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Abstract

In wireless communications, the relative strength of the direct and scattered components of the received signal, as

expressed by the Ricean � factor, provides an indication of link quality. Accordingly, efficient and accurate methods for

estimating � are of considerable interest. In this paper, we propose a general class of moment-based estimators which

use the signal envelope. This class of estimators unifies many of the previous estimators, and introduces new ones. We

derive, for the first time, the asymptotic variance of these estimators and compare with the Cramer-Rao bound (CRB).

We then tackle the problem of estimating � from the in-phase and quadrature-phase (I/Q) components of the received

signal, and illustrate the improvement in performance, as compared to the envelope-based estimators. We derive the

CRBs for the I/Q data model, which, unlike the envelope CRB, is tractable for correlated samples. Furthermore, we

introduce a novel estimator that relies on the I/Q components, and derive its asymptotic variance even when the channel

samples are correlated. We corroborate our analytical findings by simulations.
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I. INTRODUCTION AND SIGNAL MODEL

In wireless communications, when there is a line of sight (LoS) between the transmitter and the

receiver, the received signal can be written as the sum of a complex exponential and a narrowband

Gaussian process, which are known as the ‘LoS component’ and the ‘diffuse component’, respec-

tively. The ratio of the powers of the LoS component to the diffuse component is the Ricean factor,

which measures the relative strength of the LoS, and hence is a measure of link quality. Consider

the communication scenario in Fig. 1 where an unmodulated carrier is transmitted, and the receiver

that is traveling with a velocity � receives the transmitted waveform through a LoS component and

many multipath components. The baseband in-phase/quadrature-phase (I/Q) representation of the

received signal can be expressed as:�������	��
 ��
������ ��� ���� � �����! #"%$#&('*),+-�!.-/103254768/10 � 
 
������ ��� �9 � � : �����<; (1)

where � is the Ricean factor, =?> and @�> are the angle of arrival (AoA) and phase of the LoS respec-

tively, and are assumed to be deterministic parameters; the maximum Doppler frequency ACB is the

ratio of the mobile velocity � and the wavelength; : ����� is the diffuse component given by the sum of

a large number of multipath components, constituting a complex Gaussian process; the correlation

function of : ����� can be expressed as (see e.g., [19])D?EF��G��<H!�JILK : ����� :NM ��� � G��,OP�RQ "S "
TNEF� = � ���U #"%$#&('*),+V�!.103WYX = ; (2)

where ILK3Z O denotes expectation, M denotes conjugation, T[EF� = � is the AoA distribution of the diffuse

component, which, when uniform, yields the well-known Clarke-Jakes correlation function that is

expressed in terms of the zeroth order Bessel function of the first kind: D\EF��G��]�_^ > �-`Ya AbB G�� [19].

Without loss of generality, we are assuming Idc : �����%c  � � which implies that the power of the diffuse

component in (1) is e  . Similarly, the power of the LoS component is given by f  . Notice that f ande in (1) are defined in such a way that the ratio f  8g e  yields the Ricean � factor, and the received

signal power is given by Idc �������%c  � f  � e  � 
 . In fact, it is often the envelope h �����iH!�jc �������%c
that is of interest, and its marginal probability density function (pdf) can be expressed in terms of 

and � as (see e.g., [19])T�k��*Dl�	� `7� �m��� �1D
 npoCq�rts � s � ����� �1D  
 uwv >]x `bD 
 � � �m��� �
 y ; (3)

where v8z �1Z3� is the { 2 E order modified Bessel function of the first kind. Notice that when � �}| ,
there is no LoS component, in which case (3) reduces to the Rayleigh distribution.
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The relative power of the LoS component, represented by the � factor, is a useful measure of

the communication link quality. Therefore, estimation of � is important in a variety of wireless

scenarios, including channel characterization, link budget calculations, adaptive modulation, and

geolocation applications [8], [12]. Moreover, recent advances in space-time coding have shown that

the capacity and performance of multiple input multiple output (MIMO) systems depend on the

Ricean factor [22]. This has lead [3] to consider adaptive modulation schemes for MIMO systems

where the adaptation is based on the Ricean factor rather than the instantenous channel coefficients.

Hence, estimation of the Ricean factor is important not only for channel characterization, but also in

adaptive modulation schemes where accurate estimates and the knowledge of the estimation error is

crucial for proper system operation.

Estimation of the Ricean factor has been tackled in quite disparate contexts. In [15], Rastogi

and Holt propose a moment-based approach which utilizes the second and fourth order moments

of the envelope h ����� , in order to estimate � from the HF radio waves (see also [9]). In [21], the

maximum likelihood estimator (MLE) is derived, and is shown to require a cumbersome inversion of

a nonlinear function of � . In the same reference, a simpler estimator that utilizes the first and second

order moments of the received envelope, which also requires the inversion of a nonlinear function of� is proposed (this estimator was later rediscovered in [14]). In [1], two moment-based estimators

are compared using asymptotic analysis and simulations. The distribution fitting approaches for

estimating � , proposed in [8], are robust, but are not suited for online implementation due to their

complexity and hence might be more useful for testing whether the measured envelope is Ricean

distributed, rather than estimating � . An expectation-maximization approach to finding the MLE

for a multidimensional Ricean distribution is proposed in [11], but still not easy to calculate and use

in a communication scenario. In [7], the moment-based approach that uses the second and fourth

moments of the envelope (originally mentioned in [15]) is derived from a different perspective,

assuming the LoS component in (1) is time-invariant. A dynamic approach based on the received

uncoded bit error rate (BER) is recently proposed in [20].

