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Abstract — Rational inattention of decision makers to costly 

data and information and resources affects their optimal decision 

making strategies. The theory of rational inattention has found 

applications in several areas such as economics, finance and 

psychology. In this paper, we study scenarios where the available 

data is noisy. The noise may have been generated because of 

inaccuracies or errors in data collection methods, or the data may 

have been intentionally distorted to protect private or secret 

information. Here we introduce a formulation for rationally 

inattentive decision making when the data is noisy, and derive its 

optimal decision making strategy. Using a stock trading problem 

as an example, we demonstrate that as the noise level in the data 

increases, probability of correct decision decreases. This results in 

less payoff for the decision maker, when using noisy data. We also 

show how the noise level and information cost parameters can be 

estimated using the developed formulation. The results are useful 

for developing decision making strategies, when using noisy data. 

Keywords — Decision making, rational inattention, noisy 

signals. 

I. INTRODUCTION 

Understanding how decision makers utilize scarce resources 
to make choices is of interest in various disciplines, including 
financial market analysts, economists and psychologists. In this 
regard and within the rational inattention (RI) framework [1], a 
decision maker tries to use a limited amount of attention to make 
an optimal decision, by optimizing the utility net of information 
cost. To quantify RI, Sims [2] modeled the process of acquiring 
information as a channel, where input is the underlying state and 
output is the observed information. He then used mutual 
information to measure the amount of attention. Matejka and 
McKay derived a general solution for the discrete choice RI 
problem [1]. Essentially, they showed that the decision maker’s 
optimal strategy follows a multinomial logit model. From a 
practical perspective, recently Dean and Neligh [3] conducted 
experiments and collected experimental data, to study the RI 
model using human subjects, when they were in the process of 
making decisions. Several applications of the RI model to 
finance and financial decision making are discussed in [4]. 

In prior studies, the presence of noise in the data, as well as 
in acquiring and processing information, was not considered. To 
address this important problem, here we introduce a formulation 
for RI decision making when the data is noisy and derive its 
optimal decision making strategy. We also apply the new model 
to some synthetic data, to show how to estimate the model 
parameters. The rest of this paper is organized as follows. The 
basic noiseless RI model and its optimal solution are presented 
in Section II. A financial market exemplary problem is 
formulated in Section III, and its optimal RI decision making 
strategy is derived as well. The new RI decision making 
framework where the available data is noisy is introduced in 
Section IV, and its corresponding optimal strategy is derived as 
well. Section V is devoted to the RI model parameter estimation 
from data. The concluding remarks are provided in Section VI. 

II. THE RATIONAL INATTENTION MODEL 

In the RI model, a decision maker tries to use a limited 
amount of attention to optimize the utility net of information cost 
(to be defined later). To do so, he needs to use the information 
that he finds to be useful and discards the information that he 
considers not to be helpful. Rational inattention can be modeled 
as an information channel that has some input and output data, 
as proposed by Sims [2]. Using this model, one can measure the 
amount of attention or information cost using the mutual 
information between the input and output of the channel. 

Following the formulation for rational inattention to discrete 
choices given in [1], a decision maker (DM) takes these two 
steps (Fig. 1): The DM selects an information strategy to refine 
his/her belief about the state, and then, the DM decides based on 
the belief generated in the first step. The underlying state V , the 
received signal (or the observed information) S  and the action 
A in Fig. 1 are considered to be discrete random variables. The 
V and S random variables represent the input and output of the 
said information channel, respectively. A decision strategy is 

 
Fig. 1. Rationally inattentive decision making steps. 



represented by the probability of S  conditioned on V , 
( | )P S V . In the second step in Fig. 1, the DM chooses an action 

from the set Ξ , i.e., A∈ Ξ , based on the received signal S. 

