
Int J Digit Libr (2010) 11:155–168
DOI 10.1007/s00799-011-0065-9

Supplementing virtual documents with just-in-time
hypermedia functionality

Li Zhang · Michael Bieber · Min Song ·
Vincent Oria · David E. Millard

Published online: 10 June 2011
© Springer-Verlag 2011

Abstract Digital library systems and other analytic or com-
putational applications create documents and display screens
in response to user queries “dynamically” or in “real time.”
These “virtual documents” do not exist in advance, and
thus hypermedia features (links, comments, and bookmark
anchors) must be generated “just in time”—automatically
and dynamically. In addition, accessing the hypermedia fea-
tures may cause target documents to be generated or re-
generated. This article describes the specific challenges for
virtual documents and dynamic hypermedia functionality:
dynamic regeneration, and dynamic anchor re-identification
and re-location. It presents Just-in-time Hypermedia Engine
to support just-in-time hypermedia across digital library and

L. Zhang · V. Oria
Computer Science Department, College of Computing Sciences,
New Jersey Institute of Technology, University Heights, Newark,
NJ 07102, USA

L. Zhang
e-mail: zhangli73@yahoo.com

V. Oria
e-mail: oria@cis.njit.edu
URL: http://web.njit.edu/∼oria/

M. Bieber · M. Song (B)
Information Systems Department, College of Computing Sciences,
New Jersey Institute of Technology, University Heights, Newark,
NJ 07102, USA
e-mail: min.song@njit.edu
URL: http://web.njit.edu/∼song/

M. Bieber
e-mail: bieber@njit.edu
URL: http://web.njit.edu/∼bieber/

D. E. Millard
School of Electronics & Computer Science, University
of Southampton, Southampton, SO17 1BJ, UK
e-mail: dem@ecs.soton.ac.uk
URL: http://users.ecs.soton.ac.uk/dem/

other third-party applications with dynamic content, and dis-
cusses issues prompted by this research.

Keywords Dynamic hypermedia functionality ·
Just-in-time hypermedia · Digital libraries ·
Virtual documents · Dynamic regeneration ·
Re-location · Re-identification · Integration architecture

1 Introduction

Digital libraries often generate documents and screens
dynamically in response to user searches. Furthermore, many
animations and simulations stored in educational resource
repositories generate documents and displays based on
parameters that users input. Such “virtual documents” only
exist when the user visits them. When the user closes the
window, these virtual artifacts are gone.

Virtual documents require an entirely new level of “just-
in-time” hypermedia support. When traversing links to them,
they need to be regenerated. Regeneration requires the hy-
permedia system to recognize (“re-identify”) them to place
(“re-locate”) link anchors, even if their contents have shifted
(and thus their overall appearance has changed). When ele-
ments from one virtual document appear as components
within another, the hypermedia system needs to re-identify
the elements and to re-locate anchors within them.

Consider a researcher recursively refining a query within
a digital library. Each successive search generates a refined
list of journal articles. She or he may bookmark the names
of potentially useful articles as well as authors who seem to
share common research interests. Also, she or he may add a
comment on authors who end up publishing research irrel-
evant to her or his interests or on articles with questionable
results. Our researcher would want to see this comment on

123



156 L. Zhang et al.

every instance of the author’s name or the article within any
set of search results, any journal table of contents, any arti-
cle’s reference section, any digital library alert system, or any
citation analysis. Following a bookmark on an author could
either lead to the specific article where the bookmark was
created or lead directly to a dynamically generated list of all
articles the author has published. Following a bookmark to
an intermediate or the final set of refined query results should
re-execute that intermediate or final query dynamically with-
out her or his having to remember the active set of parameters
that generated either one of these originally.

Similarly, students may wish to bookmark, link to, or com-
ment upon experts’ answers within a question/answer digital
library that is supported by an underlying database, such as
AskNSDL [1]. Experts may add to or alter answers over
time and users will want to access the latest results without
re-entering parameters.

Many e-commerce and other analytic or computational
applications display virtual documents with similar dynamic
characteristics to digital libraries. As an alternate example,
suppose an analyst wants to determine projected profits for
different sales levels in her company. She or he performs
the analysis within a sales support application, and makes
comments (as hypertext annotations) on each resulting profit
calculation. She or he knows that a few days later when pre-
paring her or his final report, she or he will wish to return
to them without having to remember the input parameter
values for each and then manually re-performing each cal-
culation, so she or he creates a bookmark to the results
screen before closing the window. Invoking the bookmark
later causes the sales support application to re-execute its
calculations automatically, and the “just-in-time” hyperme-
dia system to re-locate her or his comments in the appli-
cation’s newly re-generated display. This is analogous to a
teacher preparing or students working with searches, anima-
tions, modeling, and other simulations in educational digital
library systems.

Figure 1 presents a further example of a NASA system that
accesses a geomagnetic field model (NSSDC [2]). Students
or researchers may execute the model for several different
sets of parameters. Following bookmarks placed previously
on useful result sets should re-execute the model automati-
cally with the corresponding set of original parameters. Sup-
pose the student creates a comment on, or a link to or from a
specific parameter on a specific analysis result. He or she may
wish to see this comment or link anchor when that specific
result is regenerated following a bookmark. Alternatively he
or she may wish to see the comment or link anchor whenever
that specific parameter has the same value, or perhaps in every
display that contains that parameter regardless of its value.

The research we present can implement all of this
dynamic hypermedia functionality within any digital library
or analytic system that generates such virtual documents.

Fig. 1 NASA analysis input page

These examples raise several tricky issues. Consider
NASA’s modeling application in Fig. 1. If the user bookmarks
the query results, how then will the hypermedia system know
the parameters to regenerate it? One of our primary goals is
that a digital library or analytic system should not be altered
to integrate hypermedia support. This would be impractical;
we cannot simply require developers of every digital library,
business, or analytic system to re-engineer their code to sup-
port us by storing and supplying these parameters on demand.
Some Web systems regenerate analysis screens by storing all
relevant parameters in the virtual document’s URL, and this
would solve the problem completely. However, many Web-
based (as well as non-Web based) systems have no such
mechanism. Other Web systems do not allow URLs with
detailed parameters for security or other reasons, and may
store the parameters in cookies instead. However, this solu-
tion would be local to a single workstation and storing all
of the parameters for an active analyst over time would be
impractical. This is just one of many problems with hyper-
media support of virtual documents.