In most of these references, the received data is assumed to be independent and identically dis-

tributed (iid). Neither the effect of correlation nor the influence of the LoS AoA =Y> on the perfor-

mance has been addressed in the literature. Performance analysis of the aforementioned estimators

have mainly relied on simulations. In addition, mostly estimation from the envelope h ����� has been

investigated, and a general framework for moment-based estimators has not been derived. More-

over, the potential performance improvements attainable by using the I/Q components rather than

the envelope have not been fully addressed. We will fill these gaps in this paper. More specifically,
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we propose a general family of moment-based estimators that rely on the envelope h ����� , which in-

cludes the moment-based estimators in [7], [14], [15], and [21], as special cases. The asymptotic

performance analysis of these moment-based estimators are performed for the first time and com-

pared to the Cramer-Rao bound (CRB). In addition we investigate, for the first time, the estimation

of � from the I/Q components of the flat fading channel coefficient given in complex baseband form

by (1). The I/Q components of the channel (or their estimates) are available in applications where

a coherent estimate of the channel is necessary. We show that using the I/Q components (which

contain phase information of the channel) improves the estimator performance, especially for small

values of � . Moreover, we will see that, unlike the estimators that utilize the envelope, the perfor-

mance analysis of the estimators that utilize the I/Q components and the corresponding CRB can

be computed even when the samples of ������� are correlated. We will derive the rate of convergence

of the estimators that utilize the I/Q components, which will require a novel approach because the

samples of (2) are not absolutely summable.

The paper is organized as follows. In Section II we propose a general class of moment-based

estimators for � that use the envelope h ����� , derive the asymptotic variance, and compare it with the

CRB, derived under the iid assumption. In Section III we derive the CRB for the I/Q data, allowing

for possible correlation and observe that there might be significant gains in performance if the I/Q

components are utilized. This motivates us to derive an FFT-based estimator and its asymptotic

performance, which is shown to be better than the envelope-based estimators. In Section IV we

corroborate our analytical results with computer simulations, and Section V concludes the paper.

II. MOMENT-BASED ESTIMATION OF � FROM THE ENVELOPE

The moments of the Ricean distribution, expressed in terms of e  and � , are given by [19]:

� z H!�RILK h z �����,OP� � e  � z �  � � { g ` ��� � npoCq � s � ������� � { g ` ���	�?�	��� � ; (4)

where �
�����1Z � Z � Z3� is the confluent hypergeometric function, and
� �1Z3� is the gamma function. We see

from (4) that the moments depend on the two unknown parameters � and e . Hence, a moment-

based � estimator requires estimates of at least two different moments of h ����� . More specifically,

suppose that for {����
 we define the following functions of � (recall that � z is the { 2 E moment ofh ����� ): A z�� � � � �<H!� � �z� z� � (5)

Since by (4) and (5), A z�� � � � � depends only on � and not on e , we can construct moment-based

estimators for � by using sample moments instead of the ensemble values in (5) and then inverting
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the corresponding A z�� � � � � , to solve for � . Hence, an estimator that depends on the 
 2 E and { 2 Emoments could be expressed as:�� z�� � H!� A S �z�� � r �� �z�� z� u ������� ��	� H!� �
 � S �� 
 � > h � �����	��� ; (6)

where



is the number of available samples, ��� is the sampling period, and we assume that the

inverse function A S �z�� � �1Z3� exists. For all the values of 
 and { we considered, A z�� � � � � is a monotone

increasing function in the interval ��� �V|C;�� � , and hence the inverse function A S �z�� � �1Z3� does exist.

Notice that the moment estimator
���� can be updated using a sliding window of length



, which

would be useful in real-time estimation of � .

The natural choice for � { ; 
 � is � � ;p`l� since this selection involves the lowest order moments.

When { � � and 
 �R` , (5) can be calculated using (4) as:A �
�  � � �	�

a � S��� � �m��� ��� � �m��� � v > r � ` u � � v � r � ` u��  � (7)

The corresponding estimator
�� � �  involves the complex numerical procedure of inverting (7). This

estimator has been discussed in [14] and its performance was studied in [21] via simulations where

it was found that
�� � �  performs similarly to the MLE. The MLE is given as the value of � that

satisfies the following equation [21]:�� � � � � � � ` � �
! � � �m��� � � S �� 
 � > h �����	��� v �#",` h �����	����$ �  � �&%v > ",` h �����	����$ �  � �&% � � � ��  (8)

which is evidently even more difficult to compute than
�� � �  , because (7) can be inverted using a

lookup table, but this is not possible when the value of � that satisfies (8) is sought for the MLE.

This is because one cannot rearrange (8) to have a function of � that does not depend on h ����� on

one side of the equation, and something that only depends on the data h ����� (and not on � ) on the

other side. So the MLE requires an exhaustive search, or a root-finding technique such as Newton’s

method where the convergence of the root estimate depend on h ��������� and might not always be

guaranteed.

A simpler alternative to
�� � �  is

��  � ' . It can be shown using (4) and (5) thatA  � ' � � �	� � � �m��� �  �  � � �m� ` �  � (9)

Solving for
��  � ' from an estimate of the left hand side in (9) involves finding the roots of a second-

order polynomial which can be done in closed form. It can be shown that one of the roots of this
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polynomial is always negative which can be discarded since ��� | , yielding a unique non-negative

solution for
��  � ' which is given by:��  � ' � s ` ��   � �� ' s ��   ` ��   s �� '��   s �� ' � (10)

The estimator in (10) has been known since [9, 15] in the context of HF channel modeling, and

recently re-emerged in the wireless communications literature in [7], though not presented in this

general setting. In what follows, we derive novel asymptotic variance (AsV) expressions for
�� z�� � ,

where { and 
 are arbitrary moment orders.

A. Asymptotic Variance of Moment-Based Estimators

In order to derive the AsV of the estimators proposed in this paper, we will be using the following

well-known result which is obtained by slightly adapting [13, Theorem 3.16] to our problem.