We define ( , )U A V  as the payoff of taking the action A 
based on the underlying state V (also called the utility function). 
We also define utility net of information cost [1] as follows: 

          [ ( , )] ( ; )E U A V I V SλΛ = − ,    (1) 

where E is the mathematical expectation, 0λ >  is the unit cost 
of information and ( ; )I V S  is the mutual information [5] 
between V  and S : 

    

,

( ; ) ( ) ( | ),

( ) log ( ) ( , ) log ( | ) .
s s v

I V S H S H S V

P s P s P s v P s v  

= −

= − +      (2) 

In Equation (2), (.)H  and (. | .)H  are entropy and conditional 
entropy, respectively, and log is the base e natural logarithm. 
Additionally, ( ), ( , ) ( | )P s P s v and P s v  are shorthand notations 
for the individual, joint and conditional probabilities ( )P S s= , 

( , )P S s V v= = and ( | )P S s V v= = , respectively. 

To simplify the notation, here we consider a two state 
framework where there are two underlying states and two 
actions, i.e., 1, 2V =  and ,A a b= . To find the best decision 
strategy, ( | )P A V , the DM needs to solve the following 
constrained optimization problem for Λ  in (1): 

           

1 1 2 2( | ) , , ,

1 1 2 2

1 1 2 2

max max [ ( , )] ( ; ),

, , , 0,

1, 1,

a b a bP AV P P P P

a b a b

a b a b

E U A V I V A

subject to P P P P

P P P P

λΛ = −

≥

+ = + =

 (3) 

where S in (1) is replaced with A, since each action corresponds 
to one specific signal. Additionally, 1 ( |1),aP P a=

1 2( |1), ( | 2),b aP P b P P a= =  and 2 ( | 2)bP P b= are the 
probabilities of the actions conditioned on the states. All these 
conditional probabilities are depicted in a state-action trellis 
diagram in Fig. 2. 

According to [1], the following action probability 
distributions - given the states - constitute the optimal strategy 
that maximizes the utility net of information cost Λ  in (3): 

 

( ,1) ( ,2)

1 2( ,1) ( ,1) ( ,2) ( ,2)
, , 0

U a U b

a b

a bU a U b U a U b

a b a b

P e P e
P P

P e P e P e P e

λ λ

λ λ λ λ

λ= = >

+ +

, (4) 

where ( )aP P a=  and ( )bP P b= . If 0λ = , the DM simply 
selects the action with the highest payoff with probability 1, 
since there is no information cost. 

III. A FINANCIAL MARKET EXEMPLARY PROBLEM AND ITS 

OPTIMAL RI DECISION STRATEGY 

In this section, we consider a mathematically-tractable 
financial market problem, to be able to derive a closed-form 
optimal RI decision strategy. This allows us to later revisit the 
optimal RI decision making problem when the data, i.e., the 
underlying states, are noisy – as discussed in the next section. 
Consider a stock trading problem, where the DM is supposed to 
choose between betting on appreciation or depreciation. If 
his/her bet is correct, will get a reward r, and if incorrect, will 
have a r−  loss, as specified in the reward matrix in TABLE I. 

In the state-action trellis diagram (Fig. 2) for this stock 
trading problem, the underlying state 1,2V =  represents stock 
appreciation and depreciation, respectively, whereas the action 

,A a b=  refers to betting on appreciation and depreciation, 
respectively. The DM does not have any information about the 
underlying states, so, needs to observe and acquire some 
information. For mathematical tractability, let us assume 2 1bP =  
and 2 0aP = , which indicate that DM’s preferred choice is the 
action b. This simplifies the constrained optimization problem 
for Λ  in (3) to: 

 1 1( | ) ,

1 1 1 1

m

,

ax max [ ( , )] ( ; )

0, 0, 1

a bP AV P P

a b a b

E U A V I V A

subject to P P P P

λΛ −

≥ + =

=

≥
 (5) 

where the payoff U is defined as follows, based on the reward 
matrix given in TABLE I: 

 
, , 1, , 2,

( , )
, , 1, , 2.

r A a V or A b V
U A V

r A b V or A a V

= = = =
= 

− = = = =
 (6) 

Upon solving the optimization problem in (5) (see Appendix 
A), we obtain the following optimal strategy for the DM in the 
considered stock trading problem: 
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where ( 1)g P V= =  and also 1 11b aP P= − . Probability of 
correct decision by the DM can be computed according to 