Our work contributes a generally applicable solution to
supplementing virtual documents from digital libraries and
other third-party applications with just-in-time hyperme-
dia support, utilizing dynamic regeneration, re-identification
and re-location, as well as a prototype. Such functionality
should benefit digital library users such as students, teach-
ers, researchers, analysts, other knowledge workers using
dynamic analysis systems, and in general also should be
available to any web page.

In this article we present the requirements and architec-
ture for a Just-in-time (JIT) Hypermedia Engine (JHE), and
discuss several of the interesting issues that these raise. JHE
is middleware running between the user interface (such as a
browser) and the application (the digital library or other ana-
lytic system). JHE’s key strength is that it provides links and
other hypermedia functionality to virtual documents from

123



Supplementing virtual documents with just-in-time hypermedia functionality 157

third-party applications, rather than documents controlled by
the hypermedia system itself.

We begin in Sect. 2 by looking at related research and
in particular at how existing hypermedia systems have to
compromise to cope with dynamic content. Sect. 3 presents
an analysis of how dynamic hypermedia functionality dif-
fers from static hypermedia functionality in order to define
some requirements for “just-in-time” hypermedia systems.
In Sects. 4 and Sect. 5 we discuss the challenges in realiz-
ing those requirements, in particular: dynamic regeneration,
re-location and re-identification. In Sect. 6 we introduce our
JHE architecture and prototype. Section 7 concludes with a
discussion of our future research and contributions.

2 Related work

Related work includes systems that deal with virtual doc-
uments (content that is generated at runtime), open hyper-
media systems (which keep links separate from content),
and standards that deal with object identification (locating
smaller parts within a larger media file).

2.1 Virtual documents

A virtual document is a document for which no persistent
state exists and for which some or all of each instance is gen-
erated at run time. Watters and Shepherd [3] present a num-
ber of interesting research issues about virtual documents,
including:

• Reference: How do you reference a virtual document?
Does the reference refer to the process of generation, the
parameters and process together, or a particular instance
of a generated document? These last two may be differ-
ent if some dynamic part of the document is not dynamic
because of the parameters (rather, for example, such as
something that depends on the time of viewing).

• Generation: A virtual document can be defined by an
author through the use of templates and links, or it can
be defined as the result of a search or other application.
Ranwez and Crampes [4] define virtual documents as
a non-organized collection of Information Bricks (IB),
associated with methods allowing the generation of a
finished IB sequence. For our research we will mainly
be considering virtual documents that are created by an
application as the result of a user search or query.

• Revisiting: Users expect that documents found once will
be available on a subsequent search. The notion of a book-
mark does not apply to virtual documents in a normal,
retrieval sense. Bookmarks for virtual documents need
enough information to recreate the document as it was.

• Versioning: What does it mean to “version” a virtual doc-
ument? Are you versioning the generation process, or
storing generated pages over time? Some systems such
as WikiWeb [5] visit a URL and store page differences
in a database, so that the system can track the Web page
modifications.

Some research has been conducted on these issues. Caumanns
[6] deals with the creation of dynamic documents by prede-
fined templates or knowledge. Iksal and Garlatti [7] describe
an adaptive web application system, which generates adap-
tive virtual documents by means of a semantic composition
engine based on user models. Tetchueng et al. [8] develop
an adaptive composition engine, called SCARCE—Seman-
tiC and Adaptive Retrieval and Composition Engine—to
design a context-aware learning system for an adaptive vir-
tual document. Qu et al. [9] use the RDF graph model to
define description formulations and neighboring operations
for constructing virtual documents. Our research differs from
these in that we consider virtual documents created by digi-
tal libraries and analytic applications, where the hypermedia
middleware system itself has no way to control their content
or generation, but must determine that a regenerated docu-
ment is the same one as before.

Our architecture does not necessarily lead to the regen-
eration of old instances (unless the application system
specifically offers this feature on its own). Just as hyper-
media backtracking differs from “undoing” since it takes the
user to the current state of a previously visited location, in
this research following a bookmark, etc., leads to the current
state of the target document (although viewed in a previous
context, see Sect. 4.1).

2.2 Open Hypermedia Systems (OHS)

OHS traditionally keep links separate from content and com-
bine them “just-in-time” to produce a viewable hypermedia
document. Systems such as Multicard [10] and HyperDisco
[11] separated links from content, allowing exiting applica-
tions to support hypermedia functionality and enabling the
links and document versions to be managed in a more sophis-
ticated manner avoiding problems such as orphaned or dan-
gling links [12].

Within OHS research there has also been an empha-
sis on supporting third-party applications [13], and dealing
with structures beyond the traditional navigational link [14],
including virtual documents.

The Dexter Reference Model for hypermedia created in
1994 modeled hypertext documents using an opaque ‘within-
component’ layer, connecting content with link structures
through an anchoring interface [15]. The DHM system (based
on Dexter) extended this notion with more complex compos-
ite components, including computed and virtual documents,

123



158 L. Zhang et al.

and a more advanced anchoring interface to deal with them
[16].

In later OHS work the tendency is to make this interface
more transparent and see hyper-structure as something that
permeates both content and navigation, with systems such as
Construct and Callimachus defining fine-grained structural
elements as the basic building blocks of their Hypermedia
[17,18]. More recent OHSs such as Auld Linky have also
viewed the navigational and content structure more equally
and applied adaptive functionality consistently across both
[19,20].

However, these systems include virtual documents within
their own extended set of supported structures, which makes
managing the documents much easier than if they were being
generated and managed in third-party systems. For exam-
ple, Goose et al. [21] propose an integrated architecture for
open hypermedia systems with a distributed and collabora-
tive model., but bypass many of the problems of regener-
ation that occur when dealing with dynamic content from
third-party applications (see Sect. 4).

Our JHE system is essentially an OHS (as it stores and
manages links separately from the content they relate);
however, unlike previous systems, it attempts to provide nav-
igational link support to third-party dynamic content from
digital libraries and other applications. As such, it is very
similar in architecture to the Distributed Link Service (DLS)
[12] that applied OHS functionality to the broader Web, but
tackles problems more familiar to structural systems that con-
trol their virtual documents more tightly.

2.3 Element identification and internal document structures

An anchor is a link endpoint—an identifiable element in
a document. This can include a selected word, paragraph,
image, field in a web form, term (e.g., key phrase), identifi-
able object (e.g., an author or article title, educational simula-
tion parameter, NASA model parameter, or a product price in
an online book store), or the entire document itself. After the
user creates an anchor, JHE should remember its selection in
the document. The next time its underlying element appears,
JHE should be able to recognize it and associate the proper
hypermedia functionality with it. An anchor could have three
different degrees of scope: specific, local, and generic [12].