Theorem: Suppose the two statistics � ��� 
 � and �  � 
 � converge to � � and �  respectively in

the mean squared sense, and the estimator of interest is given as a function of these statistics:�� � 
 �	��� � � �8� 
 �p; �  � 
 ��� . Let X � 
 � denote the rate of convergence of the vector K � �?� 
 � �  � 
 �,O ,so that X � 
 ��K5� � �?� 
 � s � � �m� �  � 
 � s �  �,O converges to a random vector with mean zero, and

covariance matrix whose ���,;��7� element is given by

�

 � H!�	� ��
�
��� X  � 
 ������� � �


 � 
 �p; � � � 
 ���<; �,;�� � � ;p` � (11)

Then the scaled estimator X � 
 ����� � � ��� 
 �p; �  � 
 ��� s � ��� �8;��  ��� converges in distribution to a ran-

dom variable with zero mean and variance given by

����� �  � 
 � �  � � � � � 
 ��� � ��� �8; �  �� �

 � � ��� �8; �  �� � � !!! " # ��$ #

�
"&% ��$ % � (12)

We can now use the Theorem to calculate the AsV for the moment-based estimators when the

envelope samples are assumed to be iid. In this case, � ��� �p; �  � � A S �z�� � ��� � � g � z  � , � �?� 
 � � �� z ,�  � 
 � � ��
�

, � � � � z , �  � �
�

, and X � 
 �]� $ 
 (meaning that � ��� 
 � and �  � 
 � are $ 
 -

consistent because of the iid assumption). Using (12) and the standard result for the derivative of an

inverse function, we can express the AsV as follows:

����� � �� z�� � �(� r 
 � S z� � �
S �zA('z�� � � � � u  � �  z s �  z � s ` 
 � S z� � �

S �zA('z�� � � � � { � S z S ��
� �zA('z�� � � � � � � z 4 � s � z � � �� r { � S z S ��
� �zA('z�� � � � � u  � �  � s �  � � ; (13)
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where A 'z�� � � � � is the derivative of A z�� � � � � with respect to � , and can be computed using (4) and

(5). Hence we can conclude that all moment-based � estimators,
�� z�� � in (6), are $ 
 -consistent,

and asymptotically unbiased, with asymptotic variance given by (13). Notice that (13) is a function

of only � � ; { ; 
 � and does not depend on 
 . This can easily be seen from the fact that the estimator

in (6) is scale invariant (i.e., if the envelope data is multiplied by a constant, the estimator in (6)

remains the same).

In order to compare the AsV expression in (13) with a benchmark, we numerically computed

the CRB, which provides a lower bound for the variance of any unbiased estimator. The CRB was

reported in [21] as

����� � � �(� � 
 Q �> r �
��� K ��� T�k �*Dl�,O u  T�k �*Dl� X D	�

S � ; (14)

but this expression assumes that the only unknown is � , and that 
 �RIdc �������%c  is known. The CRB

for the more realistic scenario that 
 is unknown can be derived from the Fischer Information Matrix

(FIM) of K � 
 O , by using the (1,1) element of the inverse FIM, and is shown to be greater than the

CRB for the known 
 , which is a well-known consequence of 
 being a nuisance parameter [10].

We show in Appendix I, how this is done numerically. It is important to point out that whether 
 is

known or not, affects the CRB. However the value of 
 does not affect the CRB, because the CRB

is scale invariant, and hence does not depend on the second moment 
 .

Fig. 2 plots the asymptotic standard deviation (square root of the AsV) for
�� � �  , �� � � 
 , and

��  � ' ,as well as the square root of the CRB for known and unknown 
 , which collectively illustrate the

performance of moment-based estimators for large sample sizes. As expected, the CRB for known
 is smaller than the CRB for unknown 
 , even though the difference is very small. In the rest of

this section, unless otherwise noted, CRB will refer to the realistic case where 
 is unknown. Notice

from Fig. 2 that as � gets smaller, making the Ricean pdf more like Rayleigh, no unbiased envelope-

based estimator can estimate � accurately, because the CRB goes to infinity. We also observe

that the most accurate estimation of � from the envelope h ����� is possible around � � � . Note

also that as � increases, the asymptotic standard deviation goes to infinity approximately linearly.

Among the moment-based estimators,
�� � �  (dashed line) has the least AsV for moderate/large � ,

and is in fact indistinguishable from the CRB for ���_� ��
 , which leads us to conclude that
�� � �  is almost asymptotically efficient. As we expected, increasing 
 and { (implying usage of higher-

order moments) result in larger AsV for moderate/large � . Indeed, the simple estimator
��  � ' in

(10), for which there is a closed form expression, and
�� � � 
 have a greater AsV than that of

�� � �  .After we have introduced and analyzed the family of estimators
�� z�� � that utilize the envelope
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samples, we notice that two of these estimators are noteworthy:
�� � �  has the best asymptotic perfor-

mance of all the moment-based estimators with integer moments, which is indistinguishable from

the CRB, and
��  � ' in (10) has a simple closed-form solution which is easier to implement in practice.

III. ESTIMATION OF � FROM THE I/Q COMPONENTS

In this section, we will investigate the estimation of � from the I/Q components of the received

signal given in complex baseband form, which are the real and imaginary parts of (1). To the best of

our knowledge, this is the first estimator of � that uses the I/Q components. The I/Q components are

available in applications where a coherent estimate of the channel is necessary. We will show that

using the I/Q components (which contain envelope and phase information of the channel) improves

the estimator performance, especially for small values of � .

A. CRB for I/Q Data

In this section we will derive the CRB for the variance of � estimators that use the I/Q data in (1).

The resulting CRB will be a lower bound on the variance of any unbiased estimator for � obtained

not only from the I/Q components in (1), but also from the envelope. This is because any estimator

that can be constructed from the envelope can be constructed from (1). We will see that unlike

the derivation of the envelope CRB, we will not need to make the restrictive iid assumption when

deriving the I/Q CRB because of the tractability of the multivariate Gaussian pdf (as opposed to the

difficulty of expressing and working with the multivariate Ricean pdf that emerges with correlated

envelope samples). CRBs for fading parameters for a differently parameterized radio transmission

channel can also be found in [5].

Let us define the �	� -spaced samples of (1) as ��K { O�H!�J��� { � � � , ��> H!� `Ya AbB ��� � � =?> � �	� and : K { O�H!�: � { �	��� . We may then express the sampled I/Q signal in terms of e and � as follows:��K { O � $ � e ����� � / z 4768/,0 � e : K { O � (15)

Suppose that we have a data record of



samples from (15). We would like to compute the CRB

for the parameter � . We emphasize that the I/Q CRB in this section is different from the envelope

CRB, because the data from which they are derived are different. We will calculate the I/Q CRB for

two cases:

(i) All the parameters (except � ) are known;

(ii) All parameters in
� H!��K � e�� ><@�>�� B O are unknown and the channel correlations are given byD?EFK � O H!��D?EF� � �	���	� ^ > � � B �7� , where � B �R`Ya AbB �	� .

