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Abstract: Due to structural and functional abnormalities or genetic variations and 

mutations, there may be dysfunctional molecules within an intracellular signaling network that 

do not allow the network to correctly regulate its output molecules, such as transcription factors. 

This disruption in signaling interrupts normal cellular functions and may eventually develop 

some pathological conditions. In this paper, computation capacity of signaling networks is 

introduced as a fundamental limit on signaling capability and performance of such networks. In 

simple terms, the computation capacity measures the maximum number of computable inputs, 

that is, the maximum number of input values for which the correct functional output values can 

be recovered from the erroneous network outputs, when the network contains some 

dysfunctional molecules. This contrasts with the conventional communication capacity that 

measures instead the maximum number of input values that can be correctly distinguished based 

on the erroneous network outputs. 

The computation capacity is higher than the communication capacity whenever the 

network response function is not a one-to-one function of the input signals, and, unlike the 

communication capacity, it takes into account the input-output functional relationships of the 

network. By explicitly incorporating the effect of signaling errors that result in the network 

dysfunction, the computation capacity provides more information about the network and its 

malfunction. Two examples of signaling networks are considered in the paper, one regulating 

caspase3 and another regulating NFκB, for which computation and communication capacities are 

investigated. Higher computation capacities are observed for both networks. One biological 

implication of this finding is that signaling networks may have more “capacity” than that 

specified by the conventional communication capacity metric. The effect of feedback is studied 

as well. In summary, this paper reports findings on a new fundamental feature of the signaling 

capability of cell signaling networks. 
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Introduction: Intracellular signaling networks in a cell respond to incoming signals to regulate 

some target molecules, to properly control the cell function. In general, signaling networks have 

multiple inputs and multiple outputs. The inputs can be ligands that, upon binding to their 

receptors on the cell membrane, create a chain of interactions through some intermediate 

signaling molecules, such as receptors, kinases, phosphatases, etc. This way the network outputs, 

typically target proteins such as transcription factors, are collectively regulated to produce an 

appropriate response. 

One possible way to model a signaling network is to consider it as a communication 

channel [1,2]. From this point of view, a signaling network communicates and conveys signals 

from its inputs to the outputs. 

An alternative approach for modeling a signaling network is to envision it as a computing 

machine. In this approach, a signaling network makes some computations on the incoming 

signals and produces some responses at the outputs, accordingly. 

Each modeling approach can reveal certain features of signaling networks. While the 

communication channel framework has been applied to signaling networks [1,2], the computing 

machine approach does not seem to have been explored so far. As demonstrated later in this 

paper, the developed computing machine framework appears to be advantageous for studying 

signaling failures and malfunctions in pathological signaling networks. 

More specifically, in the introduced molecular computing machine framework, a signaling 

network is a molecular system that under normal conditions correctly computes the outputs 

based on the applied inputs. In other words, under normal conditions, a signaling network maps 

the inputs to outputs via a mapping or transformation f. Examples of this mapping for some 

experimentally-verified signaling networks are provided later in the paper. However, for an 

abnormal signaling network that contains some dysfunctional molecules due to mutations or 

some structural/functional abnormalities, its mapping is generally different from f. We call the 

abnormal mapping F. The developed computing machine approach focuses on both f and F, and 

hence on comparing the ways a signaling network computes its outputs under normal and 

abnormal conditions. 
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The difference between the normal and abnormal network mappings f and F, respectively, 

is caused by dysfunctional molecules. This means abnormal deviation of the signaling network 

from its normal function, when some molecules become dysfunctional due to mutations or some 

structural/functional abnormalities. 

A key concept in the computing machine framework is the computation capacity, which is 

fundamentally different from the communication capacity previously studied in signaling 

networks [1,2]. The computation capacity provides a measure of the accuracy of the computation 

of a desired function f. As demonstrated later in the paper, the computation capacity is generally 

larger than the communication capacity, and it directly accounts for the functional task carried 

out by the network, rather than focusing on input-output information transfer. 
 

Descriptive Comparison of Computation and Communication Capacities: The 

communication capacity is the maximum amount of information that can be reliably transferred 

from the input of a communication channel to its output. The goal is reliable communication, i.e., 

correct recovery of the input message from the erroneous output. This is a reasonable model for a 

network that just transfers the information from its inputs to its outputs, without any processing 

or computation on the information. This is typically the case in man-made communication 

channels [3]. In such systems, the output and input are ideally the same, if there is no 

transmission error [3]. In contrast, in signaling networks, outputs are typically computed from 

inputs, and there is a desired function that maps the inputs to the outputs (examples are provided 

later in the paper). The goal of signaling systems therefore can be considered to be reliable 

computation, i.e., mapping inputs to correct outputs. In other words, the goal of a reliable 

computing network is ensuring that its erroneous outputs1 are as close as possible to the correct 

                                                 
1 In a signaling network, in general input and output values are different from each other. 

This is because output values are computed from input values, and that is why they are different, 

even when there is no dysfunctional node in the network. If there is no dysfunctional node, we 

consider output values as correct outputs. However, if there is a dysfunctional node in the 

network, output values can become different from correct output values. That is why we call 

them incorrect or erroneous output values, or in short, erroneous outputs (resulted from errors 

introduced by the dysfunctional node and propagated to the network output). 
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outputs. This necessitates a new definition for the capacity, and the computation capacity, 

introduced in [4], provides a useful choice. As defined rigorously later in the paper, the 

computation capacity of a signaling network is the maximum number of input values for which 

the functionally correct outputs, corresponding to the case when there is no dysfunctional 

molecule, can be recovered from the erroneous network outputs, which are affected by errors 

due to dysfunctional molecules. Later in the paper we provide examples of signaling networks 

and calculate both their communication and computation capacities. We will show that the 

predictions and interpretations obtained from the computation capacity provide novel insights on 

signaling networks. Communication capacity is more suitable to analyze the transduction noise 

in a network [1,5], whereas computation capacity is well suited to study signaling failures in 

abnormal signaling networks. 

The computation capacity is first introduced in the present paper for normal and abnormal 

networks, i.e., non-diseased and diseased (with dysfunctional molecules) networks. On the other 

hand, the communication capacity of non-diseased and diseased networks was previously 

introduced and studied in [2]. 

 

Computation Capacity of Signaling Networks - Basic Definitions: Consider a system 

such as a signaling network, with X as its input, which computes the output according to the 

error-free mapping f. So, the error-free output is ( )f X . When the system is erroneous due to the 

presence of some dysfunctional molecules, the mapping is called F, so, the erroneous output is 

F(X). If we consider the system as a communication channel, following the regular definition of 

channel capacity [6], the communication capacity of this system can be written as [7] 

                                
( ) ( )

( ) max ( ) ( | ( )) max ( ; ( ))
P X P X

C F H X H X F X I X F X   ,                               (1) 

where the maximization is over all input distributions P(X), the H symbols represent entropy and 

conditional entropy, respectively, and ( ; ( )) ( ) ( | ( ))I X F X H X H X F X   is the mutual 

information between X and F(X). The entropy ( )H X  measures the variability in the input, 

whereas the conditional entropy ( | ( ))H X F X  measures the equivocation, or uncertainty, about 

the input given the erroneous output [6]. Following standard nomenclature, we will also refer to 
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( ) ( ) ( | ( ))R F H X H X F X  , for a fixed input distribution P(X), as the communication rate. 