• Specific: only applies to one particular element in one
particular document (e.g., an author’s name of one spe-
cific article within another particular article’s reference
list).

• Local: applies to many elements with same identifying
aspect (e.g., key phrase, object ID, or some specified
object parameter) in one particular document (e.g., every
instance of an author’s name within one specific article).

• Generic: applies to many elements with the same identi-
fying aspect in many documents (e.g., every instance of
an author’s name in any article, search result listing, or
other virtual document).

The manner of describing an anchor’s location varies accord-
ing to the type of media. For example, the HyTime [22] stan-
dard allows users to express anchors within SGML (text)
files. An anchor may be expressed by

• Naming—e.g., an SGML entity name or id;
• Counting—e.g., the 234th byte in this file, or the 2nd item

in this list;
• Querying—e.g., the first item with a particular attribute

(key phrase or author name with the value “Douglas
Engelbart”).

With text documents a byte count is commonly used. Micro-
cosm’s main approach for addressing an anchor is using
byte offset [12] and similarly, the Open Hypermedia Pro-
tocol (OHP) [23] uses byte offsets (both forward and back-
ward from the start and end of the file) to address locations.
However, this can lead to the file editing problem (the file
changes and the byte counts are no longer valid), causing
possible link inconsistency. Microcosm uses date and time
stamps to indicate that the file content has been changed, and
warns users about possible link inconsistencies. To help pre-
vent this problem some anchor context (usually ten characters
surrounding the anchor) is stored. When the anchor cannot
be found in the previous location, Microcosm searches the
file for all occurrences of the context. If only one occurrence
is found, Microcosm assumes it is the same anchor and the
link is re-located to this new location. This works well but
cannot guarantee 100% correctness.

Our JHE prototype uses XPath and XPointer for internal
document addressing. XPath [24] is a language to address
locations inside XML documents based on document struc-
tures. XPath models an XML document as a tree of nodes.
XPointer [25] is the language to be used as the basis for
a fragment identifier for any URI reference that locates an
XML resource. Based on XPath, it supports addressing into
internal structures of XML documents. As XPath/XPointer
is based on document structure, location expressions can be
flexible and accurate if document content changes frequently
as long as document structure does not change.

3 Comparisons between hypermedia support
for dynamic and static documents

Table 1 summaries the many differences between dynam-
ically generated virtual documents and static documents,
which affect the hypermedia support each requires.

123



Supplementing virtual documents with just-in-time hypermedia functionality 159

Table 1 Major differences between dynamically generated and static documents

Dynamically
generated virtual
document

Static document

Status Dynamic and virtual: does not exist in advance, only
exists when the user visits the virtual document.

Static and real: stored persistently in some physical
location with a specific file name.

Storage Only specifications, links and other information
about the document are stored, requiring much less
room.

The entire content of the document is stored.

Reference A query: Could be a unique document identifier or
some specifications about the document.

Referenced by file name, location or a unique
document identifier.

Generation (1) Dynamically generated by query, search, system
commands or user actions, depending on parame-
ters specified by user. It contains results from the
database or computation module; or dynamic infor-
mation, such as date or time.

(2) The creation date and time, file size and content
could change with each generation.

(1) Often created manually.
(2) Once created, the date, time, file size and content
are consistent, unless the content is updated.

Regeneration Regeneration is required every time the user revisits
the document.

No regeneration is required.

Template Usually some kind of document templates, query
language specification, composition algorithms,
scripts or skeletons facilitate the document’s
composition, organization and components during
dynamic regeneration.

Can follow a pre-defined format or be free-form.

Metadata Metadata is often used when generating the
document’s content (metadata becomes, is input to,
or matches parameters used in document
generation). Usually, it is not difficult to analyze
the metadata. Because the document results from a
query, search, or calculation; the query results from
database have some embedded metadata; the user
actions (commands + parameters) are known; the
dynamic information (date, time) has clear
meanings; and the calculation has definite
metadata.

Metadata may be provided. If not, then it often will
be difficult to infer.

Editable Unless the virtual document is saved as a static
document (virtual document materialization), the
ability to edit it is irrelevant. For the purposes of
dynamic hypermedia functionality, virtual
documents are not editable and only can be
generated by the underlying application.

Usually editable. The date, time, and file size
information could be used to indicate whether the
file has been edited.

Versioning In order to version the document:
(1) History information about the old version should
be kept and sometimes a minimal copy of the old ver-
sion is required.
(2) Date and time information is not very useful to
indicate that this is another version.
(3) The file size could be used to indicate that it is a
new version to the extent that we treat two versions as
the same (further discussion later).
(4) Byte-by-byte comparison is not possible, because
we only keep a minimal copy of the document. (This
also depends on how we treat the two versions as the
same, as we discuss later).

Usually performed by a document versioning system.
In general, the original version of the document is
kept. Then, for each version, the system does a file
comparison, and keeps the file differences
(“deltas”). When displaying the new version, the
file difference is added to the old version to
recreate the new version. Date, time and file size
information is very useful for versioning purposes.

Anchoring elements in the
document

To record anchor information, internal document
addressing is required, possibly using the same
methods as with static documents. Every time a
user revisits the document, element relocation and
re-identification are required (which we shall
discuss in detail later).

As long as the document has not been edited, there is
no need to re-locate and re-identify the anchors.
However, if anchors are stored in an external base,
then they technically need to be re-located, but this
is straightforward.

123



160 L. Zhang et al.

From Table 1 we conclude that

(1) dynamically generated documents can be created in
many flexible ways.

(2) It is more difficult to reference and version virtual doc-
uments. To reference a virtual document, a unique doc-
ument identifier is required and a resolution scheme is
needed. JHE should be able to generate unique identi-
fiers and maintain them. Every time a virtual document
is referenced, JHE should resolve this ID to the speci-
fications of the virtual document to regenerate.

(3) Maintaining hypermedia within dynamically generated
virtual documents leads to requirements that are dif-
ferent from static documents [26], including dynamic
regeneration, re-location and re-identification, which
we will discuss later.

