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Introduction

Molecular networks are comprised of complex and 
interconnected signaling pathways with hundreds of 
interactions between the molecules of the networks. They 
can be represented by a graph, in which nodes represent 
biomolecules such as genes, RNA, and proteins; plus edges that 
represent the physical or biochemical regulatory interactions 
between the molecules [1-8]. There are different types of 
molecular networks such as protein-protein interaction (PPI) 
networks, in which the nodes are proteins and edges are 
the interaction between them [9]; gene regulatory networks 
(GRNs), in which the nodes are transcription factors and target 
genes, and edges are the interactions regulating transcription 
and gene expression [10,11]; and cell signaling networks that 
are PPI networks in which signals are propagated within the cell 

via molecules and their interactions [12]. These networks have 
various functionalities and have been used for understanding 
complex physiological and pathological processes. Therefore, 
the need for the development of tools to construct, model, 
and analyze such molecular networks became a necessity to 
understand the function of such networks at a system level. 

Due to the advancements in technology and artificial 
intelligence (AI)/machine learning (ML) techniques in recent 
years, high-resolution biological data is being generated at 
large scales within a short period of time. The availability of 
such a large volume of molecular data prompted scientists to 
develop techniques to convert biological data into mechanistic 
knowledge about complex processes [13-16]. Studying 
molecular networks became a key for understanding complex 
biological activities. More specifically, they play a crucial role in 
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drug discovery, understanding the role of different molecular 
components in the pathogenesis of diseases [8,17-19], cellular 
decision-making processes [20,21], and cell development and 
differentiation [22], by providing valuable insights into the 
complex interactions between biological molecules. These 
networks are typically constructed using data extracted 
from peer-reviewed molecular biology studies on PPIs, gene 
expression, and other regulatory mechanisms [23-25]. 

The availability of extensive molecular biology data and 
the construction of molecular networks is not sufficient to 
gain functional knowledge at the system level. One needs 
to convert the molecular network graphs into numerable 
models so that they can be analyzed further and derive novel 
biological hypotheses. Different modeling frameworks such as 
continuous (e.g., mass-action kinetics with ordinary differential 
equations (ODEs)) [14,26], discrete (e.g., logic models) 
[15,27,28], and hybrid (e.g., a model with logic-based ODEs) 
[16,29] models have been developed and used, according to 
the complexity of networks and data. Besides, to make reliable 
predictions from these models, one needs to tune the models 
into the data, and infer the model parameters for which several 
approaches and tools have been developed [30-33]. Once the 
model is calibrated using the prior knowledge, approaches 
such as network fluxes and signal executions [34,35], network 
communication capacities [36,37], signaling failures [38], and 
fault diagnosis techniques [39-41] are used to reveal novel 
mechanistic knowledge about the network-driven processes 
of interest. 

Overall, analyses of molecular networks by integrating 
experimental data with computational approaches are critical 
for understanding complex biological processes, disease 
mechanisms, and the identification of novel drug candidates 
and their mechanisms of action. In this review, we provide 
insights into the commonly used computational frameworks 
to convert biological data into knowledge, and discuss their 
pros and cons in the following order: (i) we explain how the 
molecular networks are constructed, (ii) we discuss molecular 
network modeling and model calibration approaches, and 
(iii) we discuss how the calibrated models are analyzed using 
various approaches, specifically focusing on the recent findings 
from the approach of extreme signaling failure analysis and its 
potential use in target discovery. 

Constructing Molecular Networks 

In systems biology applications, many dynamic processes can 
be represented as networks of interconnected components, 
representing intracellular biochemical reactions that enable 
the study of their dynamics and signaling mechanisms. 
One way of building such networks is constructing them 
with expert knowledge from literature and repositories. The 
importance of biological network studies led to the creation 
of several databases so that one can build a network of 
interest and develop a theory on it. Some examples of such 
databases, and perhaps the most commonly used ones, 