Overall, equation (1) is the commonly-used maximum mutual information between the input and 

output, which is well justified in the context of communication, i.e., in situations where, in the 

absence of electronic noise, the output is intended to reproduce the input [3]. However, in 

systems where the output ( )f X  is different from the input X even in the absence of any type of 

noise, the definition in equation (1) may underestimate the capacity of the system to reproduce 

the function ( )f X . Intuitively, in computing systems where the error-free function ( )f X  is not 

a one-to-one mapping, this ( | ( ))H X F X  measure of equivocation generally overestimates the 

relevant uncertainty at the output, since the goal is recovering ( )f X , and not the input X. As a 

result, the communication capacity may underestimate the true functional “capacity” of the 

system to reproduce ( )f X . We demonstrate this later in the paper, using some experimentally-

verified signaling networks. This motivates the introduction of the computation capacity concept. 

Note that with ( )Y F X  being the erroneous output, the conditional entropy or equivocation in 

equation (1) is given by 

2( | ) ( ) |( | ( ) log ( | )( )) y xH XH X Y P Y y P x Y y P xX F X X Y y         , where P and 

2log  stand for probability and the base 2 logarithm, respectively. This equivocation definition is 

modified in what follows, to obtain a new capacity definition which is more suitable for 

signaling networks. 

For signaling networks, a more appropriate capacity metric is one that depends on the 

normal network mapping function f as well. We propose to use the following equivalent 

definitions for signaling networks 

              
( ) ( )

( ) max ( ) ( ( )| ( )) max ( ( ); ( )) ( | ( ))f
P X P X

C F H X H f X F X I f X F X H X f X   ,             (2) 

where ( )fC F  is the computation capacity of the erroneous function F with respect to the error-

free function f [4]. In analogy with the communication rate R(F), we will refer to 

( ) ( ) ( ( )| ( ))fR F H X H f X F X  , for a fixed input distribution P(X), as the computation rate. 

Recall that we have two different input-output network mappings: the error-free correct mapping 

f and the erroneous incorrect mapping F. For modeling and analysis of abnormal signaling 

networks with some dysfunctional molecules, equation (2) is a more suitable metric than 



7 

equation (1). This is because it emphasizes the differences between the correct and incorrect 

outputs of a network, caused by some abnormal conditions and dysfunctional molecules. This is 

reflected in the new equivocation term ( ( )| ( ))H f X F X  in the first definition in equation (2), 

which represents the ambiguity on ( )f X , the correct network output, given F(X), the incorrect 

network output. Note that this is different from the traditional equivocation term in equation (1), 

( | ( ))H X F X  defined in the paragraph after equation (1), which measures the ambiguity on X, the 

network input, given F(X), the incorrect network output. The equivocation model ( | ( ))H X F X  is 

more suitable for communication channels, where ideally one would like to have the incorrect 

outputs as close as possible to the inputs. In contrast, the equivocation model ( ( )| ( ))H f X F X  is 

more appropriate for mapping networks and computing systems such as signaling networks, 

where ideally it is desired to have the incorrect outputs as close as possible to the correct 

outputs. 

The second definition in equation (2), developed in Supplementary Material, provides 

another way to relate computation and communication capacities. It shows that the computation 

capacity equals the maximum mutual information between correct and incorrect outputs 

( ( ); ( ))I f X F X , and the uncertainty on the input given the correct output ( | ( ))H X f X . The 

former is a measure of accuracy of the incorrect output with respect to the correct output, 

whereas the latter measures the degree of “non-invertibility” of the function f, i.e., the degree of 

the function f “not being one-to-one.” Mathematical details and some numerical examples are 

provided in Supplementary Material. 

The summary illustrative table 1 and figure 6 presented at the end of the paper, 

summarizing our results and findings, further assist with understanding the differences between 

the computation and communication capacities and their implications for signaling networks. 

 

A Relation between Computation and Communication Capacities: An interesting 

property of the computation capacity in equation (2) is that it is greater than the communication 

capacity in equation (1), i.e., ( ) ( )fC F C F  [4], as long as f is not a one-to-one function (no 

one-to-one correspondence between the elements of domain and co-domain of f ). This is 

because the ambiguity of ( )f X  given F(X) is less than the ambiguity of X given F(X), i.e., 
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Figure 1. Caspase3 signaling network (The node ComplexI includes TNFR and TRADD-

RIP-TRAF2, and ComplexII represents TRADD-RIP-TRAF2 and FADD [9]. The edges 

ending in an arrowhead or a blunt line indicate activation or inhibition, respectively). 

( ( ) ( )) ( ( ))H f X F X H X F X│ │  by the data processing inequality [6]. Therefore, upon 

comparing equation (2) with (1), we observe that ( ) ( )fC F C F , i.e., computation capacity is 

greater than communication capacity. In signaling networks with lots of redundancies and many 

cross-linked pathways from inputs to outputs [8], most often the network response function f is 

not a one-to-one function of the input signals, and therefore the computation capacity is higher 

than the communication capacity. This is further verified and demonstrated in this paper for two 

examples of caspase3 and NFκB signaling networks (other networks can be similarly analyzed). 

Note that only for the special case of f being a one-to-one function, the two capacities become equal. 

 

Case Study 1) Caspase3 Signaling Network: Here we calculate the communication and 

computation capacities of an experimentally-verified signaling network, the caspase3 network 

(figure 1). Caspase3 is an important molecule and a key regulator of apoptosis. Signaling 

pathways from the ligands EGF, epidermal growth factor, insulin and TNF, tumor necrosis 

factor, to caspase3 (figure 1) are extensively characterized and experimentally verified [9]. Based 

on the experimental results [9], the network output caspase3 is active, when the inputs EGF and 

insulin are inactive and the input TNF is active. Otherwise, the output is inactive. When a 

molecule in the network is dysfunctional, one can consider that the activity state of that molecule 

does not change in response to its regulators [10]. Here we consider the scenario where the 
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dysfunctional molecule remains inactive [10]. This gives rise to a signaling network that can be 

considered as an erroneous computing machine. The input-output functional relationship F of the 

abnormal network can be different from f of the normal network, and depends on which 

molecule is dysfunctional, as shown in Supplementary Material, Section A. We observe that 

when AKT or EGFR or MEKK1ASK1 is dysfunctional in the network, the input-output 

abnormal mapping function F is different from f of the normal network; whereas F is the same as 

f, when other molecules in the network are dysfunctional. 