Digital library and analytic applications currently can take
little advantage of hypermedia functionality on the Web. This
is, in large part, due to the predominantly read-only nature
of Web applications today, in that most applications do not
facilitate functionality that allows the user to add link anchors
or comments, and bookmarks generally are limited to a par-
ticular page URL or internal anchor defined by the author.
However, even if this were facilitated, most hypermedia func-
tionality only supports static documents for embedding link
anchors and target nodes (destination documents) that do not
require parameters to generate (unless all parameters are held
within the URL).

Hypermedia functionality includes structuring function-
ality (global and local overviews; trails and guided tours;
node, link, and anchor typing), navigational functional-
ity (structure-based query, history-based navigation, and
bi-directional linking), and annotation functionality (user-
declared links, comments, and bookmarks or favorites) [27].
Dynamic hypermedia functionality applies these over the vir-
tual analytic space of a computational system and the virtual
documents generated within it. While the current research
does not implement all of this functionality, doing so in each
case would require consideration of the following aspects.

Any dynamic hypermedia created in a “just-in-time” envi-
ronment causes problems not found in static environments.
A comparison of the dynamic hypermedia functionality with
the hypermedia generated in static hypermedia system high-
lights that

(1) Link destinations, comments, bookmarks, history items,
stops along trails, and guided tours are dynamic and
virtual. When the user traverses them, JHE should
regenerate the destinations, which normally requires
re-executing the commands associated with these des-
tination documents (nodes).

(2) Once a document is regenerated, JHE must re-locate the
anchors that users previously had placed within it, and
should re-identify any elements that the anchors cover
as the same ones as before.

(3) When analytic applications generate new query results,
JHE should be able to re-locate and re-identify the
anchors for the same elements originally identified in
other query results.

(4) Overviews and structure-based search (as well as con-
tent-based search) over specification links must oper-
ate over a hypertext “network” or “web” that does not
permanently exist. Instead, these functionalities must
infer the potential of node and link existence, and node
content, based on any available specifications about the
nodes and links. Historical record is not enough, for
users will not want to see only the nodes that have pre-
viously been generated. Instead, they want to explore
what possibly could be generated by their target appli-
cation [28].

The main differences between “just-in-time” hypermedia and
static hypermedia is that “just-in-time” hypermedia can oper-
ate on virtual documents and virtual elements within virtual
documents, but to do this with digital libraries and other third-
party applications requires processes of dynamic regenera-
tion, re-location and re-identification.

In the next section we discuss these three important issues
in more detail, and describe some of the specific challenges
that are faced by our JHE system when dealing with inde-
pendent (third-party) content published dynamically on the
web.

4 Dynamic regeneration

It has long been thought that managing virtual structures is
an important part of hypermedia system functionality [29].
Whenever a dynamic hypermedia link leads users to a virtual
document, the hypermedia system should be able to arrange
for its regeneration without relying on the user to reenter any
parameters. Regeneration should occur, for example, when
a student follows a bookmark to a simulation result or a
researchers follows a bookmark to a search result.

Two major aspects are the extent to which regenerated
documents should reflect the current state of the user (“con-
text”) and are expected to reflect the current status of the
document content (“sameness criteria”).

4.1 Regeneration and context

Virtual documents are regenerated using some parameters—
user specific metadata that we call context (for example,
parameters located in a web user’s cookies). Other elements

123



Supplementing virtual documents with just-in-time hypermedia functionality 161

of the documents may also be dynamic but independent from
user context (e.g., the latest articles published or current price
charged for a book). The hypermedia system does not affect
the regeneration of these elements, but does have to deal with
them when placing anchors.

When regenerating a virtual document, there are two con-
texts to consider: the context of the user who first flagged the
document as a destination, but also the current user’s context,
which could also influence the regeneration. Three general
cases are possible [11].

(1) The system could keep the old context, and simply
regenerate the pages using the original parameters. This
is almost equivalent to displaying a cache of the origi-
nal page, however the generation processes instead are
re-invoked (re-executed), which might be included in
current logging and diagnostics.

(2) The system could adapt the page to the new user con-
text. For example, a bookmarked article concerning a
violent news event should not include graphics of a sen-
sitive nature if the new user context is a minor. This also
might be of particular importance when data in the doc-
ument is sensitive in some way and security is thus a
consideration.

(3) The system could merge contexts, determining which
settings and parameters of the original user context
should “override” those of the current user context. For
example, the original analyst may believe a particular
photo to be so central to the piece that it should be
viewed by minors.

In our current research we are concentrating on the first
case, focusing on the challenge of maintaining parameters
and other aspects of the original context. Since we are not
developing adaptive applications, any content adaptation is
the responsibility of the digital library or analytic application
that JHE supports. Customizing the set of links generated is
the focus of other research underway but outside the scope of
this article [30]. More flexible support of contexts, the second
and third cases, is an issue for future research.

4.2 Revalidation “sameness” criteria

Whenever JHE receives a document for display, there should
be some way for it to recognize whether the application sys-
tem has displayed it before. For dynamically generated docu-
ments, the content and document structure could be changed
without any notice; there should be some criteria to “validate”
whether this is the same document as before. Following are
some of the “sameness” criteria for determining this, listed
from very rigid to very flexible:

(1) The file content and structure should be exactly the same
(very rigid).

(2) The file’s structure remains the same, but the content
could differ. For example, element values such as the
set of documents satisfying specific search criteria, sim-
ulation model calculations, or the current product price
may differ from the last time the document was gen-
erated, but these elements will be in the same relative
location within the document as before.

(3) Some critical sections of the document should not
change (e.g., the actual query results); other sec-
tions may (e.g., whether the results display full article
abstracts, partial abstracts, or just the article citation).

(4) As long as the identifying parameters are the same that
generated it (e.g., the search query), the system treats it
as the same document (very flexible).

Which criterion the application or the user uses depends on
his or her requirements. In Sect. 1’s sales support example,
when the analyst did the query and put some comments on
that screen, she or he felt interested in that particular query on
that particular day, so she or he wants the identical analysis
results. If next time when she or he revisits this comment and
the newly generated document is not same, then JHE should
give an “invalid bookmark” or “stale document” warning and
allow the user to remove the comment or keep it. Similarly, a
researcher might want to confirm which journal articles were
available at the time she or he did the original query, instead
of which ones are available today. On the other hand, some-
times a comment is valid for any content generated by the
same query.

A static document that has been edited also has the
re-identification problem [12]. Simpler ways exist, however,
to indicate that this document has been edited. If a static doc-
ument is edited, for example, the editing timestamp changes.
Every time a dynamically generated virtual document is gen-
erated, the timestamp varies. In this situation, even though
the file size does not change, JHE has to re-identify whether
this document is the same one as before.