can be listed as:: (i) STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) database containing known and 
predicted protein interactions [42]; (ii) REACTOME database, 
which is an open-source relational database of signaling 
and metabolic molecules and their relations organized into 
biological pathways and processes [43]; and (iii) KEGG (Kyoto 
Encyclopedia of Genes and Genomes) database, which is a 
collection of manually drawn molecular interaction, reaction 
and relation networks [44]. These examples can be populated 
with MINT (Molecular INTeraction), which is built to collect 
experimentally verified protein-protein interactions [45]; 
TissueNet, which is a tissue-specific interaction database 
containing tissue-specific data of 40 human tissues [46]; and 
several other databases reviewed by Miryala et al. [47]. Using 
these databases, one can construct molecular networks to 
study diverse biological processes of interest. However, one 
potential downside of this way of constructing the networks 
is that, typically, models for literature-curated molecular 
networks do not adequately match experimental data. This 
could be due to the incompleteness of the network and 
the heterogeneity of resources, databases, and literature. 
Therefore, in general, the models built on these networks 
require training of the model parameters against the available 
experimental data to improve the quality and reliability of the 
model predictions, as discussed in detail in the next section. 

Another way of constructing molecular networks is by 
inferring the network itself from the experimental data 
using reverse engineering and AI/ML techniques. Such 
methodologies guided by the data aim to identify molecules 
that are involved in the network, as well as the causal 
relationships between them. An earlier example of such 
methods was provided by Ideker et al. [30], where two methods 
called “predictor” and “chooser” work interactively to infer the 
genetic network from gene expression measurements. Later, 
Bayesian inference approaches were used to construct highly 
probable molecular network structures [48,49]. More recently, 
due to the developments in AI/ML approaches, several 
automatic network inference tools have been proposed [50-
55]. Although directly inferring networks from the data seem 
the most reliable way for further analyses and hypotheses 
generation, it is still very challenging to computationally 
extract true causality due to the lack of data and multimodal 
approaches. To accurately infer causal relationships and 
generate such networks, there is a need for different sets of 
empirical data obtained from experimental setups designed 
for producing high-quality data with the lowest variability and 
highest reproducibility; for example, single-cell proteomics 
and single-cell RNA sequencing, as well as multimodal 
methodologies and tools that can integrate such large-scale 
biological data. 

Modeling Molecular Networks and Training the 
Network Models 

To study molecular networks, one needs to convert molecular 
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network graphs into computational models so that they can be 
analyzed to generate testable hypotheses. One way to model 
molecular networks is to convert them into a mathematical 
form, by building a system of differential equations that can 
capture temporal and spatial behaviors of molecules within a 
complex network, the so-called continuous models [14,56-58]. 
Such models describe the system dynamics over time using, 
for instance, mass-action kinetics for the rates of consumption 
and production of molecular species. Given well-characterized 
molecular networks, continuous models can provide detailed 
mechanistic information about the system of interest. 
Therefore, various tools have been developed to implement 
such models and perform in-silico analyses of complex 
processes [59,60]. However, such models require knowledge 
of biological mechanisms and kinetic parameters such as 
rate constants, which is usually very limited. Furthermore, the 
complexity of the mathematical system as well as the number 
of free parameters to be estimated, and hence, the need for 
prior information, i.e., experimental data, increases drastically 
if the network becomes larger. 

Another way of modeling molecular networks is using 
discrete models such as logic models, e.g., Boolean [15,27,28] 
and ternary models [41,61], fuzzy logic models [62], and Petri 
nets [63] that do not require detailed kinetic information and 
can still sufficiently model the dynamics of the system. Because 
of the applicability of these models to networks of any size, 
and the flexibility of the model parameters, they became very 
popular and still being commonly used [20,28,29,33,39-41,64-
66]. However, the downside of these models is that they do 
not provide as detailed information as the continuous models. 
For instance, the Boolean models can only provide predictions 
of ON/OFF behavior of the molecules. Similarly, multilevel 
models like fuzzy logic, can provide dynamics of molecules 
in discrete multiple levels at distinct time points. Moreover, 
the predictive capacity of these models also depends on the 
network structure. Therefore, similar to the need for parameter 
estimation in continuous models, discrete models may also 
require some calibration steps which would be the tuning of 
the network structure, or the model assumptions such as the 
logic rules. 

