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Abstract

Recent studies of high quality, high resolution traffic
measurements have revealed that network traffic appears to
be statistically self similar. Contrary to the common belief,
aggregating self-similar traffic streams can actually inten-
sify rather than diminish burstiness. Thus, traffic prediction
plays an important role in network management. In this pa-
per, Least Mean Kurtosis (LMK), which uses the negated
kurtosis of the error signal as the cost function, is proposed
to predict the self similar traffic. Simulation results show
that the prediction performance is improved greatly over
the Least Mean Square (LMS) algorithm. !

1. Introduction

Recent studies have shown that aggregate Internet traf-
fic does not comply to the Poisson model. It exhibits long
term correlations which cannot be modeled by a Markov
model. Leland et al. [5] analyzed the Ethernet traffic
data and showed that the generally accepted argument for
the “Possion-like” nature of aggregate traffic that aggregate
traffic becomes smoother as the number of traffic sources
increases has very little to do with reality. “Self-similar”
or “fractal like” processes can describe more effectively the
actual network traffic. A self similar phenomenon exhibits
structural similarity across all (or at least a wide range) of
time scales. For self similar traffic, there is no natural length
for a burst; traffic bursts appear on a wide range of time
scales. From a mathematical point of view, self similar traf-
fic differs from other traffic models in the following way
[1]. Let s be a time unit representing a time scale, such
as s = 10™ seconds (m = 0,+1,+2...). For every time
scale, let X () = X,(f) denote the time series computed
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as the number of units (packets, bytes, cells, etc) per time
unit s in the traffic stream. Traditional traffic models pos-
sess the property that as s increases, the “aggregated” pro-
cess, X () , tends to be a sequence of i.i.d. random variables
(covariance stationary white noise). But for a self-similar
process, they either appear visually indistinguishable from
one another (“exactly self-similar”) but distinctively differ-
ent from pure noise, or they converge to a time series with
a non-degenerate autocorrelation structure (“asymptotically
self-similar”’). A mathematical definition of a self-similarity
process will be given in Section 2.

Two formal mathematical models that yield elegant rep-
resentations of the self-similarity phenomenon are the Frac-
tional Gaussian Noise (FGN) and the Fractional Autore-
gressive Integrated Moving Average (FARIMA) processes.
Since the FARIMA process is much more flexible with re-
gard to the simultaneous modeling of the short term and
long term behavior of a time series than the FGN process,
the FARIMA process is adopted here to simulate the net-
work traffic.

The prediction of network traffic plays an important role
in resource allocation and network management. Many
types of traffic have the property of long range dependence
(LRD), and aggregated Internet traffic also shows long term
correlations. The higher correlation in the time domain, the
longer the mean queue size, and thus the delay will be long.
From the network perspective, the key point is to assign the
link capacity to a given traffic in order to provide guaranteed
quality of service. By prediction, we can not only achieve
this but also keep the bandwidth utilization high. In this
paper we propose to predict the self similar traffic by the
least mean kurtosis (LMK) algorithm. This prediction is
based on a higher order statistics rather than the second or-
der statistics used in the LMS algorithm. Simulation results
show that this LMK algorithm achieves better performance
than LMS in predicting self similar traffic generated by the
FARIMA model. The rest of the paper is organized as fol-
lows: In Section 2 self similar traffic and its widely used
model are introduced; the LMK algorithm is proposed to
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predict the self similar traffic. Section 3 presents the perfor-
mance analysis of our proposed scheme; finally concluding
remarks are included in Section 4.

2. Traffic prediction

The ability to predict traffic within a network is one of
the fundamental requirements of network design and man-
agement. The prediction quality depends on the amount of
uncertainty that accompanies the prediction and the nature
of traffic itself. Prediction must be as accurate as possible
so that bandwidth and buffer resources are not wasted and at
the same time QoS can be guaranteed. The LMK algorithm
is proposed to predict the self similar traffic, and is shown
to outperform the LMS algorithm.

