consumption of the CS-4K-CCI-16K scheme is about
1.29 times of that for the original scheme, as compared to
the 14.3 times for the CS-4K-only scheme.

5 TVF CHARACTERIZATION OF TAG ARRAYS

5.1 Tag Array of the Data Cache

5.1.1 Lifetime of the Tag Array

The lifetime model of the tag array is quite different from

that of the data array. This is because of the unique access

pattern in the tag array. In the data array, if a clean

cacheline is to be replaced, it is simply discarded, which

makes the RPL time nonvulnerable. However, the RPL time

of the tag array is still vulnerable. For example, during an

access to a set-associative cache, all tags of different ways in

the mapped set need to be read out and compared with the

1180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 12. (a) The IPC comparison at different invalidation intervals, and
(b) the TVF comparison at different invalidation intervals while applying
the CCI scheme to the instruction cache. (ORG is the conventional
instruction cache without CCI. CS-4K-CCI-16K is the combined
scheme with 4K-cycle CS interval and 16K-cycle CCI interval.)

Fig. 13. (a) The TVF comparison at different scrubbing intervals, and
(b) the comparison of the energy consumption increase rate in the
L2 cache at different scrubbing intervals. (ORG is the conventional
instruction cache without scrubbing. CS-4K-CCI-16K is the combined
scheme with 4K-cycle CS interval and 16K-cycle CCI interval.)

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

address tag field simultaneously. If one tag matches, the
current access hits the cache. Otherwise, a cache miss is
signaled. Thus, before a cacheline is selected as the
candidate for replacement during a cache miss, its tag has
been compared and the result is an unmatch. Now, if there
are errors in the tag, it is possible to cause a false match on
this cache access. Furthermore, there is no update operation
on the tag. Thus, the nonvulnerable phases RW and WW in the
data array are not suitable for the tag array.

5.1.2 False Hit and False Miss

If errors occur in the tag array, it may cause erroneous cache
hits or misses. However, false hit and false miss have
different impacts on TVF characterization. A false hit
happens when a tag struck by soft errors matches the tag
field of the address, which was supposed to be a cache miss.
On the other hand, a false miss happens when an error-
affected tag does not match the coming address tag, which
should be a cache hit. A false hit will cause an incorrect
execution by loading data from or updating a wrong
cacheline. However, a false miss causes an additional cache
miss, and thus, incurs performance loss. Its impact on TVF
depends on whether it is in a clean line or a dirty line, since
a false miss in a dirty cacheline will load stale data from the
L2 cache. In a writeback cache, if the tag of a dirty cacheline
is flipped by soft errors, the cacheline will be written back to
a wrong location in the L2 cache, which is likely to cause an
erroneous output.

5.1.3 Lifetime Model Based on the Extended

Hamming-Distance-One (HDO) Analysis

If a single-bit error is assumed, the false hit will happen
only when the tag has one single bit different from the
incoming address tag and this particular bit is flipped by
the soft error. We utilize the Hamming-distance-one
analysis [31] to track false hits and further extend this
HDO analysis method to characterize the TVF of the tag
array. Notice that if a tag entry (its original value) matches
an incoming address tag, any bit flipped by a soft error will
cause a false miss. For tag entries with multiple bits
different from the incoming tag, no false hit or false miss
will happen. Furthermore, only the single different bit in the
HDO tag entry is vulnerable for a clean cacheline. However,

in a writeback cache, all bits in the tag entry of a dirty

cacheline are vulnerable since either a false hit or a false

miss will load erroneous data or corrupt the L2 cache.
Based on extended HDO analysis, we propose to divide

the lifetime of the tag array in a writeback cache into six

phases: RH, FWPL, RHFW, HFW, HPL, and Invalid.

. RH: lifetime phase between the first read and the last
Hamming-distance-one (HDO) match of a clean
cacheline;

. FWPL: lifetime phase between the first write and the
replacement of a dirty cacheline;

. RHFW: lifetime phase between the first read and the
last HDO match before the first write of a dirty
cacheline;

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1181

Fig. 14. The tag lifetime of a cacheline in the writeback cache. (a) Clean

line. (b) Dirty line.