Regardless of the type of modeling approach, calibrating 
the models is very critical for making reliable predictions. 
The implemented models should be able to reproduce the 
existing biological findings so that they can be used for 
further analyses. Therefore, the models need to be trained 
against the experimental data. For the continuous models, 
training usually means estimating the free model parameters 
such as the reaction rate constants, endogenous levels of 
molecules, and other hyperparameters (if used in the model). 
Various techniques and tools are available to estimate model 
parameters such as Bayesian inference approaches [32,67] 
that sample the posterior distribution of parameter space 
to maximize the likelihood of data; or optimization-based 
approaches [68] that aim to find the best parameter set by 

minimizing an error function such as minimum squared error 
between the model predictions and the experimental data. 
On the other hand, in discrete models, although there are not 
typically any kinetic parameters, one can consider the model 
assumptions, i.e., the rules, and the network structure as 
parameters to be estimated. Given a fixed network structure, 
one way of calibrating the discrete models is learning, for 
instance in Boolean models, proper combinations of logic 
rules representing how biological interactions occur [69,70]. 
Another approach is fixing the model rules and learning a 
network sub-structure - by removing interactions/nodes - 
on which the model provides maximum prediction accuracy 
[19,33]. Similarly, one can train the models by both learning 
model rules and the network structure simultaneously, which 
is a more complex and challenging problem [23]. 

Depending on the network and model complexity, and 
the interdependency between the model parameters, one 
common issue to deal with after the model calibration is that 
some model parameters are practically unidentifiable [71], 
which means that their values cannot be uniquely determined 
using the available data. Therefore, after model calibration, 
several combinations of parameter sets (or model rules, or 
network structures) might be inferred that provide equally-
well data prediction accuracy. Then, the question is which set 
of parameters (or model rules, or network structures) should 
be used for further analyses. A common practice has emerged 
where one or a few parameter vectors are chosen at random 
to make predictions, with varying degrees of success [72,73]. 
This led to ongoing criticisms regarding the usefulness of 
large and complex mathematical models of cellular processes 
with multiple uncertain parameters. Hence, methods need to 
be developed that can infer biological information, perhaps 
probabilistically as proposed by Ortega et al. [35], because of 
the uncertainty of parameters or models. 

Analyses of Models of Molecular Networks for 
Target Discovery 

The main goal of constructing the underlying network of 
a biological process, building network models, and training 
them against limited experimental data is to eventually use 
them to test various hypotheses, discover novel insights into 
complex diseases, generate novel and testable hypotheses, 
and discover new drug targets to develop novel therapeutics 
with lower costs. For this purpose, regardless of the model type, 
a common analysis approach is to induce in silico mutations 
or molecular dysfunctionalities in the network and then 
compute the network response deviation from the normal 
response. Different forms of this approach are developed in 
different frameworks such as fault diagnosis or vulnerability 
analysis [39], and sensitivity analysis [74,75]. Fault diagnosis is 
a platform for finding selective targets by using computational 
and systems biology techniques that have been developed 
and optimized over the years [38-41]. The main purpose of 
this approach is to understand how vulnerable the entire 
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molecular network is to the dysfunction of each molecule or a 
group of molecules. 

For fault diagnosis of molecular networks, studies usually 
focus on intracellular signaling networks which can be 
divided into three main components: (i) input molecules, (ii) 
intermediate signaling molecules, and (iii) output molecules. 
Input molecules of the network are typically ligands that bind 
to their receptors on the cell membrane. Upon ligand binding, 
a series of intracellular events such as activation or inhibition 
of secondary messengers, G proteins, kinases, phosphatases, 
and other intracellular signaling molecules can occur. Through 
a cascade of such signaling events, output molecules such 
as transcription factors are regulated, which ultimately alter 
cellular functions by changing the gene expression pattern. In 
the fault diagnosis analyses, in general, first, a molecule or a 
group of molecules is set to a dysfunctional state, e.g., very low 
(hypoactivity) or very high (hyperactivity) activity levels, i.e., a 
fault is introduced in the model. The effect of a dysfunctional 
state on the overall network function is then quantified 
by computing the vulnerability level of the molecule, or a 
group of molecules. In other words, a vulnerability value is 
computed for every molecule that reflects the sensitivity of 
the network to the dysfunction of that molecule, or a group 
of molecules. A high vulnerability level for a molecule (or a 
group of molecules) indicates that the dysfunction of that 
specific molecule (or a group of molecules) drastically alters 
the network function. Thus, in the context of target discovery, 
highly vulnerable molecules of a network that is known to 
be involved in a certain disease are potential targets due 
to their high probability of having causative involvement 
in the dysfunction of the network, and consequently to the 
development of the pathology. 