1 2( ; ) (1 )correct a bP r gP g Pλ = + − . For 1/ 2g = , equi-probable 
states and upon substituting 1aP  form (7) and 2 1bP =  coming 
from our problem formulation, the correct decision probability 
for the optimal strategy simplifies to 10.5 0.5aP + , which gives: 

 

2

2

1.5
( ; ) max 0.5, , 0

1

r

correct r

e
P r

e

λ

λ

λ λ
 

− = >
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− 

. (8) 

Equation (8) is plotted in Fig. 3a for 1, 5, 20 50.   and λ = We 
observe that as the reward r increases, the probability of correct 

TABLE I. Reward Matrix for the Financial Market Problem 
 

Action State 1: Stock 

Appreciates 

State 2: Stock 

Depreciates 

Bet on Appreciation r -r 

Bet on Depreciation -r r 

 

 
Fig. 2. State-action trellis diagram. The variables V and A represent the 

state and action, respectively. 



decision increases, because the DM becomes more attentive to 
the information and makes more accurate and better decisions. 
However, as the information cost λ increases, the probability of 
correct decision decreases. 

Using (6), the average payoff can be computed according to 

1 2 1 2[ ( , )] (1 ) (1 ) .a b b aE U A V rgP r g P rgP r g P= + − − − −  Upon 
substituting 2 1bP = , 2 0aP = , 1 11b aP P= −  and 1aP  of the 
optimal strategy derived in (7), together with 1/ 2g = , we 
obtain 1[ ( , )] aE U A V rP= . After its substitution in (5), along 
with the second expression for ( ; )I V A  in Equation (A3) of 
Appendix A, the maximized Λ  is computed and plotted in Fig. 
3b. We note that for any given reward r, Λ  decreases as the 
information cost λ increases. This is because the usage of more 
expensive information further reduces the average payoff of the 
DM. 

IV. RATIONAL INATTENTION MODEL FOR NOISY DATA AND ITS 

OPTIMAL STRATEGY 

In previous studies, the effect of using noisy data on RI 
decision making has not been considered, to the best of our 
knowledge. This is while the data can be noisy for various 
reasons, such as inaccuracies or errors in data collection 

methods, or the data being intentionally distorted to protect 
private or secret information [6].  

To incorporate the noisy data into the RI decision making 
framework, we expand the state-action trellis diagram of the 
basic - noiseless - RI model of Fig. 2 to Fig. 4, where V now 
represents the noisy state, whereas Y stands for the noiseless 
state. The relation between the noisy and noiseless states is 
specified by the noise parameter p, such that 

( 2 | 1) ( 1 | 2)p P V Y P V Y= = = = = = . This means that noise 
can flip a Y state to its opposite value, with probability of p. 

To formulate the noisy RI constrained optimization problem, 
we replace ( , )U A V  in (3) and subsequently (5) with ( , )U A Y , 
which results in: 

 1 1( | ) ,

1 1 1 1

m

.

ax max [ ( , )] ( ; )

0, 0, 1

a bP AV P P

a b a b

E U A Y I V A

subject to P P P P

λΛ −

≥ + =

=

≥
 (9) 

By solving the above optimization problem for equi-probable 
states ( 1) ( 2) 1/ 2P Y P Y= = = =  (see Appendix B), we obtain 
the following optimal strategy for the DM in the considered 
stock trading problem using noisy data: 
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2
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e
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e
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The DM’s probability of correct decision ( ; , )correctP r pλ  equals 
( 1) ( | 1) ( 2) ( | 2)P Y P A a Y P Y P A b Y= = = + = = = . Note that 

1( | 1) ( | 1) ( | ) (1 )v aP A a Y P V v Y P A a V v p P= = = Σ = = = = = −
 2 .apP+ Also 1 2( | 2) (1 ) .b bP A b Y pP p P= = = + −  By 
substituting 2 1bP = , 2 0aP = , 1 11b aP P= −  and 1aP  of the 
optimal strategy derived in (10), we finally obtain 