Fig. 15. The lifetime distribution for the tag array in the writeback data
cache at different granularities: (a) entry level and (b) bit level. (c) An
average for both entry level and bit level.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

. HFW: lifetime phase between the last HDO match and
the first write of a dirty cacheline;

. HPL: lifetime phase between the last HDO match and
the replacement of a clean cacheline;

. Invalid: lifetime phase in the invalid state.

Fig. 14 shows the correlation among the lifetime phases for
typical tag activities. The RH, FWPL, and RHFW phases are
vulnerable because errors occurring in the RH and RHFW

phases will cause false hits, and errors occurring in the FWPL
phase will cause incorrect writebacks to the L2 cache or
erroneous data load. Phases HFW, HPL, and Invalid are
nonvulnerable because errors occurring in theHFWphase will
only cause a false miss on the first write in a clean cacheline,
and errors occurring in the HPL phase will be discarded at
replacement. Fig. 15a shows the phase distribution of the tag
entry in a writeback data cache. About 14.4 percent of the tag
entry lifetime is in the RH phase. The FWPL phase contributes
about 31.7 percent. Phases RHFW and HFW together account
for 0.47 percent. Consequently, the TVF of the tag array is
around 46.7 percent.

However, to improve the accuracy, TVF characterization

based on the extended HDO analysis needs to be performed

at the bit level. The bit-level analysis results in Fig. 15b

show that the RH vulnerable phase is reduced to 0.76 percent

from 14.4 percent in the entry-level analysis (as shown in
Fig. 15a). Fig. 15c summarizes this comparison between
entry-level and bit-level phase distributions, an average for
all benchmarks. Notice that the FWPL vulnerable phase
remains the same because all the bits in the FWPL phase are
vulnerable. In the following study, we use the bit-level
analysis for TVF characterization.

In a writethrough cache, the FWPL phase is eliminated.
The lifetime of read-only cachelines in writethrough
caches is similar to that of the clean lines in writeback
caches. However, the lifetime of cachelines with write
operations in the writethrough cache is quite different
from that of the dirty lines in the writeback cache. In order
to illustrate this difference, we compare the TVF of the
cachelines with write operations in both the writethrough
and writeback data caches. Fig. 16 shows that the TVF of
the cachelines with write operations in the writethrough
cache is only 0.4 percent, as compared to 31.7 percent for
the writeback cache.

5.1.4 The Impact of DTEWB and CCI on the TVF

of the Data Cache Tag Array

The DTEWB and CCI schemes in the data array also help
reduce the TVF of the tag array. The DTEWB scheme will
reduce the FWPL phase of a tag entry in a writeback cache,
while the CCI scheme will reduce the RH phase. In order
to be consistent with the data array, we use the same
4K-cycle interval for both DTEWB and CCI in the tag
array study. Fig. 16 shows that the DTEWB scheme

1182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 16. The FWPL rate comparison for the tag array in writeback (WB),

writethrough (WT), and DTEWB caches.

Fig. 17. The RH rate comparison between the original and CCI schemes

in the data cache.

Fig. 18. The RH rate comparison between the original and CCI schemes

for the tag array in the instruction cache.

TABLE 4
Summary of Targeting Vulnerable Phases of

All Proposed Schemes

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

reduces the dirty line tag FWPL to 7.7 percent and Fig. 17
shows that the CCI scheme reduces the RH rate of the
clean line tags to 0.02 percent.

5.2 Tag Array of the Instruction Cache

The lifetime of the tag array in an instruction cache has only
three phases: RH, HPL, and Invalid, among which only
the RH phase contributes to TVF. Fig. 18 shows that the TVF
of the tag array in the instruction cache is only about
0.3 percent. Among the TVF reduction schemes for the data
array of the instruction cache, the CCI scheme can also help
reduce the TVF of the tag array. However, the CS scheme
does not have any noticeable improvement on TVF.
Therefore, we only consider the CCI scheme and conduct
a study on the CCI with the same 16K-cycle invalidation
interval as in the combined scheme for the data array. The
results in Fig. 18 show that the CCI scheme reduces the tag
array TVF to only 0.08 percent.

