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Abstract† 

 
   To guarantee quality of service (QoS), the 

requirements for video transmission such as delay and 
cell loss rate (CLR) are very stringent. These constraints 
are difficult to meet if high network utilization is desired.  
Dynamic bandwidth allocation is thus needed. Video 
traffic prediction can play an important role in dynamic 
bandwidth allocation and traffic management in high-
speed networks. In this paper, we propose a fast 
convergent algorithm to predict the variation of I frames, 
based on which the bandwidth is assigned. The new 
algorithm can achieve fast convergence and small 
prediction error. 
 
 
1. Introduction 
 

   Variable Bit Rate (VBR) video is one of the major 
applications to be supported by broadband packet 
switched networks. Video is inherently dynamic, and 
MPEG video coding results in VBR. If the bandwidth is 
allocated according to the peak rate of the video traffic, 
no packet loss occurs, but a substantial amount of the 
bandwidth is wasted during most of the transmission. On 
the other hand, if the bandwidth is not allocated close to 
the peak rate, large delays and excessive packet loss may 
be experienced. In transporting the VBR video traffic, 
achieving effective use of the network resource while 
providing QoS guarantees is not trivial due to the bursty 
characteristics of VBR traffic. Researchers have found the 
existence of correlation in video trace generated from an 
MPEG encoder; this phenomenon can be used for traffic 
prediction. The prediction, when combined with dynamic 
bandwidth allocation, can provision both network 
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efficiency and QoS guarantees. Earlier work in this area 
includes frequency-domain prediction and time-domain 
prediction.      

   Chong et al. [1] approached the problem in the 
frequency domain. They proposed a method to 
dynamically allocate the bandwidth based on predicting 
the low frequency part of the video rate input sequence. 
The low frequency part of the signal represents the slow 
time variations of the VBR rate and it is used to determine 
the allocated bandwidth. 

   Wang et al. [2] proposed an adaptive wavelet 
prediction method for VBR video traffic. This method 
uses the wavelet transform to transform the video 
sequence into the wavelet domain. Though it can improve 
the prediction performance, the computational complexity 
is rather high.   

   A adaptive linear prediction scheme was proposed 
by Adas [3]. This scheme does not require any prior 
knowledge of the video statistics nor does it assume 
stationary, and is thus suitable for on-line real time 
prediction. However, when there are scene changes, the 
bit rate variation is so high that the prediction error can be 
large. Xu and Qureshi [4] proposed a composite MPEG 
traffic prediction scheme which smoothes the predicted 
data based on predicting relative changes of frame sizes 
between adjacent GOPs. Since I, P and B possess 
different statistical characteristic, this method is not 
effective in guaranteeing the cell loss rate (CLR) and 
needs renegotiating for every frame, a big burden to 
network management. 

    Owing to the above drawbacks, we propose a 
dynamic bandwidth allocation algorithm based on the 
predicted relative size change of I frames. This not only 
smoothes the predicted data but also reduces the 
renegotiation frequency, and the prediction error is much 
smaller than the composite MPEG traffic prediction 
scheme, but one problem associated with this LMS 
algorithm is its slow convergence. In VBR video traffic 
characterized by frequent scene changes, the LMS 
algorithm may result in an extended period of 
intractability and thus experience excessive cell loss 
during scene changes. In this paper, we propose a fast 
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convergent nonlinear adaptive algorithm to predict the 
variation of I frames. This new algorithm converges faster 
and hence, tracks scene changes better. The rest of the 
paper is organized as follows. In Section 2, characteristics 
of the MPEG video traffic are examined. In Section 3, the 
fast convergent nonlinear adaptive algorithm is proposed. 
Section 4 presents the performance of our proposed 
scheme. Finally, concluding remarks are drawn in Section 
5.        

 
              
2. Characteristics of MPEG Videos 
 

    An MPEG encoder that compresses a video signal 
at a constant picture rate (e.g., 30 pictures/s) produces a 
coded bit stream with a highly variable bit rate, thus 
called Variable Bit Rate (VBR). The changes in the 
output rate of an MPEG encoder are attributed to the 
following three aspects: 

1. The encoding of one block to the next within a 
        picture. 
2. From one picture to the next within the video  

sequence being encoded. 
3. From one scene to the next within the video 

 sequence. 
The rate fluctuations from one picture to the next are 

the most troublesome for network management. If we can 
predict the frame size more accurately, network utilization 
can be improved and QoS can be guaranteed.    