In what follows, to quantify the amount of impact of each dysfunctional molecule on 

communication and computation capacities of the caspase3 signaling network, we consider a 

model where each single molecule can be dysfunctional with a probability p, such that 0 1 p . 

 

Communication Capacity C(F) of the Caspase3 Signaling Network: Using the network 

transition probability matrices of the caspase3 network, equations (2)-(5) of [11], and based on 

equation (1) in this paper, the communication capacity of the caspase3 network is plotted in 

figure 2, when one of its molecules is dysfunctional (see Supplementary Material for the 

method). Interestingly, the communication capacity metric overlooks the differences between the 

molecules and classifies them into two groups. It appears that the communication capacity 

provides less information about the network and its abnormal behavior, when it contains 

dysfunctional molecules. This is in contrast to the computation capacity, as discussed next. 

 

Computation Capacity Cf (F) of the Caspase3 Signaling Network: Using the network 

transition probability matrices of the caspase3 network, equations (2)-(5) of [11], and based on 

equation (2) in this paper, the computation capacity of the caspase3 network with respect to the 

error-free output f is plotted in figure 3, when one of its molecules is dysfunctional (see 

Supplementary Material for the method). Comparing with the communication capacity in figure 

2, we notice two remarkable points: 

(i) The computation capacity magnitude is larger than the communication capacity. This is 

because the input-output mapping function f of the caspase3 network (Supplementary Material, 

equation (s1)) is not a bijective function, i.e., is not a one-to-one correspondence. This makes the 
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computation capacity larger than the communication capacity, as stated earlier in the paper. 

Intuitively, this indicates that the number of input values that can be correctly computed on is 

larger than the number of input values that can be correctly recovered given the output of the network. 

(ii) The computation capacity classifies the network molecules into four groups. This 

indicates that the computation capacity can have more predictive power than the communication 

capacity, which identifies only two groups of molecules. In other words, the computation 

 
Figure 2. Communication capacity in equation (1) versus the dysfunction probability p for each molecule in the 

caspase3 network. 

 
Figure 3. Computation capacity in equation (2) versus the dysfunction probability p for each molecule in the 

caspase3 network. 
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Figure 4. NFκB signaling network. TNF is the tumor 

necrosis factor and TRC stands for the TNF receptor 

complex. The edges ending in an arrowhead or a blunt 

line indicate activation or inhibition, respectively. 

capacity can recognize the roles and functions of different molecules in the network more 

precisely than the communication capacity. 

 

Case Study 2) NFκB Signaling Network: Now we study some communication and 

computation characteristics of a network that has feedback and hence defines an input-output 

mapping f with memory. Consider the network in figure 4, where tumor necrosis factor (TNF) 

and nuclear factor κB (NFκB) are input and output molecules, respectively. The molecule A20 

has an inhibitory feedback effect, whereas TRC stands for TNF receptor complex [5]. A 

comprehensive stochastic differential equation model is developed in [12] and its accuracy is 

extensively verified via experimental data. It is well known that the activity of NFκB first 

increases with TNF, but the upregulation of A20 by NFκB inhibits TRC, which in turn decreases 

the activity of NFκB. Consider that the inactive and active states of a molecule are represented 

by 0 and 1, respectively (see [10,13,14,15] for an overview and examples of this modeling 

approach in systems biology). In Supplementary Material, Sections C, D and E, we first present 

activity models for the network output in term of the input activity, under normal (wild type) and 

abnormal (A20-deficient) conditions, and show how the input-output models are corroborated by 

biological data. Afterwards, we present a system formulation and discuss its biological relevance 

in Section F of Supplementary Material. The system formulation allows to calculate and compare 

communication and computation rates and capacities of the NFκB network. 

We consider the network to be abnormal, when it has A20 deficiency. It is demonstrated 

that an A20-deficient mouse develops 

severe inflammation and dies prematurely 

[16]. This is because cells with this 

deficiency cannot stop the NFκB response 

caused by TNF, as is evident in figure 4, 

when there is no feedback. It is also 

known that the dysfunction of A20 is 

involved in a number of diseases such as 

multiple sclerosis, lupus, rheumatoid 
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arthritis, etc. [17]. To model A20 deficiency in the network, we consider A20 as a molecule 

which has a chance to be dysfunctional with a probability p. More specifically, consider that the 

probability of A20 to remain 0, inactive, regardless of the signal from NFκB is p. This model is 

consistent with the fact that A20 is inactive in several hematological malignancies [18], and also 

as shown below, it allows to calculate and compare communication and computation rates and 

capacities of the NFκB network, when A20 is dysfunctional. 

 

Communication Rate of the NFκB Signaling Network: Due to the feedback in the 

network, the network has a memory such that its output (NFκB) activity state depends on the 

present and past input (TNF) activity states (see Section G of Supplementary Material). 

Calculation of the communication capacity in the presence of memory requires to optimize over 

the distribution of sequences of inputs. In order to gain some insight into the communication 

capacity of systems with memory, we first evaluate the communication rate, i.e., the mutual 

information between two successive values of the input and the corresponding output values for 

a fixed uniform distribution of the input. 

To elaborate, let 1Y  and 2Y  represent the activity states of NFκB at two consecutive time 

instants 1t  and 2t , respectively, i.e., 1 )NFκB 1( Y t  and 2 )NFκB 2( Y t . Note that 

1t  and 2t  represent early and late signaling events, respectively. Similarly, we have 

1 )TNF 1( X t  and 2 )TNF 2( X t . Clearly X and Y variables refer to the network input and 

output in figure 4, respectively. The communication rate evaluated as the mutual information 

between the network input sequence 1 2( , )X X  and the network output sequence 1 2( , )Y Y  can be 

shown to be (see Section G of Supplementary Material for the method) 

                              
1 2 1 2 1 2 1 2 1 2

2 2

( ) ( , ; , ) ( , ) ( , | , )

2 0.25(2 ) log (2 ) 0.25(1 ) log (1 ),

R F I X X Y Y H X X H X X Y Y

p p p p

  
      

                           (3) 

where 2log is logarithm to the base 2 and p is the probability of A20 to be dysfunctional. As seen 

in figure 5, the communication rate, i.e., the mutual information, increases with p. This means 

the network output in figure 4 has more information about the input, when A20 becomes more 

dysfunctional. In other words, as A20 becomes more dysfunctional, the network behaves closer 
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to a linear pathway with no feedback, and the input activity state can be determined with less 

ambiguity from the output activity state. 

 

Computation Rate of the NFκB Signaling Network: Using the notation introduced 

earlier, i.e., 1 )NFκB 1( Y t , 2 )NFκB 2( Y t , 1 )TNF 1( X t  and 2 )TNF 2( X t , the 

computation rate of the network with respect to the error-free output f can be shown to be (see 

Section G of Supplementary Material for the method) 

                                    1 2 1 2 1 2( ) ( , ) ( ( , ) | , ) 2fR F H X X H f X X Y Y   .                                      (4) 

As seen in figure 5, the computation rate for the NFκB network is greater than its communication 

rate. Moreover, its constant value implies that regardless of p, correct outputs can be inferred 

from erroneous outputs (Supplementary Material, Section G). 