6 CONCLUSIONS

In this paper, we performed a detailed study on the cache
vulnerability to soft errors based on new lifetime models of
data and tag arrays in both the data and instruction caches.
This study identified major contributors (vulnerable phases)
to the cache vulnerability. It aims to provide insights into
cache vulnerability behavior as well as guidance in designing
highly cost-effective reliable caches. Driven by the results
from our TVF characterization, we proposed reliability
schemes targeting at specific vulnerable phases, which are
summarized in Tables 4 and 5. First, we studied the impact of
different data cache write policies, early writeback schemes,
and the proposed MDB scheme on reducing the vulnerable
WPL phase of dirty cachelines. We proposed a clean cacheline
invalidation (CCI) scheme to reduce the time when clean
cachelines stay in the vulnerable RR phase and studied the
narrow-width value compression (NWVC) scheme in redu-
cing the overall vulnerable phases. By combining the
DTEWB, MDB, CCI, and NWVC schemes, the data array in
the data cache attains a substantially improved reliability.
For the data array in an instruction cache, we proposed a
variation of the CS scheme to reduce its vulnerable phase.
Combined with the CCI scheme, the CS-CCI scheme achieves

a lower TVF with the minimized performance and energy

overheads. We also developed a new lifetime model for the

tag array based on extended Hamming-distance-one (HDO)

analysis. Our results with HDO analysis indicate that the tag

array has a potentially low TVF, except the writeback data

cache, and the DTEWB and CCI schemes can substantially

improve the reliability of the tag arrays in the cache.

REFERENCES

[1] S. Wang, J. Hu, and S.G. Ziavras, “On the Characterization of Data
Cache Vulnerability in High-Performance Embedded Micropro-
cessors,” Proc. Sixth Int’l Conf. Embedded Computer Systems:
Architectures, Modeling, and Simulation (IC-SAMOS 2006), pp. 14-
20, July 2006.

[2] J.F. Ziegler et al., “IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),” IBM J. Research and Development, vol. 40,
no. 1, pp. 3-18, Jan. 1996.

[3] C. Weaver et al., “Techniques to Reduce the Soft Errors Rate in a
High-Performance Microprocessor,” Proc. 31st Ann. Int’l Symp.
Computer Architecture, 2004.

[4] P. Shivakumar et al., “Modeling the Effect of Technology Trends
on the Soft Error Rate of Combinational Logic,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 389-398, June 2002.

[5] S. Kim and A. Somani, “Area Efficient Architectures for
Information Integrity Checking in Cache Memories,” Proc. Int’l
Symp. Computer Architecture, pp. 246-255, May 1999.

[6] R. Phelan, “Addressing Soft Errors in ARM Core-Based Soc,”
ARM white paper, ARM Ltd., Dec. 2003.

[7] L. Li et al., “Soft Error and Energy Consumption Interactions: A
Data Cache Perspective,” Proc. Int’l Symp. Low Power Electronics
and Design, pp. 132-137, 2004.

[8] W. Zhang, “Computing Cache Vulnerability to Transient Errors
and Its Implication,” Proc. 20th IEEE Int’l Symp. Defect and Fault
Tolerance in VLSI Systems, Oct. 2005.

[9] V. Sridharan, H. Asadi, M.B. Tahoori, and D. Kaeli, “Reducing
Data Cache Susceptibility to Soft Errors,” IEEE Trans. Dependable
and Secure Computing, vol. 3, no. 4, pp. 353-364, Oct.-Dec. 2006.

[10] H. Asadi, V. Sridharan, M.B. Tahoori, and D. Kaeli, “Vulnerability
Analysis of L2 Cache Elements to Single Event Upsets,” Proc. Conf.
Design, Automation, and Test in Europe, Mar. 2006.

[11] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J.C. Hoe, “Multi-Bit
Error Tolerant Caches Using Two-Dimensional Error Coding,”
Proc. 40th IEEE/ACM Int’l Symp. Microarchitecture, pp. 197-209,
Dec. 2007.

[12] N.N. Sadler and D.J. Sorin, “Choosing an Error Protection Scheme
for a Microprocessor L1 Data Cache,” Proc. Int’l Conf. Computer
Design, Oct. 2006.