The first case, which appears rather unrealistic, is important because it provides a lower bound on
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any estimator of � whether any other parameter is known or not, and whether the envelope or the

I/Q components are used. Another reason for considering case (i) is the resulting simplicity of the

bound. We shall consider case (i) first, and then we will address case (ii).

Let � H!�mK ��K |bO � � � ��K 
 s � O5O�� be a length-



vector that contains the available sampled I/Q com-

ponents, and � � � > ; @�> � H!� K npoCq ��� ��> | � � @�> � � � � npoCq ��� ��> � 
 s � � � � @�> �,O�� . Then the mean and co-

variance matrix of � are given by � � � � H!�RILK � OP� e $ � � � ��> ; @�> � , and � � � �<H!�JILK5� � s � � � ����� � s� � � ���	�(O<� e  
 � � B � , where

 � � B � denotes the normalized 1 covariance matrix of the I/Q com-

ponents, and � denotes Hermittian. When all parameters in
�

except � are known (case (i)), using

(33) in Appendix II, it is easy to show that��������
 � � �	� ` �
� � � ��> ; @�> � 
 S � � � B � � � ��> ; @�> � ; (16)

which reduces to the simple ` � g 
 when ��K { O ’s are independent (i.e., when

 � � B �(��� ).

Some remarks are now in order:

Remark 1: Note that if the correlations satisfy � � c D?EFK � OUc�� � , then we can use the standard

results for the asymptotic forms of Toeplitz matrices (see e.g., [6]) to conclude that the asymptotic

CRB defined as � ��
 �
��� 
 ��������
 � � � converges to ` ��� EF� ��> � , for � EF� ��> � ��_| , where � EF� � � is

the spectrum of : K { O . The absolute summability of the covariances hold, for example, when : ����� is

modeled as an autoregressive process. We see that, in this case, if � EF� ��> � is large, the CRB increases.

However, the correlation function we have adopted in (2), which is a more accurate correlation model

for wireless communications, is not absolutely summable in general, so we cannot easily establish

the link between � EF� � � and the asymptotic CRB in case (i), as we did when � � c D?EFK � OUc�� � holds.

Remark 2: The CRB in (16) considers only � as an unknown parameter, which yields a bound

that is smaller than the CRB when other parameters of the model in (15) are unknown. Hence, (16)

provides a lower bound to the variance of any unbiased estimator of � , regardless of whether it

is constructed from the envelope or the I/Q components of the signal, or whether any of the other

parameters are known.

Remark 3: Unlike the envelope CRB in Fig. 2, as � gets smaller, the I/Q CRB in (16) goes to

zero. This is also the case for the CRB for the more realistic case (ii), where
�

is unknown, which

is derived in Appendix II (see (35)). In Fig. 3, we show the CRB for the envelope data model, CRB

for case (i) in (16) where the parameters are known, and the CRB for case (ii) in (35) where the

parameters are unknown. We observe in Fig. 3 that CRBs for the I/Q data become smaller as �
gets smaller for both cases (i) and (ii), which is also proved in the Appendix II for both cases. This

reinforces our intuition that the additional phase information in the I/Q data, which is not present in#
so that it has ones on the main diagonal
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the envelope data, offers potential improvements in estimator performance, particularly for small � .

This insight motivates us to search for estimators of � from the I/Q components. We now propose

such an estimator.

B. An Estimator of � from the I/Q components

In pursuit of finding an estimator for � from the I/Q components, the first thing that comes to

mind is the MLE constructed from the I/Q data (which is different from (8) constructed from the

envelope data). But an MLE from the I/Q data will have to involve joint estimation of � ; e ; � > ; @�> ,
and � B , which requires a multidimensional search and hence is not practical. An alternative to the

MLE is a nonlinear least-squares approach of [18], which was proposed to estimate f , � > , e , and@�> , but not � . In what follows we provide a yet simpler approach.

Let
�
��> ������� 
 � o � c 
 S � � � S �z � > ��K { O � S � � z c . Consider now the following statistics of ��K { O :

� �?� 
 � H!� �
 � S �� z � > ��K { O � S � �� / z ; (17)

�  � 
 � H!� �
 � S �� z � > c ��K { OUc  � ��  � (18)

Let us assume, for the moment, that
�
� >�� ��> . Recalling that ��K { O � f � ��� � / z 4768/10 � e : K { O , and

substituting it in (17), we arrive at � ��� 
 � � f � �U68/ � 
 S � e � � S �z � > : K { O � S � � / z . Since as seen from

(20),

 S � � � S �z � > : K { O � S � � / z goes to zero in the mean-squared sense as



increases, we see that for

sufficiently large



, c � ��� 
 �%c  �Rf  . On the other hand,
��  in (18) converges to 
 � f  � e  . This

prompts us to propose the following estimator for � that approximates f  8g e  :�� ��
 � 
 �	� c � ��� 
 �%c  �  � 
 � s c � ��� 
 �%c  (19)

Compared to the estimators that rely on the envelope, the I/Q estimator requires a step to estimate

��> , which can be accomplished with FFT complexity 	 � 
 ���
� 
 � . Hence the penalty paid for

the performance improvements that the I/Q estimator offers is a slight increase in computational

complexity. Similar to the moment-based estimators, the I/Q estimator can benefit from updating

� ��� 
 � and �  � 
 � using a sliding window for applications requiring estimates of � in real-time.

We will now derive the AsV of (19).