 

Communication and Computation Capacities of the NFκB Signaling Network: Let 

C(F) represent the communication capacity of the NFκB network. It can be shown that (see 

Section H of Supplementary Material for the methods) 

R
at

e

 
Figure 5. Communication rate in equation (3) and computation rate in equation (4) versus the A20 dysfunction 

probability p in the NFκB network. 
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2

1 5
log 0.7, 0 1,

2
( )

1, 1.

p

C F

p

  
        


 

                                            (5) 

Interestingly, the term (1 5 ) / 2  is the well-known golden ratio [19]. Another noteworthy 

observation is that the calculated communication capacity of about 0.7 bits for the TNF-NFκB 

system is based on early and late responses of NFκB to TNF. It falls between the experimentally-

determined individual maximum mutual information of about 0.9 and 0.6 bits for the same 

system, based on early and late NFκB responses, respectively [5]. 

On the other hand, let ( )fC F  stand for the computation capacity of the NFκB network 

with respect to the error-free output f. It can be shown that (see Section I of Supplementary 

Material for the methods) 

                                                               ( ) 1, 0 1fC F p   .                                                      (6) 

Note that since the function f here is not one-to-one (see the second column of table S2), the 

computation capacity, 1 in equation (6), is higher than the communication capacity, 0.7 in 

equation (5). Only for the special case of 1p  , A20 being completely dysfunctional with unit 

probability, the NFκB network (figure 4) becomes a linear pathway in the absence of A20 

feedback. This makes f a one-to-one function that results in equal capacities for the special case 

of 1p  . 

 

On the Computation Capacity Being Higher than the Communication Capacity: We 

generally discussed earlier in the paper that signaling networks with lots of redundancies and 

many cross-linked pathways from inputs to outputs do not possess one-to-one mapping 

functions, and therefore their computation capacities are proved to be higher than their 

communication capacities. We also verified this specifically for two signaling networks. 

Interestingly, it has been a surprise to researchers that information (communication) capacities of 

signaling networks appear to be smaller than what is typically anticipated [1,20]. In this regard, 

the computation capacity concept introduced here is a new metric that can possibly shed some 
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Figure 6. An Illustrative schematic of communication and computation capacities of a signaling network. 

light on this controversy, and can perhaps reveal some unknown capabilities and characteristics 

of signaling networks. 

 

An Illustrative Comparative Summary of Computation and Communication 

Capacities of Signaling Networks: The computation capacity is introduced in this paper for 

normal and abnormal networks, i.e., networks with dysfunctional molecules, whereas the 

communication capacity of normal and abnormal networks was previously studied in [2]. Some 

other studies have investigated the communication capacity of signaling networks [5,21,22,23] 

and genetic systems [24]. 

To better understand the differences between the computation and communication capacity 

metrics, we provide an illustrative schematic in figure 6. The figure depicts a signaling network 

with some dysfunctional molecules, the erroneous input-output mapping function F, the input 

signal X and the erroneous output response F(X). As graphically shown in figure 6, the 

communication capacity C(F) considers only X and F(X). In contrast, the computation capacity 
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X: input signal 

f (X): error-free 
network output 

F(X): erroneous 
network output 

H: entropy 

Equivocation Capacity Capacity2  

Communication 
metrics 

( | ( ))H X F X  
( ) max of

( ) ( | ( ))

C F

H X H X F X




 

Max number of X values 
such that X can be correctly 
recovered from ( )F X , i.e., 
max number of decodable 
or distinguishable inputs. 

Computation 
metrics 

( ( )| ( ))H f X F X  
( ) max of

( ) ( ( )| ( ))

fC F

H X H f X F X




 

Max number of X values 
such that f (X) can be 

correctly recovered from 
( )F X , i.e., max number of 

computable inputs. 

 

Table 1. Summary of communication and computation capacity-related metrics and 
definitions and results. 

Cf(F) additionally takes into account the desired error-free input-output mapping function f. In 

other words, the computation capacity Cf(F) considers X, F(X) and f(X) (figure 6). The 

transformation Ф (figure 6) is a mapping from f to F, and models the changeover from the 

normal response f(X) to the abnormal response F(X). In other words, Ф represents 

computation/signaling errors caused by dysfunctional components and molecules. Note that the 

abnormal and normal states in figure 6 are symbolically shown by an irregular shape and a 

rectangle, respectively. Overall, this figure elucidates the concepts behind the communication 

and computation capacities and their differences. 

Additionally, a summary of communication and computation capacity-related metrics and 

definitions and results that clarifies their differences is presented in table 1. The corresponding 

mathematical details and derivations and other numerical examples for communication and 

computation capacities are presented in Supplementary Material, Sections J-L. 

 

On Signaling Network Models for Calculating Computation and Communication 

Capacities: In the stochastic network models considered in this paper, activity level of each 



17 

molecule is a continuous-valued number between 0 and 1, indicating the probability of the 

molecule to be active [15] (For an overview and examples of this modeling approach in systems 

biology, interested readers can refer to [10,13,14,15]). To model the presence of feedback in the 

NFκB network, a time-varying model is developed in this paper. Additionally, we have used the 

experimentally verified stochastic differential equation model of [12], also used in [25], to 

generate data. We have used the data to demonstrate the biological relevance of our developed 

model, which is suitable for calculating and comparing communication and computation 

capacities of the NFκB network, under similar conditions. Extension of the computation capacity 

concept to concentration-type models such as differential equation-based models is a possible 

next step. In this context, care should be taken when defining entropies for such models. 

Presence of memory and time variations in a system under study make capacity definitions and 

calculations particularly difficult, due to the need to optimize over the input distribution. If not 

feasible to calculate the computation capacity for such scenarios, still it is helpful to calculate the 

computation rate instead, to gain some insights. 