2.1. The self similar traffic model

A self-similarity time series has the property that when
aggregated, the new short time series has the same auto-
correlation function as the original. Each point in the short
time series is the sum of multiple original points. The self-
similar process is defined as follows [5]: Let X = (X, :
t =0,1,2,---) be a covariance stationary stochastic pro-
cess with mean u, variance o2, and autocorrelation func-
tion r(k),k > 0. In particular, we assume that X has an
autocorrelation function of the form

r(k) ~ k=P L(t) as k — oo, (1)

where 0 < # < 1 and L is slowly varying at infinity.
For our discussion below, we assume for simplicity that L
is asymptotically constant. For each m = 1,2,3---, let
X(m = (X,(Cm) : k = 1,2,3--) denote the new covari-
ance stationary time series obtained by averaging the orig-
inal series X over non-overlapping blocks of size m. That
is, foreach m = 1,2,3,---, X("™) is given by

1
X,(C ):E(ka—m+1+"‘+ka)ak21-

Its corresponding autocorrelation function is ("), The pro-
cess is called (exactly) second-order self-similar with self-
similarity parameter H = 1 — 3/2,if forallm = 1,2, - -,
var(X(™) = o?m=" and

™ (k) = r(k) as k > 0. 2

X is called (asymptotically) second-order self-similar with
self-similarity parameter H = 1 — /2 if for all k large
enough,

™ (k) = r(k), asm — oo, 3)

with (k) given by (1). Intuitively, the most striking fea-

process is that their aggregated process X (") possesses a
non-degenerate correlation structure, as m — co.

In practice, traffic model is often used to simulate the
network traffic. An important requirement of practical traf-
fic modeling is to generate synthetic data sequences that
exhibit similar features as the measured traffic. For self-
similar traffic, there are two formal mathematical models:
FGN and FARIMA processes, that generate elegant rep-
resentations of the self similarity phenomenon. Since the
FARIMA process is more accurate in simulating network
traffic than FGN, we adopt FARIMA to generate traffic used
in this paper.

The FARIMA(p,d,q) process,
ARIMA(p, d, q), is defined as [3]:

an extension to

¢(B)VIX; = 0(B)e, 4)

where d is the indicator for the strength of long range de-
pendence and assumes the value between 0 and 1/2. ¢ is a
Gaussian white noise, and

¢(B) =1— 1B — ¢oB> —--- ¢, B”

9(B)=1-60,B—6,B>—...0,B"

are polynomials of degree p and ¢, respectively, in the back-
ward shift operator B. The operator V¢ = (1 — B)< can be
expressed by the binomial expansion

o0
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where I'(z) denotes the gamma function; note that for all
positive integers, only the first d + 1 terms are non-zero in
Eq. (6). The FARIMA(O, d, 0) process with 0 < d < 1/2,
is stationary and long range dependence with an autocorre-
lation function

_LA=dl(k+d) TA=d) o,
PE=T@T(k+1—a)  L(d)

as k — oo.

(N
To generate FARIMA traffic data, the FARIMA process can
be approximated by the linear process in the form of [4]

I
Xy = Z Ch—i€i, ®)
i=0

where €; is an i.7.d random variable. ¢; may be Gaussian or
non-Gaussian. For Gaussian FARIMA(0,d,0),

T'(k + d)

ture of (exactly or asymptotically) second-order self similar €k = L(d)(k+1) ©)
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cr, can be iteratively obtained as follows

co =1, (10)
k+d
Ck+1 = k—+1 * Ck- (11)

H = d + 0.5, and thus we can generate FARIMA traf-
fic according to the parameter H. In our simulations, the
FARIMA traffic with H = 0.8 is used to evaluate the per-
formance of the LMK predictor.

2.2. The LMK algorithm

Since the FARIMA model can yield elegant representa-
tions of the self similarity phenomenon, and it is more flex-
ible than FGN with regard to the simultaneous short-term
and long-term behavior of a time series, FARIMA is used
to simulate the network traffic.

Let X(n) be the time series traffic generated by the
FARIMA model. A pth-order linear predictor has the form

p—1

> h(h)z(n —1), (12)
=0
e(n) = z(n) — z(n)

where h, X are vectors of adaptive filter coefficients and
input signal, respectively. Let

E(n+1)=

=h"X —z(n), (13)

X= [x(n - 1)7

x(n—2),- - 1*.

z(n —p)

In the LMK algorithm, the cost function is defined to be the
negated kurtosis [7]:

= 3E2[ (n)*] — Ele* (n)]

Jrmk (h)
3[B(h"X — z(n))?]*~ EM"X — 2(n)]*(14)

Taking the gradient with respect to the vector H,
VJruk(h) = 12EhIX — z(n)?E[h! X — z(n)]X
—4EMh™X — 2(n)]?X
= 4{3E[e*(n)|Ele(n)] — 4E[e*(n)]}X.  (15)

The mean value E[h?X — z(n)]? will be estimated spe-
cially by the following recursive equation:

G(n) = BG(n —1) + (1 - B)e* (n). (16)