4.3 Regeneration and revalidation procedure

The regeneration procedure of our JHE system has the
following steps:

(1) Regeneration occurs when the user traverses some kind
of link to a virtual document (a manual link, a book-
mark, a link as a step within a guided tour, etc.) When
a user creates this link, JHE records the virtual docu-
ment information and the link information. The virtual
document information contains a unique identifier for
each document, generation command/parameters, etc.
If a one-way link is from a virtual document A to a

123



162 L. Zhang et al.

Fig. 2 Regeneration criteria

Fig. 3 Create a bookmark

virtual document B, then the link information contains
the virtual document identifier A as the source and the
identifier B as the destination.
Figures 2 and 3 show screenshots from the JHE pro-
totype that follow from the example shown in Fig. 1.
When the user clicks on the “add bookmark” button in
the lower left screen, the system allows him or her to
create a bookmark, and as part of this, specify the regen-
eration/revalidation criteria in the lower right screen.
Choosing that bookmark anywhere (from the bookmark
list shown in Fig. 3) will cause the document in Fig. 2
to be regenerated.

(2) When the user traverses that link to revisit the virtual
document, JHE retrieves the link information. From the
link information, it finds out the destination identifier B,
which points to the virtual document B’s information.
From this, the hypermedia system gets the necessary
command information for its original application to
regenerate it (including any parameter information to
re-execute the commands).

(3) JHE sends the command information to the underlying
digital library or other analytic application.

(4) The underlying application executes the commands and
generates a virtual document.

(5) JHE receives the virtual document and “revalidates” it.
Revalidation of a virtual document depends on which
“sameness” criteria JHE or the user chooses. For level 1
(very rigid), JHE compares it with the stored exact copy
of the original document. For level 2, JHE translates the
virtual document to an XML document according to
the original document structure. For level 3, JHE finds
the location of the critical section and then compares it
with original stored content. For level 4 (very flexible),
JHE does not compare the document content with the
original document.
For levels 1 and 2, the regenerated virtual document is
parsed according to the original document structure.

(6) If the regenerated virtual document is revalidated as the
same as that generated previously, then the regeneration
is successful, otherwise, JHE gives a “stale document”
warning to the user.

The commands which JHE sends to the application in step
(3) are the same ones that the user executed when generat-
ing the document the first time. For example, at that time
when the user issued a series of progressive queries, input-
ting a set of parameters for each, and bookmarked the final
result, JHE recorded the steps and parameters. When regener-
ating, the system repeats these steps, filling in the parameters
that the user originally entered. This occurs in the back-
ground, so the user only sees the resulting document (and
is not required to reenter any input parameters). For exam-
ple, suppose that during his or her classroom preparation,
a teacher invoked a simulation from a digital library course
material repository that presented a series of dialog screens
to gather input values before generating an animation, which
he bookmarked. In the classroom the next day, when he fol-
lows the bookmark, JHE invokes the input dialog screens in
the background. Instead of displaying each dialog for him
or her to reenter the input values, the system fills in each
dialog with the stored values originally entered and submits
it. He or she just sees the resulting animation it generates,
which (presumably) is the same one as he originally saw.
(JHE uses the sameness rules discussed earlier to validate
this.)

Alternatively, when a developer integrates an application
with JHE (see Sect. 6), she or he could specify “regeneration
rules” for each class of virtual documents. The regeneration
rule could provide a shortcut set of commands and parame-
ters that can generate the virtual document more directly. If
a regeneration rule is available, JHE could instantiate it with
all of the required parameters.

123



Supplementing virtual documents with just-in-time hypermedia functionality 163

4.4 Parameters for regenerating virtual documents

In order to regenerate a virtual document, JHE should
record: dynamic link information, virtual document infor-
mation, document generation information and document
re-validation information. Parameters include:

• Link (linkID, title, description, source, destination, use-
rID, time_created)

• Document (docID, version, title, description, size, struc-
ture, metadata)

• Revalidation (docID, criteria, content)
• Generation (docID, applicationID, command, parame-

ters, shortcut, template)

4.5 Document schema

We use XML schema to express the document structure.
Figure 4 shows the original document.

For the document schema in Sect. 4.5, the XML schema
is shown in Fig. 5.

Fig. 4 Original query result

Fig. 5 XML schema for virtual document

Fig. 6 Translated virtual document

After parsing and translating the document, we have an
XML document shown in Fig. 6.

Currently, for each type of virtual document, the devel-
oper manually analyzes the document structure and gener-
ates the XML schema offline. Each application could have
several schema based on different document types. This is a
one-time activity for each document type, unless its structure
changes later, requiring an update. The development of auto-
matic generation of document schema is in progress [31].

5 Re-identification and re-location

Whenever an application generates or regenerates a docu-
ment, JHE needs to determine whether it has encountered that
document before (i.e., re-identify it). For example, has JHE
encountered this simulation result or stock analysis before?
Next JHE analyzes the document contents both to “re-locate”
any anchors that users had placed within the document, and
also to “re-identify” any content that matches other anchors
that had been created independent of this document, but hap-
pen to be found within its content (in accordance with same-
ness criteria). For example, has a student or teacher placed
a comment on a simulation parameter, the researcher linked
to an article title, or the analyst added a guided tour step to
this stock value, when each element appeared originally in a
different document (virtual or static)? If so, these elements
should be re-identified as those anchors.

Re-identification and re-locating documents (aka hyper-
media nodes) and anchors have the following complications:

(1) JHE must recognize the re-generated document as the
same one as it opened previously. Sects. 4.2 and 4.3
discussed this “revalidation.”

123



164 L. Zhang et al.

(2) After a virtual document is regenerated, JHE should be
able to find those anchors that were marked in this doc-
ument previously.

(3) JHE must recognize when some content within any
newly generated (or regenerated) document is the same
element as one marked as an anchor previously. How
it decides that an element is the same one depends on
element-level sameness criteria (analogous to the doc-
ument-level sameness criteria discussed above).

(4) When the user creates a link, she or he needs to specify
whether it should appear every time the element appears
in any document, every time it appears inside that partic-
ular document only (e.g., only for that particular query),
or only on that particular instance within that particular
document [12]. This is called “re-location granularity.”

(5) As with a static hypermedia system, JHE must deter-
mine which anchors (and to which links they lead) are
available for the re-identified and re-located elements
in a (re-)generated document. The unique identifier is
crucial here.