 

Conclusions: Cell signaling networks can be envisioned as computing systems that 

compute the outputs in response to the inputs. The system inputs can be considered to be ligands 

which upon binding to their receptors on the cell membrane, create chains of interactions through 

some intermediate signaling molecules. The system outputs are some target proteins such as 

transcription factors. Due to the presence of dysfunctional molecules in a signaling network, it 

may behave abnormally, i.e., may compute the network outputs incorrectly. In this paper, a new 

fundamental characteristic of signaling networks, i.e., the computation capacity, is introduced 

and investigated. Our results on caspase3 and NFκB networks indicate that their computation 

capacities are higher than their communication capacities. Additionally, it is shown in the paper 

that in general, the network computation capacity is higher than the network communication 

capacity, as long as the network response function is not a one-to-one function of the input 

signals. One biological implication of this finding is that signaling networks may have more 

capabilities than what we presently know. Overall, this study and its findings are anticipated to 

advance our understanding of some fundamental characteristics of cell signaling networks. 
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This Supplementary Material includes the following sections: 

 

Caspase3 network modeling and capacity analysis: 

A. Method to determine the input-output functional relationships f and F for the normal and 

abnormal caspase3 networks, respectively 

B. Method for calculating the communication and computation capacities of the caspase3 signaling 

network 

 

NFκB network modeling: 

C. Activity models for the NFκB network output in term of the input TNF activity 

D. Method for obtaining the input-output activity equation of the normal NFκB network 

E. Method for obtaining the input-output activity equation of the abnormal NFκB network 

F. System formulation suitable for calculating communication and computation rates and capacities 

of the NFκB network 

 

NFκB network capacity analysis: 

G. Method for calculating communication and computation rates of the NFκB network 

H. Method for calculating communication capacity of the NFκB network 

I. Method for calculating computation capacity of the NFκB network 

 

Mathematical details and numerical examples for communication and computation capacities: 

J. Capacity definitions and formulas 

K. An example of a malfunctioning system and its communication and computation capacities 

L. Communication and computation coding theorems for malfunctioning systems  



Page 3 of 31 

A. Method to determine the input-output functional relationships f and F for the normal and 

abnormal caspase3 networks, respectively. Consider that the inactive and active states of a 

molecule are represented by 0 and 1, respectively (see [Wang12], [Saad13], [Heli08], [Abdi08] and 

references therein for an overview and examples of this modeling approach in systems biology). On 

the other hand, based on the experimental results of [Jane06], the network output caspase3 in figure 

1 is active, when the inputs EGF and insulin are inactive and the input TNF is active. Otherwise, the 

output is inactive. Consistent with the experimental findings of [Jane06], the input-output functional 

relationship f of the normal network, i.e., when all the molecules in the network are functioning 

properly and there is no dysfunctional molecule, can be written as 

                    
1, (EGF,insulin,TNF) (0,0,1),

caspase3 (EGF,insulin,TNF)
0, otherwise.


  


f                        (s1) 

This represents an error-free computing machine which computes a value for the machine output 

caspase3, based on the values of the machine inputs EGF, insulin and TNF. Regulatory equations 

[Abdi08] for the caspase3 network (figure 1) which reproduce the experimentally-verified normal 

network response function f introduced in equation (s1) are listed in table S0. Each regulatory 

equation specifies how the activity state of each molecule is determined by the activity states of its 

input signals, using the logic operations ’, + and ×, which stand for NOT, OR and AND, respectively. 

To model signaling errors, we consider a molecule to be dysfunctional, if it remains inactive, 

stuck at 0, regardless of the signals from its regulators [Abdi08]. For example, when MEKK1ASK1 

is stuck at 0, regardless of its input signals, then using the equations in table S0, it can be verified 

that the output remains inactive all the times. This results in the abnormal network response 

function F presented in equation (s4). Note that F in equation (s4) is different from the normal 

network response function f in equation (s1). To characterize all abnormal caspase3 network 

responses, the following input-output functional relationships are similarly derived for F, depending 

on which molecule is dysfunctional (these results agree with Table S2 of [Habi14a] as well) 
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AKT is dysfunctional

0, (EGF,insulin,TNF) (0,0,0),
caspase3 (EGF,insulin,TNF)

1, otherwise.


  


F

                (s2) 

                       ,

E

(

GF is dysfunctional

1 EGF,insulin,TNF) (0,0,1) or (1,0,1),
casp (

R

.

 

ase3 EGF,insulin,TNF)
0, otherwise


  


F

   (s3) 

                       
 is dysfunctional

caspase3 (EGF,insulin,TNF) 0.

MEKK1ASK1

 F
                                                                      (s4) 

                        
l

A

i

no

n

the

T

r mo

)

lecul dysfunctional

1, (EGF,insulin,TNF) (0,0,1),
caspase3 (EGF,insu , NF

0, otherwis .

e is 

e


  


F

                   (s5) 

Note that in equations (s2)-(s4) we have F f , whereas F f  in equation (s5). 

B. Method for calculating the communication and computation capacities of the caspase3 

signaling network. To calculate the capacities of this network (figure 1), one needs its network 

Molecule Name Regulatory Equation 

AKT AKT=EGFR+Insulin 
Caspase3 Caspase3=AKT’×(Caspase8+JNK1+MK2) 
Caspase8 Caspase8=cFLIPL’×(ComplexII+ERK) 
cFLIPL cFLIPL=NFκB 

ComplexI ComplexI=TNF 
ComplexII ComplexII=TNF+ComplexI 

EGFR EGFR=EGF 
ERK ERK=MEK 
IKK IKK=ComplexI 
IRS1 IRS1=Insulin 
JNK1 JNK1=MKK7 
MEK MEK=EGFR+IRS1 

MEKK1ASK1 MEKK1ASK1=ComplexI 
MK2 MK2=p38 

MKK3 MKK3=MEKK1ASK1 
MKK7 MKK7=MEKK1ASK1 
NFκB NFκB=IKK 
p38 p38=MKK3 

Table S0. Regulatory equations [Abdi08] for the caspase3 network (figure 1). 



Page 5 of 31 

transition probability matrices. Depending on which molecule is dysfunctional, we have used the 

network transition probability matrices provided in equations (2)-(5) of [Habi14b]. The Arimoto 

algorithm [Arim72] is used afterwards, to numerically calculate the communication and 

computation capacities graphed in figure 2 and figure 3, respectively. 

 

C. Activity models for the NFκB network output in term of the input TNF activity: We have 

derived the following equation for the activity of NFκB in terms of the TNF activity (see Section D 

of Supplementary Material for the method) 

                                                            (NFκB 1) (1 )  P q q ,                                                     (s6) 

where (.)P  stands for probability and (TNF 1) q P  denotes the TNF activity. Note that the 

probability of a molecule to be active can be considered as the activity of the molecule [Heli08]. In 

figure S1, we observe that equation (s6) agrees with the average activity data [Lipn07] [Tay10], 

 
Figure S1. Activity of NFκB versus TNF under normal (wild type) and abnormal (A20-

deficient) conditions in the NFκB network. The dashed and solid curves are plotted using 

equation (s6) and equation (s7) with p = 1, respectively, whereas the average activity data 

points are obtained using [Lipn07] [Tay10] (an interval around each average activity data 

point represents one standard deviation). 
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obtained from 200 single cell results. In the figure, equation (s6) is normalized such that it matches 

the average activity data at 1q . 