[13] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M.J. Irwin,
“Soft Errors Issues in Low-Power Caches,” IEEE Trans. Very Large
Scale Integration Systems, vol. 13, no. 10, pp. 1157-1166, Oct. 2005.

WANG ET AL.: ON THE CHARACTERIZATION AND OPTIMIZATION OF ON-CHIP CACHE RELIABILITY AGAINST SOFT ERRORS 1183

TABLE 5
Comparison of All Proposed Schemes

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

[14] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubrama-
niam, “Icr: In-Cache Replication for Enhancing Data Cache
Reliability,” Proc. Int’l Conf. Dependable Systems and Networks, 2003.

[15] G. Asadi, V. Sridharan, M.B. Tahoori, and D. Kaeli, “Balancing
Reliability and Performance in the Memory Hierarchy,” Proc. IEEE
Int’l Symp. Performance Analysis of Systems and Software, Mar. 2005.

[16] J. Yan and W. Zhang, “Evaluating Instruction Cache Vulnerability
to Transient Errors,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 4, pp. 21-28, Sept. 2007.

[17] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power,” Proc.
Int’l Symp. Computer Architecture, 2001.

[18] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance,”
Proc. Fifth Int’l Symp. High Performance Computer Architecture, Jan.
1999.

[19] O. Ergin et al., “Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure,” Proc. 37th Ann.
Int’l Symp. Microarchitecture, pp. 304-315, 2004.

[20] G.H. Loh, “Exploiting Data-Width Locality to Increase Superscalar
Execution Bandwidth,” Proc. 35th Ann. IEEE/ACM Int’l Symp.
Microarchitecture, 2002.

[21] M.H. Lipasti et al., “Physical Register Inlining,” Proc. 31st Ann.
Int’l Symp. Computer Architecture, pp. 325-335, June 2004.

[22] S. Wang, H. Yang, J. Hu, and S.G. Ziavras, “Asymmetrically
Banked Value-Aware Register Files,” Proc. IEEE CS Ann. Symp.
Very Large Scale Integration, pp. 363-368, 2007.

[23] J. Hu, S. Wang, and S.G. Ziavras, “In-Register Duplication:
Exploiting Narrow-Width Value for Improving Register File
Reliability,” Proc. Int’l Conf. Dependable Systems and Networks,
pp. 281-290, June 2006.

[24] O. Ergin, O. Unsal, X. Vera, and A. Gonzalez, “Exploiting Narrow
Values for Soft Error Tolerance,” IEEE Computer Architecture
Letters, vol. 5, no. 2, p. 12, July-Dec. 2006.

[25] A. Aggarwal and M. Franklin, “Energy Efficient Asymmetrically
Ported Register Files,” Proc. IEEE Int’l Conf. Computer Design,
pp. 2-7, 2003.

[26] M. Kondo and H. Nakamura, “A Small, Fast and Low-Power
Register File by Bit-Partitioning,” Proc. 11th Int’l Symp. High-
Performance Computer Architecture, pp. 40-49, 2005.

[27] S. Wang, H. Yang, J. Hu, and S.G. Ziavras, “Asymmetrically
Banked Value-Aware Register Files for Low Energy and High
Performance,” Microprocessors and Microsystems, vol. 32, no. 3,
pp. 171-182, May 2008.

[28] O. Ergin, “Exploiting Narrow Values for Energy Efficiency in the
Register Files of Superscalar Microprocessors,” Proc. 16th Int’l
Workshop Power and Timing Modeling, Optimization and Simulation,
pp. 477-485, 2006.

[29] J.-C. Lo, “Fault-Tolerant Content Addressable Memory,” Proc.
1993 Int’l Conf. Computer Design, pp. 193-196, 1993.

[30] F. Salice, M. Sami, and R. Stefanelli, “Fault-Tolerant Cam
Architectures: A Design Framework,” Proc. 17th IEEE Int’l Symp.
Defect and Fault-Tolerance in VLSI Systems, pp. 233-244, 2002.

[31] A. Biswas et al., “Computing Architectural Vulnerability Factors
for Address-Based Structures,” Proc. IEEE Int’l Symp. Computer
Architecture, June 2005.