1( ; , ) 0.5(1 2 ) 0.5correct aP r p p Pλ = − + , which can be written as: 

2(1 2 )

2(1 2 )

(1 ) 1.5 2
( ; , ) max 0.5, , 0

1

p r

correct p r

p e p
P r p

e

λ

λ

λ λ

−

−

 
− − + = >

 
− 

. (11) 

When there is no noise, 0p = , the above equation reduces to 
(8), as expected. Equation (11) is plotted in Fig. 5a for 1λ =  and 

0, 0.1, 0.3 .5p    and 0= . We observe that as the noise level 
increases, the probability of correct decision decreases and the 
DM makes more incorrect decisions. 

Using (6), the average payoff [ ( , )]E U A Y can be shown to 
be ( , 1) ( , 2) ( , 1)r P A a Y r P A b Y r P A b Y= = + = = − = =  

( , 2)r P A a Y− = = . The first two probabilities can be computed 
using the formulas derived immediately after (10). The last two 
probabilities can be similarly computed using 

 
Fig. 4. State-action trellis diagram with noisy data. The variables Y and V 

represent the noiseless and noisy states, respectively, whereas A is the 

action. 

 
(a) 

 
(b) 

Fig. 3. Optimal strategy of a rationally inattentive decision maker for 

different costs of information of 1, 5, 20 and 50. (a) Probability of correct 

decision, (b) Maximized utility net of information cost. 



( | 1) ( | 1) ( | )vP A b Y P V v Y P A b V v= = = Σ = = = = =

1 2(1 ) b bp P pP− +  and 1 2( | 2) (1 ) .a aP A a Y pP p P= = = + −  The 
average payoff then becomes 1 2 1 20.5(1 2 ) ( ).a b b ap r P P P P− + − −
Substitution of 2 1bP = , 2 0aP = , 1 11b aP P= −  and 1aP  of the 
optimal strategy derived in (10) finally results in 

1[ ( , )] (1 2 ) aE U A Y p rP= − . By substituting this result in (9), 
together with ( ; )I V A  in Equation (A8) of Appendix B, the 
maximized Λ  is computed and plotted in Fig. 5b, for 1λ =  and 

0, 0.1, 0.3 .5p    and 0= . We observe its decrease as the noise 
level increases, i.e., less payoff for the DM when using noisy 
data. 

V. RATIONAL INATTENTION NOISY MODEL PARAMATER 

ESTIMATION 

In this section, we use some data to demonstrate how the 
noisy RI model parameters, i.e., the information cost λ and the 
noise level p, can be estimated. Motivated by the experimental 
data collection method of [3], we consider a hypothetical market 
study with 16 participants, where each participant is facing this 
decision problem: According to TABLE I, there are two 
underlying states 1 and 2, representing stock appreciation and 
depreciation, respectively, and two actions a and b, referring to 
betting on appreciation and depreciation, respectively. There is 
a reward r for correctly taking the action a when the underlying 

state is 1, or correctly taking the action b, when the underlying 
state is 2, and the reward for incorrect actions is r− . Note that 
all these are the same as the payoff U defined in Equation (6). 

Each participant faces four decision problems that 
correspond to four different reward levels, and decides a or b. 
The participants are aware that the payoff of each action is state 
dependent, i.e., r or r− , as shown in TABLE I. The results of 
this survey are shown in TABLE II (see the last page of the 
paper), where the decision of each participant is shown by a 
“state,action” pair. The pairs (1,a) and (2,b) represent winning 
decisions, whereas the pair (1,b) indicates a losing decision. 
There is no pair (2,a) in TABLE II, since in Section III and to 
reach the simplified optimization problem in (5), we considered 
that for the state 2, the decision maker never takes the action a. 
Also note that each row of TABLE II corresponds to a specific 
trade size, and the associated trade reward r is assumed to be 
10% of the trade size, i.e., 0.1, 10, 100 1000r    and = . 