An MPEG video stream is divided into units called 
group of pictures (GOP). A GOP consists of an I frame 
and an arrangement of B and P frames. Video traffic is 
correlated and its autocorrelation has a heavy tail, because 
MPEG uses intra-frame techniques (exploiting  the spatial 
redundancy within a picture) as well as inter-frame 
techniques (exploiting the temporal redundancy present in 
a video sequence). A highly correlated input process with 
a heavy tail, if served at a fixed rate not close to the peak 
rate, causes large queues, large delays and excessive cell 
loss [5]. 

   The frame size trace from the output of the MPEG 
encoder contains all statistical information about the 
encoded video. The frame by frame correlation depends 
on the patterns of the GOP and in principle always looks 
like Figure 1 if the same GOP pattern is used for the 
whole sequence. For this example, the GOP pattern is: 
IBBPBBPBBPBBI… 

   Figure 1 shows the ACF of the MPEG coded star 
war. In Figure 1, the large positive peaks stem from I 
frames, the smaller positive ones from P frames, and the 
negative ones from B frames.  A large I frame is followed 
by two small B frames, then a middle size P frame is 
followed by two small B frames again. The pattern 
between two I frame peaks is repeated with slowly 
decaying amplitude of the peaks. 

   From this figure, we can see that the MPEG video 
is highly correlated. If it is not served at a rate close to the 
peak rate, large queues, large delays and excessive cell 
loss will result, but if we reserve a bandwidth at least 
equal to the predicted value, we only need to buffer the 
error caused by the prediction. If the error resembles 
white noise or at most short memory, only small buffers 
will suffice, and high utilization and small delays can be 
achieved. 
 

 
 

Fig. 1. ACF of MPEG video 
           

 
 
3. The Fast Algorithm 

                
    Thorough analysis of MPEG video traces indicates 

that, within a GOP, the I frame is often the largest, and B 
frames are the smallest. Most of the time, when the size of 
the I frame changes significantly, so do those of P and B 
frames, implying that the increase or decrease of I frame 
size often indicates the increase or decease of P and B 
frame sizes, respectively, and therefore bandwidth should 
be allocated based on the size of I frames. Thus, the 
primary goal of this paper is to accurately and promptly 
predict the I frame size. Let I(k) be the size of the I frame 
of the kth GOP and I(k-1) be the size of the (k-1)th GOP, 
then the relative size change of I frame, denoted by s(k), 
is defined as: 

 

    
( ) ( 1 )( )

( 1 )
I k I ks k

I k
− −=

−
 .            (1)  

    The sequence s(k) is much smoother than the 
sequence I(k).  Thus the linear adaptive prediction will 
perform better if we predict the sequence s(k) instead of 
the sequence I(k); the I frame size can then be retrieved 
by 
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    A one-step linear predictor can be used to predict 

the s(k) sequence, i.e., prediction of s(k+1) using a linear 
combination of the current and previous values of s(k). 
The number of the current and previous values of s(k)  
used to predict s(k+1) is called the order of the linear 
predictor. The pth-order linear predictor has the following 
form: 

 
    s k( ) ( ) ( ) (w l s k l kW ST

l

p
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where p is the order of the linear predictor, and , for 
, are the prediction filter coefficients. 

( )w l
0,1, ..., 1l = p −

)
The prediction error is 
           e k .        (4) s k s k( ) ( ) (= + − +1 1
 

The LMS predictor minimizes the mean square error 
by adaptively adjusting the coefficient vector W. In 
normalized LMS algorithm [3], if we use the one-step 
linear predictor, W is updated by 

   
2
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µ
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Since at time k the value of s(k+1) is not available to 
compute e(k), e(k-1) is used instead. In the standard LMS 
algorithm [6], µ is a constant; we refer to this algorithm as 
the fixed step size algorithm (FSA). Since video traffic is 
bursty, if we increase the step size µ , we can achieve fast 
convergence at the cost of a larger prediction error. On 
the other hand, the prediction error can be made small by 
decreasing the step size µ  at the cost of the convergence 
rate. The choice of the step size reflects a trade off 
between misadjustment and the speed of adaptation. The 
slow convergence of LMS may cause an extended period 
of intractability and excessive cell loss during scene 
changes.  