Now we consider an abnormal network due to its A20 deficiency. It is demonstrated that an 

A20-deficient mouse develops severe inflammation and dies prematurely [Lee00]. This is because 

cells with this deficiency cannot stop the NFκB response caused by TNF, as is evident in figure 4, 

when there is no feedback. It is also known that the dysfunction of A20 is involved in a number of 

diseases such as multiple sclerosis, lupus, rheumatoid arthritis, etc. [Vers10]. To model A20 

deficiency in the network, we consider A20 as a molecule which has a chance to be dysfunctional 

with a probability p. More specifically, consider that the probability of A20 to remain 0, inactive, 

regardless of the signal from NFκB is p. This model is consistent with the fact that A20 is inactive 

in several hematological malignancies [Hymo10]. This modeling approach has allowed us to derive 

the following equation for the activity of NFκB in terms of the TNF activity, when A20 is 

dysfunctional (see Section E of Supplementary Material for the method) 

                                                  (NFκB 1) (1 ) (1 )   P q pq q .                                                  (s7) 

For 0p , normal A20, equation (s7) reduces to (s6), as expected. When A20 is completely 

dysfunctional, i.e., 1p , equation (s7) results in (NFκB 1) P q , which is a linear relationship. 

This is consistent with the linear network structure in figure 4 when there is no feedback, and also 

agrees with the biology of this network, i.e., persistent NFκB signaling stimulated by TNF in A20-

deficient cells [Hymo10]. 

Comparison of equation (s7) with the A20-inactivated NFκB levels [Lipn07] [Tay10] in 

figure S1 demonstrates that the activity model developed for the abnormal network is biologically 

relevant (A20-inactivated data is obtained by setting the parameter AB to zero [Lipn07] [Tay10], 

which induces zero A20 mRNA synthesis). Moreover, the difference between the activity levels of 

NFκB under normal and abnormal conditions indicates transition from the normal to the abnormal 

state. This difference is caused by the dysfunction of A20.  
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D. Method for obtaining the input-output activity equation of the normal NFκB network: 

Here we derive an expression for the activity of NFκB in terms of the TNF activity, using the 

biological interactions in the NFκB network (figure 4). Note that the probability of a molecule to be 

active can be considered as the activity of the molecule [Heli08]. Therefore, activities of NFκB and 

TNF can be represented by (NFκB 1)P  and (TNF 1) q P , respectively. Using the total 

probability theorem [Papo91] we have 

      (NFκB 1) (NFκB 1| TNF 0) (TNF 0) (NFκB 1| TNF 1) (TNF 1)        P P P P P ,      (s8) 

where the notation | stands for conditional probability. When TNF is inactive, NFκB is also inactive, 

which means (NFκB 1| TNF 0) 0  P . This simplifies equation (s8) to 

                                            (NFκB 1) (NFκB 1| TNF 1) .   P P q                                             (s9) 

Now we relate the activity of NFκB to the activity of A20, by re-writing equation (s9) using 

the total probability theorem, in terms of different activity levels of A20 

                         
(NFκB 1) [ (NFκB 1| TNF 1,A20 0) (A20 0)

(NFκB 1| TNF 1,A20 1) (A20 1)] .

     
    

P P P

P P q
                          (s10) 

When TNF is active and A20 is inactive (no inhibition in figure 4), NFκB also becomes active, 

which means (NFκB 1| TNF 1,A20 0) 1   P . On the other hand, when A20 is active, it inhibits 

TRC (figure 4) which in turn makes NFκB inactive [Cheo11], i.e., 

(NFκB 1| TNF 1,A20 1) 0   P . By inserting these results in (s10) we obtain 

                                                     (NFκB 1) (A20 0)  P P q .                                                  (s11) 

Since NFκB regulates the activity of A20 (figure 4), we can say 

(NFκB 0) (A20 0),  P P  which changes equation (s11) to (NFκB 1) (NFκB 0)  P P q . By 

replacing (NFκB 0)P  with 1 (NFκB 1) P  and solving for (NFκB 1)P , we obtain equation 

(s6) for the activity of NFκB.  
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E. Method for obtaining the input-output activity equation of the abnormal NFκB network: 

When A20 is dysfunctional, the NFκB network diverges from its normal functions. Using the total 

probability theorem [Papo91], (A20 0)P  can be written as 

          
)

).

(A20 0) (A20 0 | A20 is dysfunctional) (A20 is dysfunctional

(A20 0 | A20 is not dysfunctional) (A20 is not dysfunctional

  
 

P P P

P P
           (s12) 

Let (A20 is dysfunctional)p P  denote the probability of A20 being dysfunctional. Also, to model 

signaling errors and abnormalities, we consider a molecule to be dysfunctional, if it remains 

inactive (stuck at 0), regardless of the signals from its regulators [Abdi08]. This means 

(A20 0 | A20 is dysfunctional) 1 P . Therefore, equation (s12) can be written as 

                        (A20 0) (A20 0 | A20 is not dysfunctional)(1 )    P p P p .                         (s13) 

Since NFκB regulates the activity of A20 (figure 4) when A20 is not dysfunctional, we can say 

(A20 0| A20 is not dysfunctional) (NFκB 0| A20 is not dysfunctional)  P P . Moreover, 

(NFκB 0| A20 is not dysfunctional) 1 (NFκB 1| A20 is not dysfunctional) 1 [ / (1 )],      P P q q

where the last expression comes from (s6). By applying 1 [ / (1 )] q q  to (s13) and substituting the 

resulting expression in (s11), we obtain equation (s7) for the activity of NFκB, when A20 is 

dysfunctional. 

 

F. System formulation suitable for calculating communication and computation rates and 

capacities of the NFκB network: It is well known that activity of NFκB is first controlled by TNF, 

but activation of A20 by NFκB inhibits TRC, which in turn decreases the activity of NFκB. To 

model this behavior and based on figure 4, one can write NFκB( ) TRC( )t t  and A20( ) = NFκB( )t t

, which show the activity states of some molecules at time t. On the other hand, TRC activity 

depends on the activity of TNF and the feedback inhibitor A20, i.e., TRC( ) TNF( ) A20( 1)  t t t , 

where the bar indicates logical negation and × stands for logical and. By combining these equations 

we obtain the output activity equation NFκB( ) TNF( ) NFκB( 1)  t t t , which shows due to the 
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feedback, activity of NFκB depends on its past activity also. Using this equation, possible activity 

states of NFκB are shown in table S1, in the column in the middle. 

Now we consider an abnormal network due to its A20 deficiency. It is demonstrated that an 

A20-deficient mouse develops severe inflammation and dies prematurely [Lee00]. This is because 

cells with this deficiency cannot stop the NFκB response caused by TNF, as is evident in figure 4, 

when there is no feedback. It is also known that the dysfunction of A20 is involved in a number of 

diseases such as multiple sclerosis, lupus, rheumatoid arthritis, etc. [Vers10]. To model A20 

deficiency in the network, we consider A20 as a dysfunctional molecule such that its activity state 

remains at 0, i.e., inactive, regardless of the signal from NFκB. This model is consistent with the 

fact that A20 is inactive in several hematological malignancies [Hymo10]. When A20 is 

dysfunctional, there is no feedback in the network and the network becomes a linear pathway 

(figure 4). This means TRC( ) TNF( )t t  and NFκB( ) TRC( )t t , which eventually results in the 

output activity equation NFκB( ) TNF( )t t , when A20 is dysfunctional. Using this equation, 

possible activity states of NFκB are shown in table S1, in the last column. 