To estimate the probability of correct decision using the data 
of TABLE II for each r, we note that 
ˆ ˆ ˆ( ) 0.5 ( |1) 0.5 ( | 2)correctP r P a P b= + , where ^ stands for 

estimation. For 0.1r = , as an example and using the first row of 
TABLE II, it can be shown that ˆ( |1) 2 / 8P a = and 
ˆ( | 2) 8 / 8P b = , which result in ˆ (0.1) 0.625correctP = . Using the 

rest of the rows we obtain ˆ (10) 0.75correctP = , ˆ (100) 0.81correctP =  
and ˆ (1000) 0.88correctP = . Using these probability estimates and 
the least squares FindFit command in the Mathematica software, 
the parameters λ and p are estimated using (11). The estimates 
are ˆ 0.13λ =  and ˆ 0.186p = . 

The above numerical example demonstrates how the 
information cost λ and the noise level p can be jointly estimated 
from experimental data. 

VI. CONCLUSION 

In this paper, we have studied optimal decision making of a 
rationally inattentive individual who relies on noisy data and 
resources. In our new formulation and in addition to the 
information cost that appears in the context of decisions with 
rational inattention, there is a noise parameter. This parameter 
specifies how much the available - noisy - data differ from the 
true - noiseless - underlying states. The introduced formulation 
is applied to a financial market exemplary problem in stock 
trading, and the optimal decision strategy is derived. We have 
shown that as the noise level in the data increases, the payoff for 
the decision maker decreases because of making more incorrect 
decisions, due to relying on the noisy data. The results indicate 
how important it is to have access to reliable and trustworthy 
data, and also quantify the detrimental effect of noisy or 
distorted data on decision strategies. 

APPENDIX 

A. Derivation of the Optimal RI Decision Strategy for the 

Financial Market Exemplary Problem 

We use the Lagrange multiplier method, to solve the 
constrained optimization problem in (5). The Lagrangian is 
given by: 

 
1 1 1 1

[ ( , )] ( ; )

(1) (1) (1)( 1),a a b b a b

L E U A V I V A

gP gP g P P

λ

ξ ξ µ

= −

+ + − + −
 (Α1) 

 
(a) 

 
(b) 

Fig. 5. Optimal strategy of a rationally inattentive decision maker using 

noisy data with different noise levels of 0, 0.1, 0.3 and 0.5. (a) Probability 

of correct decision, (b) Maximized utility net of information cost. 



where ( 1)g P V= = , (1) 0aξ ≥  and (1) 0bξ ≥  are Lagrange 
multipliers on 1 0aP ≥  and 1 0bP ≥ , respectively, and (1)µ  is 
the multiplier on 1 1 1a bP P+ = . Furthermore, using (6) and (2), 
we respectively obtain: 

   
1 2 1 2

1 1

[ ( , )] ( (1 ) ) ( (1 ) ),

( (1 ) ),

a b b a

a b

E U A V r gP g P r gP g P

r gP g gP

= + − − + −

= + − −
 (Α2) 

  

1 1 1 1

2 2 2 2

1 1 1 1

( ; ) log log log log

(1 ) log (1 ) log ,

log log log log .

a a b b a a b b

a a b b

a a b b a a b b

I V A P P P P gP P gP P

g P P g P P

P P P P gP P gP P

= − − + +

+ − + −

= − − + +

 (Α3) 

The last equations in (A2) and (A3) are obtained by substituting 

2 1bP =  and 2 0aP = , coming from our problem formulation. 