C. Asymptotic Variance of
�� ��
 � 
 �

In this section, we calculate the asymptotic variance of
�� ��
 � 
 � for the case when the samples��K { O are independent, and also when they are correlated. To simplify the analysis we will assume that
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��> � ��> . Hence, our calculations will yield the AsV when � > is known perfectly, which is a lower

bound to the AsV of (19). We will begin with the case where the samples ��K { O are independent. Let

X � 
 � � $ 
 , � ��� �p; �  � � c � �%c  pg ���  s c � �%c  � (c.f. (19)), � � � f � �U68/ and �  � 
 (because (17)

converges to f � �U68/ and (18) converges to 
 ). To calculate the �

 � in (11) we will use the following

covariance expressions which are straightforward to show [23]:

�����%� � ��� 
 ��� � e  �

� S ��� � S � 4 � r � s

c � c
 u D?EFK � O � S � � / � ; (20)

�����%� �  � 
 ��� � 
  � ����� �  �

� S ��� � S � 4 � r � s

c � c
 u � c D?EFK � OUc  � ` � � n "#D?E K � O � S � � / � %�� ; (21)

����� � � ��� 
 �p; �  � 
 ���	� f ���U68/ e  �

� S ��� � S � 4 � r � s

c � c
 u D?EFK � O ��� � / � � (22)

where D?EFK � O H!� D?EF� � �	��� , and
� n �1Z3� denotes real part. Using (20)-(22) with DYEFK � O ���CK � O 2, we

obtain � � � � e  , � �  � � M � � f � �U68/ e  , and �  , � 
  �-` � �J� � g � � �J� �  . Differentiating � ��� �p; �  �we get � � ��� �8; �  � g � � � � f � S �U68/ 
 g e  , � � ��� �8; �  � g � �  � s f  8g e ' and substituting in (12), and

simplifying, we finally obtain

����� � �� ��
 �	� � � �  � ����� � � (23)

We observe that this simple polynomial function of � suggests that the estimator should be more

accurate for smaller values of � . This is observed in Fig. 4 where we compare (13) with (23), and

observe that until � ��� , the I/Q estimator has a better asymptotic performance.

The more realistic, but challenging problem is calculating the asymptotic variance when the sam-

ples ��K { O are correlated. If the correlations of ��K { O are well-behaved enough for � � c D?E K � OUc � �
to hold (as seen in exponentially-decaying ARMA, or Gaussian shaped correlation functions) then

(20)-(22) are 	 � 
 S � � , so the rate of convergence is the same as the iid case 3. We will, however,

adopt the model in (2) for the correlation function, which is not absolutely summable, but has the

merits of being motivated by physical considerations. Moreover, (2) does not constrain our results

to isotropic scattering, i.e, TPEF� = � does not have to be equal to � g �-`Ya � in s a	� = � a , which allows

for directional receptions, and generalizes Clarke-Jakes model [19]. To our knowledge, this is the

first time that (2) is used in performance analysis of estimators in wireless communications.%
Krönecker’s delta function 
�� 
�� is used because the samples are assumed uncorrelated.�
We will use the standard notation ��������������������� � to mean that ������� !"������� is a bounded sequence.
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Let us first characterize the asymptotic behavior of DYE ��G�� , which will be central in the calculation

of the asymptotic variance. Using the method of stationary phase, it can be shown that (2) can be

expressed as [4]:D?EF��G��	� � AbB G�� S � �  � TNEF�V| � �����! #"%$#&7W S��� 0 � TNEF��a � � S ���! #"%$#&CW S��� 0 �	� 	 ��G S � � � (24)

Notice that when T�EF� = � is uniform, DYE ��G����j� AbB G�� S � �  ��� � �-`Ya AbB G s a g � � , which is a well-known

asymptotic expansion of ^ > �1Z3� . Hence, we reach the interesting conclusion that under some regularity

conditions on T[E � = � , for large enough G , the correlation function is the sum of a sinusoid whose

envelope goes to zero as G S � �  and an error term which goes to zero faster as G S � . In our AsV

derivation for
�� ��
 in (19), we will need the correlation function for the sampled I/Q components.

Recalling that �(B �R`Ya AbB �	� , the sampled correlation function can be expressed, using (24) asD?EFK � OP� r `Ya
� B � u � �  � TNEF�V| � � ��� � & � S��� 0 � TNEF��a � � S ��� � & � S��� 0 �	� 	 � � S � � � (25)

Notice that the correlation in (25) are not absolutely summable. The slow-decaying nature of the

correlation function in (25) results in a slower convergence rate for � ��� 
 � and �  � 
 � as compared

to the independent case. First let us determine how fast the variances of � �?� 
 � and �  � 
 � in

(17) and (18) go to zero. We will then invoke the Theorem in Section II to determine the rate of

convergence of
�� ��
 � 
 � which is the goal in this subsection.

Using (25) and (20) we show in Appendix III the following: 4

�����%� � ��� 
 ���	� �
	 � 
 S � � ��� c ��> c�� � B
	 � 
 S #% � ��� c ��> c\� � B ; (26)

and similarly, using (25) and (21), we show in Appendix III that

�����?� �  � 
 ���	�
�
	 � 
 S � ���
��� 
 ��� ��� c ��> c � � B
	 � 
 S #% � ��� c ��> cl� � B � (27)

Comparing (20) and (22), it is apparent that �����%� � ��� 
 ��� and ����� � � ��� 
 �p; �  � 
 ��� converge at the

same rate given by (26).

Recall that when the samples are independent (or more generally when � � c D?E K � OUc � � ), the

convergence rate of the variances of both � ��� 
 � and �  � 
 � is X S  � 
 � � 
 S � . It is interesting

that, for correlation functions of the form in (2), the rate of convergence of both � �?� 
 � and �  � 
 �depends on whether c � > c � � B . Physically, c � > cP� � B when =?> � | in (1), i.e., the LoS is in the�
Notice that since � / �	� &�

��� ��� / � , � � / ����� & always holds, so we do not consider the case � /�� � & .
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same direction as the mobile. So, when c �	> c � � B , � �?� 
 � converges faster than �  � 
 � , and whenc ��> c\� � B , the variances of � ��� 
 � and �  � 
 � converge to zero at the same rate. Now we are ready

to invoke the Theorem of Section II.