Comparison with biological activity data: In [Lipn07] experimental data are provided for 

the NFκB activity, under persistent and pulse stimulations by TNF. In what follows we show 

predictions of the system formulation presented in this section are corroborated by biological data. 

First consider persistent TNF stimulation, which using our notation means TNF( ) 1t  all the time. 

Assuming no initial NFκB activity, NFκB( 0) 0 t , the “1, 0” row of table S1 results in 

TNF( ), NFκB( 1)t t  
NFκB( )t  

with normal A20 
NFκB( )t  

with dysfunctional A20 
    0,            0 0 0 
    1,            0 1 1 
    0,            1 0 0 
    1,            1 0 1 

 

Table S1. Activity states of NFκB at time t for normal and abnormal (dysfunctional) A20 

conditions in the NFκB network. 
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NFκB( 1) 1 t , which means NFκB becomes active. At the next time point 2t , however, NFκB 

becomes inactive due to the inhibitory A20 feedback, as listed in the “1, 1” row of table S1, 

therefore, NFκB( 2) 0 t . As long as TNF remains active, this NFκB activity pattern repeats. 

Overall, for the persistent stimulation TNF=1111111111  we obtain NFκB=1010101010 . 

These oscillations agree with the NFκB oscillations reported in [Lipn07] for persistent TNF 

stimulation. 

In pulsed TNF stimulation, a pulse of TNF is applied to the system only for a short period of 

time. When this pulse is repeated, as an example, TNF states using our notation can be written as 

TNF=1000010000 . Similarly to the previous paragraph and using table S1, it can be easily 

shown that NFκB=1000010000 . This means that NFκB first becomes activated in response to 

the TNF pulse, but later becomes inactive due to the lack stimulation, until the next pulse arrives. 

This behavior agrees with the NFκB data presented in [Lipn07] for pulsed TNF stimulation. 

The previous two paragraphs are for the normal NFκB network. With A20 deficiency, the 

network becomes abnormal. Using our system formulation with dysfunctional A20, in response to 

TNF=1111111111  we obtain NFκB=1111111111 . This indicates long lasting NFκB activity, 

for persistent TNF stimulation, when A20 is dysfunctional. This behavior agrees with A20-/- 

experimental cell data in [Lipn07] as well. 

 

G. Method for calculating communication and computation rates of the NFκB network: Due 

to the feedback in the network, the network has a memory such that its output (NFκB) activity state 

depends on the present and past input (TNF) activity states. Let 1Y  and 2Y  represent the activity 

states of NFκB at two consecutive time instants 1t  and 2t , respectively, i.e., 1 )NFκB 1( Y t  

and 2 )NFκB 2( Y t . Note that 1t  and 2t  represent early and late signaling events, 

respectively. Similarly we have 1 )TNF 1( X t  and 2 )TNF 2( X t . Clearly X and Y variables 

refer to the network input and output in figure 4, respectively. Using the output activity equation 

NFκB( ) TNF( ) NFκB( 1)  t t t  presented earlier together with NFκB( 0) 0 t , the activity state 
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of the error-free network output NFκB in terms of the network input TNF at two consecutive time 

points 1t  and 2t , i.e., 1 2 1 2( , ) ( , )Y Y f X X , can be written as listed in table S2. 

When A20 is dysfunctional, the network behaves similarly to a linear pathway with no 

feedback. Therefore, using the output activity equation NFκB( ) TNF( )t t  presented earlier when 

A20 is dysfunctional, the activity state of the erroneous network output NFκB in terms of the 

network input TNF at 1t  and 2t , i.e., 1 2 1 2( , ) ( , )Y Y F X X , can be written as listed in table S2. 

Note that F f  due to the last row. 

Consider equi-probable inputs, i.e., 1 2( 0, 0)  P X X 1 2( 1, 0)  P X X

1 2( 0, 1)  P X X 1 2( 1, 1) 1/ 4  P X X . Using the total probability theorem, for the output 

probabilities we have 

        

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

( , ) ( , | A20 is normal) (A20 is normal

( , | A20 is dysfunctional) (A

.

20 is dysfunctional

( , | A20 is normal)(1 )

( , | A20 is dys u

)

),

f nctional)

    
  
   
  

P Y y Y y P Y y Y y P

P Y y Y y P

P Y y Y y p

P Y y Y y p

       (s14) 

The conditional output probabilities in (s14) can be written as 

   1 2

1 1 2 2 1 1 2 2 1 1 2 2
,

1 1 2 2

( , | A20 is normal) ( , | A20

,

is normal, , )

( , )

      

  


x x

P Y y Y y P Y y Y y X x X x

P X x X x
    (s15) 

 

1 2( , )X X  
Error-free network output sequence 

1 2 1 2( , ) ( , )Y Y f X X , when A20 is 
normal 

Erroneous network output sequence 

1 2 1 2( , ) ( , )Y Y F X X , when A20 is 
dysfunctional with probability p 

(0,0) (0,0) (0,0) 
(1,0) (1,0) (1,0) 
(0,1) (0,1) (0,1) 
(1,1) (1,0) (1,1) 

 

Table S2. Activity states of NFκB at time points 1t  and 2t , i.e., 1 2( , )Y Y , for normal 

and abnormal (dysfunctional) A20 conditions in the NFκB network, in terms of the activity 

states of TNF at 1t  and 2t , i.e., 1 2( , )X X . 
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 1 2

1 1 2 2 1 1 2 2 1 1 2 2
,

1 1 2 2

( , | A20 is dysfunc.) ( , | A20

,

is dysfunc., ,

)

)

( ,

      

 


x x

P Y y Y y P Y y Y y X x X x

P X x X x
  (s16) 

where 1 2( , )x x  can be (0,0) , (1,0) , (0,1)  or (1,1) . Using table S2, the conditional output 

probabilities in (s15) and (s16) can be calculated for all possible output activity states, i.e., 

1 2( , ) (0,0), (0,1), (1,0), (1,1)y y , which upon substitution into the second equation of (s14) result in 

                                                         

1 2

1 2

1 2

1 2

( 0, 0) 1/ 4,

( 0, 1) 1/ 4,

( 1, 0) (2 ) / 4,

( 1, 1) / 4.

  
  
   
  

P Y Y

P Y Y

P Y Y p

P Y Y p

                                                 (s17) 

We will use the results in equation (s17) to calculate communication and computation rates of the 

NFκB network, in the following subsections. 