The first-order conditions with respect to 1aP  and 1bP  are 
obtained by taking derivatives of L in (A1), using the last 
equations of (A2) and (A3), and also by noting that 1a aP gP=  
and 1 1b bP gP g= + − : 

 
( )

( )
1 1

1 1

/ log log (1) (1) 0,

/ log log (1) (1) 0.

a a a a

b b b b

L P r P P

L P r P P

λ ξ µ

λ ξ µ

∂ ∂ = + − + − =

∂ ∂ = − + − + − =
 (Α4) 

Similarly to [1] and when 0aP > , 0bP >  and r−∞ < < ∞ , we 
have (1) (1) 0a bξ ξ= = . Therefore, solving for 1aP  and 1bP  using 
(A4) results in: 

 
(1) (1)

1 1, .
r r

a a b bP P e P P e
µ µ

λ λ

− − −

= =  (Α5) 

By solving for (1)µ  using the second equation in (A5), together 
with 1 11b aP P= − , 1 11 1b b aP gP g gP= + − = −  and 1a aP gP= , and 
plugging in the result in the first equation of (A5), we finally 
obtain the DM’s optimal strategy given in (7). 

B. Derivation of the Optimal RI Decision Strategy Using Noisy 

Data for the Financial Market Exemplary Problem 

To solve the constrained optimization problem in (9), 
together with ( 1) ( 2) 0.5P Y P Y= = = =  that results in 

0.5,g =  we form the following Lagrangian: 

 
1 1 1 1

[ ( , )] ( ; )

0.5 (1) 0.5 (1) 0.5 (1)( 1),a a b b a b

L E U A Y I V A

P P P P

λ

ξ ξ µ

= −

+ + − + −
 (Α6) 

where (1) 0aξ ≥  and (1) 0bξ ≥  are Lagrange multipliers on 

1 0aP ≥  and 1 0bP ≥ , respectively, and (1)µ  is the multiplier on 

1 1 1a bP P+ = . Using (6) and as shown at the end of Section IV, 
we have: 

 
1 2 1 2

1 1

[ ( , )] 0.5(1 2 ) ( ),

0.5(1 2 ) ( 1 ).

a b b a

a b

E U A Y p r P P P P

p r P P

= − + − −

= − + −
 (Α7) 

The last equation in (A7) is obtained by substituting 2 1bP =  and 

2 0aP = , coming from our problem formulation. Additionally, 
by replacing g in the last equation of (A3) with 0.5, we obtain: 

 
1 1 1 1

( ; ) log log

0.5 log 0.5 log .

a a b b

a a b b

I V A P P P P

P P P P

= − −

+ +
  (Α8) 

Differentiation of L in (A6), along with (A7) and (A8), with 
respect to 1aP  and 1bP , and upon noticing that 10.5a aP P=  and 

10.5 0.5b bP P= + , results in: 

       
( )

( )
1 1

1 1

/ (1 2 ) log log (1) 0,

/ (1 2 ) log log (1) 0.

a a a

b b b

L P p r P P

L P p r P P

λ µ

λ µ

∂ ∂ = − + − − =

∂ ∂ = − − + − − =
  (Α9) 

Note that similarly to Appendix A we have (1) (1) 0a bξ ξ= = . 
Solving for 1aP  and 1bP  using (A9) results in: 

 
(1 2 ) (1) (1 2 ) (1)

1 1, .
p r p r

a a b bP P e P P e
µ µ

λ λ

− − − − −

= =  (Α10) 

For 0p = , no noise in data, (A10) reduces to (A5). By solving 
for (1)µ  using the second equation in (A10), together with 

1 11b aP P= − , 1 10.5 0.5 1 0.5b b aP P P= + = −  and 10.5a aP P= , and 
substituting the result in the first equation of (A10), at the end 
we obtain the DM’s optimal strategy provided in (10). 
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   TABLE II. Decision Data of 16 Participants of a Hypothetical Market Study where Green and Red Entries Denote Correct and Incorrect Decisions, Respectively 
 

Trade Size 

(in $1000) 
Trade Reward 

r (in $1000) 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 

1 0.1 (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (1,a) (1,b) (1,b) (1,b) (1,b) (1,b) (1,a) (1,b) 

100 10 (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (1,b) (1,a) (1,b) (1,b) (1,a) (1,a) (1,b) (1,a) 

1000 100 (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (1,a) (1,a) (1,a) (1,a) (1,b) (1,b) (1,a) (1,b) 

10000 1000 (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (2,b) (1,a) (1,a) (1,a) (1,b) (1,a) (1,a) (1,b) (1,a) 

 