The Theorem requires that both � ��� 
 � and �  � 
 � should converge when scaled by the same

sequence. So, when c ��> c � � B , the scaling sequence should be the slower of the � �?� 
 � and

�  � 
 � , so that the faster one will converge to zero (if we were to scale with the rate of the faster

one, the slower statistic would go to infinity). Hence, when c � > c � � B , we choose X � 
 � so that

X S  � 
 � � 
 S � ���
��� 
 � . To calculate the AsV, we need to substitute in (12), X � 
 � �  
 g ���
��� 
 � ,the partial derivatives of � ��� �p; �  � , which are given right before (23), and �

 � which, using (11), (20)-

(22), (26) and (27), are given by � � � � � �  � �  � � | , and �  , ��K 
  8g � � �J� �  O�� � , where � � and

the resulting AsV are given by

����� � �� ��
 �(� �  
�
� ��
�
��� ����
��� 
 � � S ��� � S � 4 � r � s

c � c
 u c D?E K � OUc  �� ��� ��[� � # ;Rc ��> c � � B ; (28)

and the limit � � , which is independent of � , can be shown to exist using (25). When c � > ct� � B
we have that both � �?� 
 � and �  � 
 � converge at the same rate. So we select X S  � 
 �	� 
 S � �  and

substitute in (12) X � 
 �	� $ 
 � �  , the partial derivatives, and �

 � , which, using (11) and (20-27) turn

out to be � � �]� 
 �  , � �  � � M � � f � �U68/ e  �  , and �  , � 
  ` � g � �_� � �  �  , where �  and the

resulting AsV are given by

����� � �� ��
 �	� � � 
 � � � �
� ��
�
��� 
 S � �  

� S ��� � S � 4 � r � s
c � c
 u D?EFK � O ��� � / � �� ��� ��[� � % ;Rc ��> c\� � B (29)

and the limit �  is independent of � .

Hence, loosely speaking, we can say that when the data are independent the AsV of
�� ��
 � 
 � is

proportional to � � �  � �_� � � when the estimator is scaled by X � 
 � � $ 
 ; when the data are

correlated with correlation function given in (2), we have the case c �	> c�� � B : the AsV of
�� ��
 � 
 � is

proportional to �  when the estimator is scaled by X � 
 � �  
 g ���
�N� 
 � ; and the case c ��> c � � B :

the AsV of
�� ��
 � 
 � is proportional to � 
 � � when the estimator is scaled by X � 
 �(� $ 
 � �  .Some conclusions that we can draw from this analysis are as follows. Regardless of whether the

data samples are correlated or not, the
�� ��
 becomes more accurate if � is small. In fact, our moti-

vation for pursuing the estimation of � from the I/Q components was precisely this reason: while

all unbiased estimators of � from the envelope yield an unbounded variance as � gets smaller, the

accuracy of
�� ��
 increases with smaller � . It is also important to notice that the value of �<> makes
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a difference in the performance, so much so that it makes a difference in the rate of convergence.

In fact even for finite



, motivated by Remark 1 following (16), values of �	> for which � EF� ��> � is

small, yield better performance. If we adopt the isotropic scattering model, corresponding to a uni-

form TNEF� = � , � EF� � �(� e  E a S � K � s � � g � B �  O S � �  ;\c � c � � B . Since � EF� � B � is infinite, when c �(> cl� � B
the performance is worse as compared to when c � > c � � B . This spectrum has a minimum at 0,

hence, ��> � | (implying =Y> � a g ` ) seems to be the best AoA for the LoS component as far as the

performance of
�� ��
 is concerned. Physically, this is a LoS that is perpendicular to the direction of

the mobile yielding a time-invariant LoS component.

IV. SIMULATIONS

In this section we provide a computer simulation study of the various estimators. The signal from

which the � factor is estimated has been generated using a sum of sinusoids model the details of

which can be found in [23].

A. Envelope-Based Estimators: Comparison with the MLE and Effect of Finite Sample Size

The MLE of � for the envelope data is given in (8) and is known to be very close to the CRB for

large number of data samples. Since
�� � �  is also very close to the CRB, as evidenced by Fig. 2, we

know that the moment-based estimators perform similar to the MLE for large



. In order to answer

the question of how the moment-based estimators compare with the MLE for finite data samples,

we show the performance of
�� � �  along with the MLE in Fig. 5 for


 � � |l| . The MLE was

calculating using an exhaustive search for the value of � that satisfies (??). We observe that even

for small values of



, the MLE is only slightly better than the simpler moment-based estimator. The

same trend was observed even when the envelope samples were correlated (not shown). We have

also plotted the envelope CRB in Fig. 5 for reference. We observe that for small values of � , the

estimation errors 5 of
�� � �  and the MLE are better than the CRB. This can only be explained by the

fact that the CRB is a lower bound on the variance of unbiased estimators and that the MLE and�� � �  are biased for finite data samples. It is well-known that the CRB need not be a lower bound

on the estimation error of biased estimators [17]. However, the envelope CRB seems to be a useful

benchmark for moderate values of � . We will now elaborate more on the effect of finite sample

size, comparing the different moment-based estimators.

In order to study the effect of finite sample size on the performance of
�� � �  and

��  � ' , we resorted

to Monte Carlo simulations. For any fixed � from the set � | ��
 ; � ; � ��
 ; � � � ; ��� ��
 ;p`\|�� , broad enough

to cover a practical range of the � parameter [7], and for any

 � � � |l|C; � |l|l|�� , 500 sequences�

the estimation error is defined to be the variance plus the square of the bias so that the error in bias is also reflected in Fig. 5
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of i.i.d. samples of length



were generated for calculating
�� � �  and

��  � ' . Let
�� ���F� denote the

� 2 E Monte Carlo realization of either
�� � �  or

��  � ' . For both of these estimators the sample bias
 |l| S � ��� >,>� � � K
�� ���F� s � O is plotted in Fig. 6 versus � , together with the sample confidence region

defined by
� ` SSTD(

�� ), where SSTD(
�� ) is the sample standard deviation of

�� , defined as:

������� � �� � H!� 	

� 
 |l| S � � >,>�
� � �

��  ���F� s � 
 |l| S � � >,>�
� � �

�� ���F���  �
The sample confidence region defined here is useful for examining the estimator variations in terms

of � and



.

The top four plots in Fig. 6 show that the confidence region and the sample bias are smaller for

larger sample sizes. We also observe that for moderate/large � , increasing � increases the bias

especially for

 � � |l| , for both

�� � �  and
��  � ' . The bottom two plots of Fig. 6 illustrate that the

estimation error of
�� � �  and

��  � ' are very similar and close to the envelope CRB for both sample

sizes.