[32] D. Burger, A. Kagi, and M.S. Hrishikesh, “Memory Hierarchy
Extensions to Simplescalar 3.0,” Technical Report TR99-25, Dept.
of Computer Sciences, The Univ. of Texas at Austin, 2000.

[33] P. Shivakumar and N. Jouppi, “Cacti 3.0: An Integrated Cache
Timing, Power, and Area Model,” technical report, Compaq
Western Research Lab, 2001.

[34] Spec cpu2000 v1.3, http://www.spec.org/cpu2000/, 2009.
[35] T. Sherwood et al., “Automatically Characterizing Large Scale

Program Behavior,” Proc. 10th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[36] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, and T.
Austin, “A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,”
Proc. 36th Ann. IEEE/ACM Int’l Symp. Microarchitecture, Dec. 2003.

[37] P. Pujara and A. Aggarwal, “Increasing the Cache Efficiency by
Eliminating Noise,” Proc. 12th Int’l Symp. High-Performance
Computer Architecture, Feb. 2006.

[38] L. Villa, M. Zhang, and K. Asanovic, “Dynamic Zero Compression
for Cache Energy Reduction,” Proc. 33rd Ann. Int’l Symp.
Microarchitecture, pp. 214-220, 2000.

[39] N.S. Kim, T. Austin, and T. Mudge, “Low-Energy Data Cache
Using Sign Compression and Cache Line Bisection,” Proc. Work-
shop Memory Performance Issues, 2002.

[40] S.S. Mukherjee, J. Emer, T. Fossum, and S.K. Reinhardt, “Cache
Scrubbing in Microprocessors: Myth or Necessity,” Proc. 10th Int’l
Symp. Pacific Rim Dependable Computing, Mar. 2004.

[41] A.M. Saleh, J.J. Serrano, and J.H. Patel, “Reliability of Scrubbing
Recovery-Techniques for Memory Systems,” IEEE Trans. Relia-
bility, vol. 39, no. 1, pp. 114-122, Apr. 1990.

Shuai Wang received the BS degree in compu-
ter science from Nanjing University, China, in
2003. Currently, he is working toward the PhD
degree in the Department of Electrical and
Computer Engineering, New Jersey Institute of
Technology, and is a member of the Computer
Architecture and Parallel Processing Lab
(CAPPL). His research interests include power/
thermal-aware systems design, reliable circuits
and systems, reconfigurable computing archi-

tectures, and embedded systems. He is a student member of the IEEE.

Jie Hu received the BE degree in computer
science and engineering from Beijing University
of Aeronautics and Astronautics, China, in 1997,
the ME degree in signal and information
processing from Peking University, China, in
2000, and the PhD degree in computer science
and engineering from Pennsylvania State Uni-
versity up in 2004. Since 2004, he has been an
assistant professor in the Electrical and Com-
puter Engineering Department at New Jersey

Institute of Technology. His research interests are in the areas of
computer architecture, power-aware systems design, power-efficient
memory hierarchy, high-performance microprocessors, complexity-
effective processor microarchitecture, power-efficient reliable systems,
compiler optimizations for performance and power consumption, and
reconfigurable computing architecture. He is a member of the ACM, the
ACM SIGARCH, the IEEE, and the IEEE Computer Society.

Sotirios G. Ziavras received the diploma
degree in electrical engineering from the Na-
tional Technical University of Athens, Greece, in
1984, the MSc degree in computer engineering
from Ohio University in 1985, and the DSc
degree in computer science from George Wa-
shington University in 1990, where he was also a
distinguished graduate teaching assistant. He is
currently a professor in the ECE Department at
NJIT, where he has also served for four years as

the associate chair for graduate studies. From 1988 to 1989, he carried
out research in supercomputing for computer vision at the Center for
Automation Research in the University of Maryland, College Park. In
Spring 1990, he was a visiting assistant professor at George Mason
University. He has authored about 140 research papers. He is listed,
among others, in Who’s Who in Science and Engineering, Who’s Who in
America, Who’s Who in the World, and Who’s Who in the East. His main
research interests are advanced computer architecture, reconfigurable
computing, embedded computing systems, parallel and distributed
computer architectures and algorithms, and network router design. He
is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 29,2010 at 17:00:10 UTC from IEEE Xplore. Restrictions apply.