(6) As with dynamic regeneration, users may have “assumed”
their current context when creating anchors and not
thought about whether anchors should appear (be
“re-located”) for users with different contexts. While
we allow users to specify whether an anchor only counts
for the current document or for any document in which
its content appears, we do not currently allow the user
to specify the anchor’s context in more detail. This is a
subject of future research.

5.1 Procedure for re-identification and re-location

The re-identification and re-location procedure of our JHE
system has the following steps:

(1) The first time a user selects and marks an anchor
on the screen, JHE records the anchor information in
an external anchor database. Then it is available for
re-identification and re-location when documents are
generated subsequently. Anchor information includes
virtual document identifier, location, selection content,
granularity, etc. Granularity means different degrees
of anchor “scopes” (see Sect. 2.3). An anchor could
appear at a particular location in a particular docu-
ment (specific scope), on the same element anywhere
in a particular document (local scope), or could appear
in any document that has the same element (generic
scope).

(2) After a virtual document is regenerated and re-identified
as the same node, JHE looks for the anchor information
for this document in the external anchor database.

(3) For each anchor inside this document (local and spe-
cific scope with same document identifier), JHE finds

Fig. 7 Creating a JHE comment

the exact position inside the document. The byte offset
of an element could change if the document’s content
changes between generations. For example, a simple
change in the current date could shift byte positions.
JHE should also locate all generic scope anchors that
may exist in this document no matter what document
identifier it has.

(4) For the re-located anchor, JHE should re-identify that
the newly generated element is the same one that was
selected as an anchor. For virtual elements, we allow
users to specify the element “sameness” criteria. If
a user’s comment depends on the exact value of the
element, then the system should store and compare the
element’s value. Otherwise, the system does not need
to store and compare it.

(5) After the anchored virtual elements are re-located and
re-identified successfully, JHE, upon demand, can look
for those hypermedia functionalities associated with
these elements in the database, and associate them with
anchors.

Figure 7 shows how to create a JHE comment. The user clicks
on the “Add Comment” button on the left side of the window
and then selects the comment text from the main window.
He or she enters some information in the lower right of the
window and then submits it to JHE.

Figure 8 shows the regenerated document with relocated
and re-identified anchors. The small blue icon at the side
of the text indicates that JHE identified some hypermedia
functionality (comments, links, guided tours, etc.) associ-
ated with the element. If the icon is red, that indicates the
content of the anchor has changed based on the “sameness”
criteria.

123



Supplementing virtual documents with just-in-time hypermedia functionality 165

Fig. 8 Regenerated document with relocated and re-identified anchors

5.2 Parameters for re-identification and re-location
of virtual elements

In order to re-identify and re-locate virtual elements (anchors),
JHE should record anchor information and re-identification
criteria, described as follows:

Anchor information:

• Anchor identifier: this should be unique and persistent.
• Title: name or label.
• Granularity: name scope of the anchor, including whether

it is specific, local, and global.
• Virtual document identifier: in which document this

anchor originally resided.
• Location: an expression of the anchor location according

to the document structure.
• Selection: the selected and marked contents from the doc-

ument.
• Re-identification criteria: “sameness” criteria, whether

the user allows the value to change.

6 The JHE

In this section, we present our architecture and prototype
for JHE, as well as the functionality for each component.
JHE extends our prior study with the Dynamic Hypermedia
Engine (DHE).

6.1 The DHE

To supplement digital libraries and analytic applications with
hypermedia functionality, the DHE [27,30,32] intercepts
documents and screens as they are about to be displayed on

the browser, adding link anchors dynamically over elements
it can recognize. When the user selects one of these supple-
mental anchors, DHE generates a set of relevant links. Choos-
ing one prompts DHE to send a command (e.g., a query) to
the target digital library or other analytic applications, caus-
ing it to generate a virtual document containing the query or
computed results. The target application can be the same one
that generated the original display or a different one. DHE
can often provide this supplemental hypermedia functional-
ity with minimal or no changes to the analytic applications
through the use of application wrappers described below.

6.2 JHE architecture

While DHE dynamically generates link anchors and links
for virtual documents, it currently does not support
re-identification, re-location, or regeneration. JHE extends
DHE’s architecture to supplement digital libraries and other
analytic applications with hypermedia functionality in this
“just-in-time” environment. JHE’s architecture is shown in
Fig. 9. In what follows, we describe JHE identifiers and the
architectural components.

To integrate an application into the JHE infrastructure,
the developer must specify the identifying information for
each kind of document the application generates (e.g., search
input screen, search results, table of contents, article details),
as well as each kind of element which is specified through
structural location or parameters (e.g., authors, article titles,
and journal titles) instead of user selections within the con-
tent. JHE’s document manager will instantiate or fill in the
element values upon generating the virtual document. The
developer also must write an application wrapper that inter-
faces the application to the JHE communication Gateway
module.

6.2.1 Identifiers

We use XPath expressions to address the anchors inside the
document, and XPointer to express arbitrary selections. The
unique identifiers (ID) of virtual documents and anchors are
generated and maintained by JHE using the following format:

• Virtual document identifier = (application ID, command
ID, parameter set ID)

• Parameter set = (parameter1, parameter 2, … parame-
ter n, version number)

• Anchor identifier = (document ID, location ID)

Each command is an uninstantiated expression that, once
filled in during execution, can instruct an application to per-
form some computation, which results in generating a doc-
ument. Each parameter is an uninstantiated placeholder for
a value passed to and used by the command when executed.

123



166 L. Zhang et al.

Selection 
Manager 

User 
Interface 
Wrapper 

Gateway 

Document 
Manager 

Application
Wrapper 1

Document 
Translator 

Regeneration 
Engine

Anchor 
Service 
Module 

Link Service 

Module

Service 
Module i

User Interface 

(Browser) 

Application 1

Application 
Wrapper 2

Application 
Wrapper j

Application 2 Application j

É

É

…

Fig. 9 Just-in-time Hypermedia Engine (JHE) architecture (in-
between the user interface and applications such as a digital library)

Each location is an XPath/XPointer expression to a partic-
ular anchor within a document. While JHE will fill in the
actual command and parameter values at execution time, the
command format or skeleton is predefined by the applica-
tion developer at the time she or he integrates her or his
application. JHE assigns each un-instantiated (not filled-in)
command “skeleton” its own ID. For example, a specific dig-
ital library or database application may support search or
SQL queries that follow a well-defined format (which can be
instantiated in an infinite number of ways).