B. Envelope-Based Estimators: Effect of Correlation

In practice, adjacent signal samples can be highly correlated. To analyze the impact of correlated

samples on the performance of
�� � �  and

��  � ' , we used Monte Carlo simulations. Using the same

simulation procedure as before and for

 � � ;�|l|l| , we generated 500 Rice distributed envelope

time-series whose corresponding in-phase and quadrature components have the Clarke’s correlation

function. Fig. 7 shows the simulation results for two different mobile speeds (different ANB s), at

a sampling rate of � g � � �}` � � Hz, corresponding to samples taken from an IS-136 system every

100 symbols. For both estimators, the correlation among samples, which increases with decreasing

mobile speed, introduces a positive bias which grows with � and also broadens the sample confi-

dence region (more estimator variation). Based on the simulation results, we conclude that
�� � �  and��  � ' still perform close to each other even for correlated samples, and that the samples should be

chosen far apart to avoid the deleterious effects of correlation on the estimates. To illustrate the per-

formance degradation due to correlation as compared to the performance with independent samples,

the last two plots of Fig. 7 show the estimation error of
�� � �  and

��  � ' for correlated samples with

the envelope CRB for the uncorrelated case.

C. Comparison of Envelope and I/Q estimators of �
To test the possible improvements attainable by using the I/Q components in estimating � as

compared to envelope-based estimators, we compared the I/Q estimator of Section III, with the
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envelope-based
�� � �  . We chose


 � � ;�|l|l| data points, and �	B � ��� � � 
 which corresponds to

a vehicle velocity of � � � |l| km/hr, � � � | � | � sec., and a carrier frequency of 900 MHz. We

observe from Fig. 8 that the estimator that relies on the I/Q components performs significantly

better than
�� � �  . Moreover, the I/Q CRB provides a tight lower bound on the estimation error of

the I/Q estimator particularly for small values of � . This is at the expense of a slight increase

in computational complexity, and the necessity of measuring the I/Q components of the received

signal.

V. CONCLUSIONS

We started out by proposing a new family of estimators for � from the envelope samples. This

general class of estimators was shown to unify the existing approaches in the literature. We derived

the asymptotic variance of each member of this family of moment-based estimators and showed that

they perform close to the CRB. Two moment-based estimators
�� � �  and

��  � ' were worthy of special

attention because
�� � �  had the best asymptotic performance, and

��  � ' had a simple closed-form ex-

pression in terms of the moments. It was mentioned that a real-time low-complexity implementation

of these estimators should use a sliding window approach to estimating the necessary moments.

Motivated by the fact that the envelope CRB increases without bound as � gets smaller, we

studied the estimation of � from the I/Q data. We observed that the I/Q CRB goes to zero as �
gets smaller, a property also held by the AsV of a novel I/Q-based estimator that we proposed. The

performance analysis for this estimator for correlated samples yielded insights into the effect of = >
on the estimator performance. The simulations corroborate the analytical findings of the previous

sections and illustrate that the moment-based estimators that use the envelope are very close to the

MLE even for finite sample sizes, and that
�� ��
 outperforms

�� � �  .We conclude that among the moment-based estimators from the envelope
��  � ' is computationally

simpler than
�� � �  , at the expense of a loss in performance. We also suggest that the I/Q components

be used when they are available for estimation of � because they offer an improvement in perfor-

mance over the envelope-based estimators.

Acknowledgement: The authors would like to thank Prof. Mostafa Kaveh of the University of

Minnesota for his valuable comments and insight.
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Appendix I: CRB for Envelope-Based Estimators

It is straightforward to show the following:

� ���t�3T�k �*Dl���
��� � ��m��� s � s D  
 � v � r `bD�� � � � 4 � 0� uv > r `bD�� � � � 4 � 0� u

` �m��� 
 � � ����� � D (30)

� ���t�3T�k �*Dl���
��
 � s �
 � � ����� �1D  
  s v � r `bD�� � � � 4 � 0� uv > r `bD�� � � � 4 � 0� u 
 � � �m��� �
 
 D � (31)

Let K � O � 
 denote the � �[; �V� entry of a generic matrix � . Defining the FIM entries asK �(� � �,O � � � 
 Q �> r � ��� T�k��*Dl�
��� u  T�k �*Dl� X DK �(� � �,O �  � 
 Q �> � ����T�k �*Dl�

��� � ��� T�k �*Dl�
��
 T�k �*Dl� X DK �(� � �,O  � � 
 K �(� � �,O �  K �(� � �,O  , � 
 Q �> r � ��� T�k��*Dl�

��
 u  T�k �*Dl� X D ;
we can express the CRB for the envelope data for unknown 
 as the (1,1) element of the inverse

FIM, which is easily shown to be:����� � � �	� K �(� � �,O  , 
 ��K �(� � �,O � � K �(� � �,O  , s K �(� � �,O   � �
� (32)

Notice that the entries of the FIM need to be computed with numerical integration using (31). Notice

also that (14) is given by � g K �(� � �,O � � , and is smaller than or equal to (32) because K �(� � �,O   � � | in

(32).

Appendix II:CRB for I/Q - Based Estimators

For I/Q data which is complex Gaussian with mean � � � � and covariance matrix � � � � , the elements

of the FIM are given by [26]K �(� � �,O � 
 � ` � n � r � � � � �
��� � u � � S � � � � r � � � � �

���

 u � � � � � � S � � � � � � � � ���� � � S � � � � � � � � ����


 � ; (33)

where � � denotes the � 2 E element of
�

, and � �%�1Z3� denotes the trace of a matrix.
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We now calculate the CRB for estimators of � that use the I/Q components assuming that all the

elements in
�

are unknown. For this, we need the partial derivatives of � � � � and � � � � with respect

to � � , which are given below:

� � � � �
��� � e` $ � � � ��> ; @�> � � � � � �

� e � $ � � � ��> ; @�> �
� � � � �
� ��> � e $ � � ���!68/14C" �  10 K | � � � / > � � � � 
 s � � � � � /U� � S � 0 O � � � � � �

� @�> � � $ � e � � ��> ; @�> � (34)

� � � � �
� e � ` e 
 � � B � � � � � �

� � B � e  
 ' � � B �
� � � � �
� � B � � � � � �

��� � � � � � �
� ��> � � � � � �

� @�> ���
where K 
 ' � � B �,O � 
 � � ^ > � � B � � s �V��� g � � B � s � � s �V��^ �?� � B � � s �V��� . Using (34) and (33), all entries

of the 
�� 
 FIM can be computed, and the (1,1) element of the inverse FIM will be the CRB of� estimators that utilize the I/Q components when
�

is unknown. Let ^ � �]H!�_K �(� � �,O � � for brevity.