Recently, using the abovementioned fault diagnosis analysis 
framework as well as our previous observations, we developed 
an algorithm [38] that performs extreme signaling failure 
analysis of molecular networks of any size in the context of 
the Boolean modeling approach. In this algorithm, hyper 
and hypoactivity of molecules are represented by always 
ON - molecule state is stuck-at-1 or always OFF - molecule 
state is stuck-at-0 - fault models [38]. We defined extreme 
signaling failure as a pathological phenomenon that results 
in the highest probability of network failure, where network 
failure is defined as the departure of the network response 
from its normal or expected response. The said pathological 
phenomenon is characterized to be emerged from the 
presence of one or more dysfunctional molecules in the 
network. Additionally, we defined the vulnerability level of a 
molecule (or group of molecules) as the probability of having 
incorrect network responses when that specific molecule (or 
group of molecules) is dysfunctional (see Methods section 
of Ozen et al. [38]). Given a molecular network with at least 
one input, one output, and some intermediate molecules, 
the algorithm outputs a graph of the maximum vulnerability 
level versus the number of simultaneously faulty molecules. 
This graph depicts how the worst-case functional failure of the 

network varies as the number of concurrently dysfunctional 
molecules changes. 

Interestingly, when this algorithm is applied to some 
networks with different sizes and complexity - i.e., whether it 
includes feedback interactions or not - we observe that it is 
sufficient to have only a few dysfunctional molecules to reach 
the maximum possible vulnerability level of a network. While 
these findings should be verified by experiments, this may 
mean that it is likely that no matter how complex a network-
driven biological process is, perhaps only a few simultaneously 
dysfunctional molecules may fully change the network 
function and markedly contribute to an unexpected event 
such as the development of a disease. From a target discovery 
point of view, this observation means that it perhaps suffices 
to identify and focus on only a few target molecules whose 
dysfunction causes the largest network response departure 
from the physiological response. 

To elaborate and show how this type of analysis can be used 
for target discovery, here we present the results of analysis 
of three different networks: Caspase 3 network (Figure 
1A) involved in cell death and survival regulated by various 
upstream pathways [41], ERBB signaling network (Figure 
1B) that is a therapeutic target in breast cancer [76], and T 
cell network (Figure 1C) involved in a variety of immune 
system response [27]. These three networks are of different 
sizes and complexities, i.e., 17 intermediate molecules 
without feedback interactions, 18 intermediate molecules 
with feedback interactions, and 64 intermediate molecules 
with feedback interactions, respectively. When we perform 
the extreme signaling failure analysis by setting a single or a 
group of molecules to be simultaneously dysfunctional and 
then simulating each network, we observe that the maximum 
vulnerability levels of these networks are reached when there 
are only N=3 concurrently faulty molecules in the Caspase 3 
network (Figure 1D), and N=2 concurrently faulty molecules 
in the ERBB and T cell networks (Figures 1E and 1F). 