     Kwong and Johnston [7] proposed a variable step 
size algorithm for adjusting the step size kµ : 

                '
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where 
min max

0 µ µ< < . The initial step size 
0

µ is 

usually taken to be a little larger, although the algorithm 
is not sensitive to the choice. As can be seen from (6), the 
step size is always positive and is controlled by the size of 
the prediction error and the parameters  and α γ . 
Intuitively, a large prediction error increases the step size 
to provide faster tracking. If the prediction error 
decreases, the step size will be decreased to reduce the 

misadjustment. The constant
max

µ  is chosen to ensure 

that the mean-square error (MSE) of the algorithm 

remains bounded. Usually, 
min

µ is chosen to be close to 
the value that has been chosen for the fixed step size 
algorithm. We propose to modify Equation (6) to the 
following: 

            ,               (8)  ' 2
1 1 2(k k kq e q eµ αµ γ+ −+= + 2

1 )k

to accommodate the video traffic characteristics. We refer 
to this algorithm as the fast convergent variable step size 

algorithm (VSA) in this paper.   Here, and are the 

current and previous prediction errors, respectively, and 
 and are their respective weights. From numerous 

simulations, we found that  and 

k
e 1ke −

0.015
1q 2q

0.98α = γ =  work 
well in our real video trace simulations. Thus, we 
empirically set and 0.98α = 0.015γ = .    

    The Akaike information criterion (AIC) [8] is used 
to chose the best order not greater than 12.  The AIC 
criterion associates a cost function with the order of the 
filter. It was found by numerous simulations that the 
autocorrelation function of the prediction error e(n) is 
close to that of white noise with p=12 [3]. We have 
observed the prediction error of video traffic is a rather 
“uncorrelated” process resembling white noise. Thus, we 
use one step, 12-order adaptive linear predictor for both 
VSA and FSA.   
 
4. Simulation Results 

 
     Simulations on four half-hour long empirical VBR 

video traffic data sets were conducted. These data sets 
correspond to frame-size traces. Since frame size traces 
from the output of the MPEG encoder contain all 
statistical information about the encoded video, we can 
reserve bandwidth at least equal to the predicted value, 
and thus only the prediction error needs to be buffered. If 
the error resembles white noise or at most short memory, 
only small buffers are needed and high utilization and 
small delays can be achieved. 

     For performance comparison between VSA and 
FSA, we use  as a metric, 2 21 ( ) / ( )SNR ne s− ∑ ∑= n
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which is the ratio of the sum of squares of prediction error 
and the sum of squares of input data. For a fair 
comparison, both FSA and VSA use the same 12-order 
and one step ahead prediction. The results are shown in 
Table 1. 

     From Table 1, VSA incurs smaller prediction error 
than FSA in all the four tested sequences. Figure 2 shows 
the convergence properties of FSA ( µ = 0.009) and 
VSA. Note that VSA converges much faster than FSA. If 
we increase the step size to µ = 0.3 for the FSA, the 
convergence is fasten as shown in Figure 3 (note that the 
MSE is expressed in dB), but the prediction error is 

increased greatly; in this case, =0.0191 

for FSA, =0.0032 for VSA. 

2 2( ) ( )e n n∑ / s∑
2 2( ) / ( )e n s n∑ ∑

  
 

5. Conclusions 
 

    We have proposed a variable step size predictor for 
VBR video traffic, where the step size adjustment is 
controlled by the squares of the prediction error to reduce 
the trade off between misadjustment and tracking ability 
of the fixed step size LMS algorithm. Our simulations 
show that VSA not only incurs small prediction errors but 
more importantly also achieves faster convergence. Video 
traffic prediction can play an important role in dynamic 
bandwidth allocation. When employed for dynamic 
bandwidth allocation, VSA can significantly reduce CLR. 
This scheme does not require any prior knowledge of the 
video statistics nor does it assume stationary, and is thus 
very suitable for on-line real time prediction. It can also 
track scene changes better than FSA. This algorithm can 
be used for on-line real-time video transmission. 
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Table 1. Performance comparison of FSA and VSA 
predictors on relative size changes of I frames 

(Use  as a metric) 2 2( ) / ( )e n s n∑ ∑

 
Sequence FSA VSA Improvement 

(%) 
CD122 0.0040 0.0032 20 
Talk2 0.0078 0.0069 12 
News 0.0247 0.0210 15 

SoccerWM 0.0512 0.0404 21 
 

 
 

Fig. 2. Comparison of convergence properties of 
FSA ( µ = 0.009) and VSA on CD122 trace 

 
 
  

 
           

Fig. 3. Comparison of MSE (dB) of VSA and FSA 
( µ = 0.3) on CD122 trace 
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