An important point is that ^ � � is proportional to � g � and hence goes to infinity as � goes to zero.

Also the submatrix K �(� � �,O  � � �  � � consisting of the second through fifth row, and second through fifth

column of K �(� � �,O , stays constant as � goes to zero. This can be easily verified using (34) and (33).

Furthermore, let K �(� � �,O �
�  � � and K �(� � �,O  � � � � be vectors consisting of the second through fifth column

of the first row and second through fifth row of the first column, respectively. Then, as a consequence

of the matrix inversion lemma [16, pp. 512], the (1,1) element of the inverse FIM (which is the CRB

of interest) is given byK � S � � � �,O � � � �^ � � � K �(� � �,O �
�  � � "U^  � � K �(� � �,O  � � �  � � s ^ � �?K �(� � �,O  � � � ��K �(� � �,O � �  � � % S

� K �(� � �,O  � � � � � (35)

But as � goes to zero, ^ � � goes to infinity, and all the other terms remain bounded, which shows

that K � S � � � �,O � � in (35), which is the CRB of interest, goes to zero as � goes to zero.

Appendix III:Rates of Convergence

In this appendix, we will derive (26) and (27). In order to show (26) for c � > c�� � B , we need to show

that

 �����Y� � ��� 
 ��� converges to a finite constant. To show that


 �����%� � �?� 
 ��� converges, we need to

establish � �� � S � � � s c � c g 
 �1D?E K � O � S � � / � � � for which it suffices to show that � �� � S � D?E K � O � S � � / � �� because of the Cesaro summability theorem [13, pp. 411]. Substituting (25) for D E K � O we can writeD?EFK � O � S � � / � � �[K � O��bK � O where

�bK � O H!� TNE �V| � �����5� � & S � /,0 � S��� 0 � TNE ��a � � S ���5� � &�4 � /,0 � S��� 0 ; �[K � O H!� r `Ya
� B � u � �  ; (36)
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and the approximation is due to the 	 � � S � � term in (25). We can now apply Drichlet’s test [2,

pp. 365] which states that if �[K � O converges monotonically to zero and the partial sums of �bK � O are

bounded, then � � �[K � O��bK � O converges. Since these two conditions hold in our case ( c �	> c � � B ), we

conclude that � �� � S � D?E K � O � S � � / � � � , which is what we needed to show.

Let us now show that (26) for c �(> c\� � B holds. To do this, we need to show that� S ��� � S � 4 � r � s
c � c
 u D?EFK � O � S � � & � �

� S ��� � S � 4 � r � s
c � c
 u �[K � O �bK � OP� 	 � 
 � �  � � (37)

where �[K � O and �bK � O are obtained by substituting c �	> c � � B in (36) and are given by �[K � O��K5�-`Ya � g � � B �7�,O � �  , �bK � O � K TNEF�V| � npoCq � s � " ' � � TNEF��a � npoCq]s �[��� � B � ��> �&� s " ' �#O , which is the sum

of a constant and an exponential. But � � S �� � S � 4 � �[K � O��bK � O and

 S � � � S �� � S � 4 � c � c �[K � O��bK � O add up to

(37), and they are both 	 � 
 � �  � . This can be seen after substituting for �[K � O and �bK � O , and using the

following: 6 � � S �� � S � 4 � � S
� �  � 	 � 
 � �  �p; 
 S � � � S �� � S � 4 � �

� �  � 	 � 
 � �  � , and � � S �� � S � 4 � � S
� �  � S ���5� � &�4 � /,0 � S��� 0 � 	 � � � , where the first two equalities are obtained by integrating � S � �  and � � �  respectively, and the third expression is obtained using Drichlet’s theorem. This establishes the

equality in (37) which is what we wanted to show.

We will now show that (27) holds. For c �	> c�� � B , we need to show that� S ��� � S � 4 � r � s
c � c
 u � c D?EFK � OUc  � ` � � n "-D?EFK � O � S � � / � %�� � 	 � ���
��� 
 ���<; (38)

which would establish that (21) is 	 � 
 S � ���
��� 
 ��� . We know from (26) that for c � > c � � B ,

� � D?EFK � O � � � / � converges; hence, we can do away with the second term in the square brackets in

(38), and see that establishing (38) amounts to showing� S ��� � S � 4 �
c D?EFK � OUc  s

� S ��� � S � 4 �
c � c
 c D?E K � OUc  � 	 � ���
��� 
 ��� � (39)

Using (25), it is straightforward to show that the first term on the left hand side of (39) is� S ��� � S � 4 �
c D?E K � OUc  � r `Ya� B u � S ��� � S � 4 � x

T  E �V| � � T  E ��a �� � `pTNE �V| ��TNEF��a � ��� � " � B � s " ' %� y ; (40)

which is 	 � ���
��� 
 ��� � 	 � � � , where the 	 � ���
��� 
 ��� term is obtained by integrating � S � , and the

	 � � � term is obtained by using Drichlet’s theorem. But the second term on the left hand side of
�
Since we are interested in asymptotic expressions for large � , we are not concerned with the fact that 
 � #���% is unbounded for


 ���
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(39) is � � S �� � S � 4 � ��c � c g 
 �%c D?E K � OUc  � 	 � � � , which can be verified similar to (40). So (39) must be

	 � ���
��� 
 ��� . This establishes what we wanted to show.

Using a similar approach, it is not difficult to show that for the case c �<> c7� � B , (38) is given by

	 � ���
��� 
 ��� � 	 � 
 � �  �	� 	 � 
 � �  � , which completes the derivations of (26) and (27).
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Fig. 1. Multipath propagation environment between transmitter and the mobile receiver
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