Another interesting observation is that a fully crashed 
network, i.e., the network whose all intermediate molecules 
are dysfunctional, may not necessarily function worse than 
the same network that has only a few faulty molecules. For 
instance, the maximum vulnerability level of the Caspase 
3 network is 0.5 when there are three concurrently faulty 
molecules, N=3 in Figure 1D, whereas it is 0.465 when all 
the intermediate molecules are faulty, N=17 in Figure 1D. 
Similarly, the ERBB and T cell networks reach their maximum 
vulnerability levels of 0.885 and 0.75, respectively, when there 
are two concurrently faulty molecules (N=2, Figure 1E-F), 
whereas their maximum vulnerability levels become 0.625 
when all of their intermediate molecules are dysfunctional 
(N=18 and N=64, Figures 1E and 1F, respectively). This 
further supports the idea that the identification of a few highly 
vulnerable faulty molecules, for example, three, can effectively 
assist with the target discovery process. 
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These types of analyses not only can help to understand the 
overall functional fidelity of the network but also can help with 
predicting the molecules or groups of molecules that cause 
the most divergence from its normal function, when they are 
dysfunctional. To exemplify, the fault diagnosis analysis of 
the Caspase 3 network predicts that the network loses most 
of its normal function when AKT is dysfunctional (Figure 
1G, N=1), which is biologically relevant since the activity of 
AKT has a positive correlation with Caspase 3 activity [77]. 
We computationally predict that the dysfunctionality of AKT 
together with COMPLEX I or II or MKK3 causes some more 
damage (Figure 1G, N=2). Similarly, we predict that CyclinD1 
alone has the highest vulnerability level in the ERBB network 

(Figure 1H, N=1), which is relevant as its role in breast cancer 
has been previously shown [78]. Unexpectedly, although 
CyclinD1 individually has the highest vulnerability level, the 
maximum damage to the function of the network is observed 
when AKT1 and MEK1 are concurrently faulty (Figure 1H, 
N=2). This means that maybe searching for a single target to 
mitigate the network dysfunction is less productive because 
the network malfunction can be a cumulative effect of 
multiple simultaneously dysfunctional molecules. This may 
suggest that drugs with multiple targets, such as multi-kinase 
inhibitor drugs, might be more effective. In the pharmaceutical 
industry, especially in oncology drug development, it is now 
well established that drugs that can target multiple molecules 

Figure 1. Extreme signaling failure analyses of three networks of different sizes and complexities. (A) The feedback-free Caspase 3 network. 
(B) The ERBB network with feedback interactions. (C) The T cell network with feedback interactions. (D) The Caspase 3 network maximum 
vulnerability levels when there are N concurrently dysfunctional molecules in the network, N = 1,…,17. (E) The ERBB network maximum 
vulnerability levels when there are N concurrently dysfunctional molecules in the network, N = 1,…,18. (F) The T cell signaling network 
maximum vulnerability levels for the network output BCAT, when there are N concurrently dysfunctional molecules in the network, N = 
1,…,64. (G, H, I) Top three vulnerability levels in each network, when there are N concurrently dysfunctional molecules, N = 1, 2, and 3.
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are much more effective in treating cancer compared to 
those that have a single target. They also show significantly 
lower chances of drug resistance [79]. Lastly, some similar 
observations can be made for the T cell network. The top three 
highest vulnerability levels for one, two, or three concurrently 
faulty molecules are shown in Figure 1I for the T cell network. 

Conclusion 

In conclusion, computational approaches, specifically 
technologies for modeling and analyses of signaling networks, 
have revolutionized the field of target discovery, offering 
powerful tools and techniques that enable researchers to 
uncover new insights into complex biological systems. Several 
classes of molecular network modeling and analysis methods 
are briefly reviewed in this paper, and some findings of the 
recently introduced extreme signaling failures in intracellular 
molecular networks are highlighted as well. These approaches 
have demonstrated remarkable success in identifying potential 
drug targets, accelerating the prolonged process of drug 
discovery, and providing a deeper understanding of disease 
mechanisms. By integrating various computational methods, 
such as network modeling and analysis algorithms, together 
with AI and machine learning approaches [80], researchers can 
uncover hidden relationships, predict target-drug interactions, 
and prioritize targets for further experimental validation. 
Despite the challenges and limitations, computational 
modeling of molecular networks continues to evolve, opening 
new possibilities for the discovery of novel therapeutics. As we 
delve deeper into the new era of computational biology by 
the rapid development in artificial intelligence and machine 
learning techniques, the integration of diverse data sources 
and the development of more sophisticated algorithms will 
undoubtedly fuel further breakthroughs in understanding 
disease mechanisms and discovery of better targets for drug 
development, which eventually enables scientists to find 
more effective treatments for some of the most complex and 
incurable human diseases.
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