The parameter set ID is a unique number which represents
the parameter set. The location ID is a unique number which
represents the location inside a document. The parameter set
carries a list of parameter name and value information, and is
unique in an application. Because, in practice, this parameter
list is too long to use as an identifier, we use a unique num-
ber as the ID to represent it. Anchor location is generated
dynamically when it is placed in the virtual document. It is
unique within the document. Similarly, because the location
expression is usually a long string, we use the location ID to
store and retrieve the location expression.

Often a parameter set is composed of multiple parameters
and a version number. When one of the parameter’s metadata
changes or when a new parameter appears, depending on user
settings this virtual document may be revalidated as a new
document (corresponding to “sameness” criteria level 3, and
a new version number is added to the parameter set) or as the
same virtual document (corresponding to “sameness” criteria
level 4).

6.2.2 Component functionality

JHE is middleware that integrates many applications through
application wrappers. JHE resides between the user interface
(normally a web browser) and the applications that users
access (e.g., a digital library). All JHE components (except
the JHE selection manager) run on the server side. Inspired
by the notion of Structural Computing [33], we developed the
Regeneration Engine and Document Manager modules to be
structure servers. These modules are entities that build upon
the basic structure store services to implement a specific type
of abstraction, and to make that abstraction available to client
applications. Figure 9 shows the JHE architecture. Inside the
dotted line box are the JHE components. We describe each
component functionality in the following:

Gateway: Enables the communication between the JHE
modules and serves as the router for JHE internal messages.

Application Wrapper: Manages the communication bet-
ween its application system and the Gateway. It passes com-
mands and parameters to the application to execute. It parses
the resulting screens and documents to identify any “elements
of interest” that JHE will make into link anchors [30]. It then
translates these virtual documents and elements into XML
pages for JHE internal processing.

Selection Manager (SM): When the user selects a span
of content on the browser to create an anchor, the SM gets
the selection, and records location information. Many Web
browsers allow users to select text from the screen, and the
browsers record the location information for each selection.
Our prototype uses Mozilla compatible browsers [34], utiliz-
ing its XPointerLib [35] interface as the Selection Manager.

Document Translator: Translates a page in JHE’s internal
XML format to an HTML page for display according to the
XSL template file.

User Interface Wrapper: Handles communications between
the User Interface (and Selection Manager) and Gateway.

Regeneration Engine (RE): It serves three important func-
tions: First, RE gets the necessary commands and param-
eters from the RE database for regeneration according to
the virtual document ID. Second, to regenerate documents,
it sends commands to the appropriate Application Wrap-
per for execution and gets back resulting virtual documents
from the Application Wrapper in XML page format. Third,

123



Supplementing virtual documents with just-in-time hypermedia functionality 167

it compares the newly generated virtual document with the
history information stored in RE database to revalidate it.

Document Manager: Looks for the hypermedia compo-
nents associated with a re-generated virtual document and
virtual elements within it, marks the pre-existing anchors as
elements, and generates a table of the hypermedia compo-
nents for the virtual document.

Service Module (SM): It manages (enables users to add
and retrieve) hypermedia functionality such as links, annota-
tions, guided-tours for a content selection, or existing anchor
selected by the user, and stores hypermedia information into
the database. Each type of hypermedia functionality has its
own Service Module and service database. This includes the
Anchor SM (which stores anchor information in a database
and parses anchor information to find an anchor’s exact and
absolute byte offset within a document), Link SM, Comment
SM, etc.

7 Conclusions and future work

This article examines research issues for “just-in-time”
hypermedia, in particular with regard to supporting dig-
ital libraries and other dynamic third-party applications.
This environment requires the dynamic regeneration of
virtual documents, re-identification of re-generated virtual
documents, and re-location and re-identification of virtual
elements in virtual documents. We have designed and imple-
mented a “just-in-time” hypermedia engine residing between
the browser and the underlying dynamic applications to pro-
vide previously unavailable hypermedia functionality for
applications. JHE provides services for users to add book-
marks, comments, and links for virtual documents generated
by an application system without altering the internal code
of the external applications. We believe our study will also
benefit other research fields which share some of these chal-
lenges, such as virtual documents and adaptive hypermedia.

A prototype JIT hypermedia engine that supports
third-party dynamic content will allow us to pursue several
different strands of research involving dynamic hypermedia
functionality. This includes extending dynamic hypermedia
functionality and just-in-time hypermedia support to virtual
documents with non-textual contents. We shall investigate
incorporating user profiles and document context, for regen-
eration, re-identification and re-location.

We also shall explore automatically generating the XML
templates for and performing an automatic metadata analysis
over virtual documents, for wrappers to parse and (re-)iden-
tify elements. This will ease the job of writing an application
wrapper and registering every kind of document in advance.
Related research on document templates and document struc-
ture analysis will be very helpful to this effort.

Dynamic hypermedia functionality is still greatly limited
on the Web. We envision a much more utilitarian Web envi-
ronment in which the full hypermedia feature set becomes
available to and for being broadly used by the users of every
digital library and other dynamic application.

Acknowledgements The authors gratefully appreciate the funding
support for this research provided by the United Parcel Service, the
U.S. National Science Foundation (under grants IIS-0135531, DUE-
0226075, DUE-0434581 and DUE-0434998), and the Institute for
Museum and Library Services (under grant LG-02-04-0002). The
authors are grateful to our reviewers and the journal editors for their
excellent suggestions with regard to revisions of an earlier version.