Using this estimate and the ensemble estimate of E[h? X —
z(n)], we can get the following equation:
e(n)]e(n)X. (17)

VJuk (h(n)) = 4[3G(n) —

According to the method of the steepest descent adaptive
weight-update algorithm [2], LMK can be characterized by

h(n +1) = h(n) — iu{ﬁJLMK(h(n))}, (18)

where yu is the step size, V.Jrarx (h(n)) is an approxima-
tion of the gradient vector V.Jppr i (h), G(n) is an iterative
approximation of E[h’X — z(n)], and 3 is a forgetting
factor that controls the memory of the error power estima-
tor. = 0.7 is empirically found to work well in all our
simulations. Eq. (18) can further be normalized as follows:

p3G(n) — e*(n)]e(n)X
XTX)? L)

h(n+1) = h(n) +

Tanrikulu et. al [7] have compared the computational
complexities of LMS and LMK, and found that LMS re-
quires O[2N + 1M, N + 1A] and LMK requires O[2N +
5M,N + 3A] where N is the number of adaptive coeffi-
cients, M denotes multiplication, and A denotes addition.
Therefore only four extra multiplications and two extra ad-
ditions which are independent of N are necessary for the
LMK algorithm.

3. Performance analysis and comparison

A simulation is conducted on the self-similar traffic gen-
erated by the FARIMA model. Since the self similar pro-
cess has the the property of long range dependence, and
the history of long range dependence process has signifi-
cant impact on the present value of the process, it is nat-
ural to assume that the longer the dependence, the better
the prediction. Ostring and Sirisena [6] considered the pre-
diction of long range dependent process and demonstrated
that long-range dependence has only marginal value in im-
proving prediction. It is the short term correlation within
the structure of a self similar process rather than the long
term correlation that dominates the performance of the pre-
dictors. So the Akaike information criterion (AIC) is used
to choose the best order not greater than 12. The AIC
associates a cost function with the order of the filter. It
was found by numerous simulations that the autocorrela-
tion of the prediction error e(n) is close to that of the white
noise. Thus, we use one-step, 12 order adaptive filter for
both the LMK and LMS algorithm. The performance of the
algorithm is quantified by the inverse Signal to Noise Ra-

fio (SNR-! = =t
( Som

comparison of LMK based and LMS based predictors.

The Hurst parameter of the generated self-similar traffic
is H = 0.8; this experiment is repeated 50 times, and the
resulting ensemble averaged SNR ™! is plotted for LMK
and LMS in Fig. 1. Note that the step sizes are chosen as

) Table 1 shows the performance
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Table 1. Comparison of the SN R~! performance of LMK and LMS predictors on self similar traffic

Method SNR!
1 2 3 4 5 6 7 8 9 10 Average
LMK | 0.0156 | 0.0169 | 0.0152 | 0.0161 | 0.0156 | 0.0170 | 0.0154 | 0.0202 | 0.0170 | 0.0159 | 0.0165
LMS | 0.0398 | 0.0385 | 0.0410 | 0.0370 | 0.0424 | 0.0376 | 0.0421 | 0.0415 | 0.0349 | 0.0422 | 0.0397

pryvs = 0.6, urpypr = 0.7 that provide the least mismatch
for each algorithm, in other words, the least SNV R~1. The
forgetting factor in LMK is chosen to be 5 = 0.7 which
provides less mismatch and faster convergence. In Fig. 1,
it is clear that LMK not only converges as quickly as LMS
but also produces significantly less prediction error; thus,
LMK outperforms LMS in predicting the self similar traf-
fic. Table 1 shows the performance comparison of SN R™*
for LMK and LMS. Note that LMK incurs smaller predic-
tion error in all experiments than LMS; due to the length
limit, only ten results and their average values are listed
here. Thus the performance has improved greatly if we use
the LMK algorithm instead of the LMS algorithm to predict
the self similar traffic.
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Figure 1. Averaged output SNR™! versus
number of iteration for self similar traffic

4. Conclusions

Aggregate Internet traffic does not comply to the Poisson
model, but can be more effectively described by the self-
similar process. In this paper, we propose the LMK adap-
tive algorithm which uses the negated kurtosis of the error
signal as the cost function to predict the self-similar net-
work traffic generated by the FARIMA model. Simulation

results show that LMK incurs much smaller prediction error
as compared with LMS. Since the prediction performance
can be improved greatly with only a small extra computa-
tion, LMK can be used to effectively predict the real time
network traffic.
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