References

1. AskNSDL, http://www.asknsdl.org (2010). Accessed 12 March
2010

2. NASA’s National Space Science Data Center (NSSDC), http://
www.nssdc.nasa.gov/ (2010). Accessed 30 Aug 2010

3. Watters, C., Shepherd, M.: Research issues for virtual documents.
In: Workshop on Virtual Documents, Hypertext Functionality and
the Web at the 8th International World Wide Web Conference,
Toronto (1999)

4. Ranwez, S., Crampes, M.: Conceptual documents and hypertext
documents are two different forms of virtual document. In: Work-
shop on Virtual Documents, Hypertext Functionality and the Web
at the 8th International World Wide Web Conference. Toronto, May
(1999)

5. WikiWeb—Web Based Corporation Tools. http://www.wikiweb.
com (2011). Accessed 12 May 2011

6. Caumanns, J.: A Modular framework for the creation of dynamic
documents. In: Workshop on Virtual Documents, Hypertext Func-
tionality and the Web at the 8th International World Wide Web
Conference, Toronto (1999)

7. Iksal, S., Garlatti, S.: Revisiting and versioning in virtual special
reports. In: Third Workshop on Adaptive Hypertext and Hyperme-
dia, 12th ACM Conference on Hypertext and Hypermedia, Arhus
(2001)

8. Tetchueng, J.L., Garlatti, S., Laube, S.: A context-aware learning
system based on generic scenarios and the theory in didactic anthro-
pology of knowledge. Int. J. Comput. Sci. Appl. 5(1), 71–87 (2008)

9. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for
ontology matching. In: Proceedings of the 15th International Con-
ference on World Wide Web, Edinburgh, pp. 23–31 (2006)

10. Rizk, A., Sauter, L.: Multicard: an open hypermedia system. In:
Proceedings of the ACM European conference on Hypertext,
Milan, pp. 4–10 (1992)

11. Wiil, U.K., Leggett, J.J.: The HyperDisco approach to open hyper-
media systems. In: Proceedings of the 7th ACM Hypertext Con-
ference, Washington, pp. 140–148 (1996)

12. Davis, H.: Data integrity problems in an open hypermedia link ser-
vice. Ph.D. Thesis, Southampton University, Southampton (1995)

13. Whitehead, E.J., Jr.: An architectural model for application inte-
gration in open hypermedia environments. In: Proceedings of the
eighth ACM conference on Hypertext, Southampton (1997)

14. Wiil, U.K., Nürnberg, P.J.: Evolving hypermedia middleware ser-
vices: lessons and observations. In: ACM Symposium on Applied
Computing, San Antonio, pp. 427–436 (1999)

15. Halasz, F., Schwartz, M.: The Dexter hypertext reference model.
Commun. ACM 37(2), 30–39 (1994)

123

http://www.asknsdl.org
http://www.nssdc.nasa.gov/
http://www.nssdc.nasa.gov/
http://www.wikiweb.com
http://www.wikiweb.com


168 L. Zhang et al.

16. Grønbæk, K., Trig, R.H.: Design issues for a Dexter-based hyper-
media system. Commun. ACM 37(2), 40–49 (1994)

17. Wiil, U.K.: Hypermedia technology for knowledge workers: a
vision of the future. In: Proceedings of the Sixteenth ACM Confer-
ence on Hypertext, Hypertext 2005, Salzburg, Sep, pp. 4–6 (2005)

18. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel,
M.C., Vaitas, M., Christodoulakis, D.: Structuring primitives in the
Callimachus component-based open hypermedia system. J. Netw.
Comput. Appl. 26(1), 139–162 (2003)

19. Bailey, C., El-Beltagy, S.R., Hall, W.: Link augmentation: a con-
text-based approach to support adaptive hypermedia. In: 12th ACM
Conference on Hypertext and Hypermedia, Arhus, pp. 239–251
(2001)

20. Griffiths, J., Millard, D., Davis, H., Michaelides, D., Weal, M.: Rec-
onciling versioning and context in hypermedia structure servers. In:
Nürnberg, P.J.(ed.) Proceedings of metainformatics international
symposium, Esbjerg, pp. 118–131 (2002)

21. Goose, S., Lewis, A., Davis, H.: OHRA: towards an open hyperme-
dia reference architecture and a migration path for existing systems.
J. Digit. Inform. 1(2), 45–61 (1997)

22. HyTime: Information Technology—Hypermedia/Time-based
Structuring Language (HyTime). http://www.ornl.gov/sgml/wg8/
docs/n1920/html/n1920.html (2011). Accessed 12 May 2011

23. Davis, H.C., Lewis, A., Rizk, A.: OHP: a draft proposal for a
standard open hypermedia protocol. In: 2nd Workshop on Open
Hypermedia Systems, Washington (1996)

24. XML Path Language (XPath). http://www.w3.org/xpath (2010).
Accessed 1 Jan 2010

25. XML Pointer Language (XPointer). http://www.w3.org/xptr
(2011). Accessed 30 May 2011

26. Karadkar, U.P., Francisco-Revilla, L., Furuta, R., Shipman, F.,
Arora, A., Dash, S., Dave, P., Luke, E.: Metadocuments supporting
digital library information discovery. Int. J. Digit. Libr. 4(1), 25–30
(2004)

27. Ho, S.M., Song, M., Bieber, M.: IntegraL: the effectiveness of a
link-based federated search infrastructure. In: iConference, Uni-
versity of Illinois, Urbana-Champaign, pp. 109–114 (2010)

28. Montero, S., Díaz, P., Dodero, J., Aedo, I.: AriadneTool: a design
toolkit for hypermedia applications. J. Digit. Inform. 5(2), 214–217
(2004)

29. Halasz, F.G., Reflections on NoteCards: seven issues for the next
generation of hypermedia systems. In: Proceedings of the ACM
Conference on Hypermedia, Chapel Hill, pp. 345–365 (1987)

30. Catanio, J., Nnadi, N., Zhang, L., Bieber, M., Galnares, R.: Ubiq-
uitous metainformation and the ‘what you want when you want it’
principle. J. Digit. Inform. 5(1), 1–37 (2004)

31. Ho, S.M., Song, M., Bieber, M.: Shaping user’s information seek-
ing behavior: a Link-based federated search infrastructure. Inform.
Sci. (in preparation)

32. Galnares, R.: Augmenting applications with hypermedia function-
ality and metainformation. Ph.D. Thesis, New Jersey Institute of
Technology, Newark (2001)

33. Nürnberg, P.J., Schraefel, M.C.: Relationships among structural
computing and other fields. J. Netw. Comput. Appl. 26(1), 11–26
(2003)

34. Mozilla Web Browser. http://www.mozilla.org (2011). Accessed
30 May 2011

35. XpointerLib. http://xpointerlib.mozdev.org/ (2011). Accessed 30
May 2011

123

http://www.ornl.gov/sgml/wg8/docs/n1920/html/n1920.html
http://www.ornl.gov/sgml/wg8/docs/n1920/html/n1920.html
http://www.w3.org/xpath
http://www.w3.org/xptr
http://www.mozilla.org
http://xpointerlib.mozdev.org/


Copyright of International Journal on Digital Libraries is the property of Springer Science & Business Media

B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.



Copyright of International Journal on Digital Libraries is the property of Springer Science & Business Media

B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.