G1. Communication rate of the NFκB network: By definition, the communication rate as 

the mutual information between the network input sequence 1 2( , )X X  and the network erroneous 

output sequence 1 2( , )Y Y  is given by 

        1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , ; , ) ( , ) ( , | , ) ( , ) ( , | , )R F I X X Y Y H X X H X X Y Y H Y Y H Y Y X X     ,      (s18) 

where (.)H  and (. | .)H  are entropy and conditional entropy, respectively, and (.; .)I  is mutual 

information. They can be calculated using the following expressions 

                            
1 2

1 2 1 1 2 2 2 1 1 2 2
,

( , ) ( , ) log ( , )     
y y

H Y Y P Y y Y y P Y y Y y ,                               (s19) 

                    
1 2

1 2 1 2 1 1 2 2 1 2 1 1 2 2
,

( , | , ) ( , ) ( , | , )    
x x

H Y Y X X P X x X x H Y Y X x X x ,                     (s20) 

                 1 2

1 2 1 1 2 2 1 1 2 2 1 1 2 2
,

2 1 1 2 2 1 1 2 2

( , | , ) ( , | , )

log ( , | , ),

y y

H Y Y X x X x P Y y Y y X x X x

P Y y Y y X x X x

       

    


                (s21) 

where 2log is logarithm to the base 2. 

By substituting (s17) in (s19) we obtain the following expression for the erroneous network 

output entropy 1 2( , )H Y Y  

                                  1 2 2 2( , ) 2 0.25(2 )log (2 ) 0.25 log    H Y Y p p p p .                                (s22) 
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On the other hand, using the first three rows of table S2 and equation (s21) it can be verified that 

1 2 1 2 1 2 1 2 1 2 1 2( , | 0, 0) ( , | 1, 0) ( , | 0, 1) 0        H Y Y X X H Y Y X X H Y Y X X . Moreover, using 

the last row of table S2 and equation (s21), it can be shown that 

1 2 1 2 2 2( , | 1, 1) (1 )log (1 ) log      H Y Y X X p p p p . By substituting these results in equation 

(s20) we obtain the following expression for the erroneous network output conditional entropy 

1 2 1 2( , | , )H Y Y X X  

                                 1 2 1 2 2 2( , | , ) 0.25((1 )log (1 ) log )    H Y Y X X p p p p .                             (s23) 

Upon substitution of (s22) and (s23) in the second equation of (s18) we finally obtain equation (3) 

in the paper for the NFκB network communication rate R(F). 

Note that we calculate the quantity 1 2 1 2( , ; , )I X X Y Y  to provide some insights, although it 

only corresponds to an achievable transmission rate if the dysfunctionality state of A20 changes 

over time in a memoryless fashion, across pairs of uses of the channel (the NFκB network). This is 

different from the assumption made that A20 is either normal or dysfunctional for the entire time. 

G2. Computation rate of the NFκB network: By definition, the computation rate of the 

network with respect to the error-free output f is given by 

                                           1 2 1 2 1 2( ) ( , ) ( ( , ) | , )fR F H X X H f X X Y Y  ,                                       (s24) 

such that 1 2( , )f X X  is the error-free output sequence, while as mentioned previously, 1 2( , )Y Y  is the 

erroneous output sequence 1 2( , )F X X . The conditional entropy term 1 2 1 2( ( , ) | , )H f X X Y Y  in (s24) 

is the amount of information required to specify values of 1 2( , )f X X  given the values of 1 2( , ).Y Y  

Since according to table S2, 1 2( , )Y Y  values in the third column completely determine 1 2( , )f X X

values in the second column, with no ambiguity, the conditional entropy becomes zero, i.e., 

1 2 1 2( ( , ) | , ) 0H f X X Y Y . For the network input entropy term 1 2( , )H X X  in (s24) and with equi-

probable inputs we have 

                        
1 2

1 2 1 1 2 2 2 1 1 2 2
,

( , ) ( , ) log ( , ) 2      
x x

H X X P X x X x P X x X x .                     (s25) 
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By substituting these two results in equation (s24), we finally obtain equation (4) in the paper for 

the NFκB network computation rate ( )fR F . 

 

H. Method for calculating communication capacity of the NFκB network: To model possible 

abnormal behavior and erroneous response of the network due to A20 deficiency, we consider A20 

as a molecule which has a chance to be dysfunctional with a probability 0 1p  . More 

specifically, consider that the probability of A20 to remain 0, inactive, regardless of the signal from 

NFκB is p. This model is consistent with the fact that A20 is inactive in several hematological 

malignancies [Hymo10]. To calculate the communication capacity C(F), we consider two possible 

scenarios: normal A20 which corresponds to 0p , and dysfunctional A20 which means 0 1p  . 

H1. Communication capacity with normal A20: Let nY  and nX  represent sequences of 

length n at the output and input of the NFκB network (figure 4), whose t-th elements are 

)NFκB(tY t  and )TNF(tX t , respectively, 1,2,...,t n . Due to the A20 feedback in the 

network, it is a system with memory, i.e., its output NFκB activity state depends on the present and 

past input TNF activity states. Based on capacity formula for systems with memory [Verd94], the 

communication capacity of the NFκB network can be written as 

                           

1 1
( ) lim sup ( ; ) lim sup ( ( ) ( | )),

1
lim sup ( ( ) ( | )).

n n

n

n n n n n

n nX X

n n n

n X

C F I X Y H X H X Y
n n

H Y H Y X
n

 



  

 
                         (s26) 

Here sup stands for supremum, ( ; )n nI X Y  is mutual information between the network input and 

output sequences nX  and nY , and (.)H  and (. | .)H  are entropy and conditional entropy, 

respectively. 

To calculate C(F), we obtain upper and lower bounds on the communication capacity. For 

the upper bound, we note the non-negativity of the conditional entropy, i.e., ( | ) 0n nH Y X  , which 

reduces the second equation in (s26) to 
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                                                            1
( ) lim sup ( )

n

n

n X

C F H Y
n

 .                                                   (s27) 

To calculate the right-hand side limit in (s27), let na  be the total number of output sequences nY  

whose lengths are n. It is straightforward to note that the total number of output sequences of length 

n which start with a 0 is 1na  . For an output sequence which starts with a 1, we note that the second 

element has to be 0. This is because we cannot have two consecutive 1s at the network output (see 

the second column of table S2). Therefore, the total number of output sequences of length n which 

start with a 1 is 2na  . Overall, for the total number of output sequences of length n we have the 

following relation 

                                                       1 2 , 3, 4, ,n n na a a n                                                       (s28) 

where 1 2a   and 2 3a  , which correspond to two output sequences 0 and 1, and three output 

sequences 00, 01 and 10, respectively. Equation (s28) is the Fibonacci sequence [Weis1] for which 

we have the following closed-form formula 

                                         
2 21 5 1 5

2 2( ) ( )
, 1, 2, 3, 4,

5

n n

na n
  

   .                                             

(s29) 

Since entropy of a variable is less than or equal to the logarithm of the number of elements in its 

range [Cove91], we can write this inequality for the output entropy 2( ) logn
nH Y a , which results 

in 

                                     2 2

1 1 1 5
limsup ( ) lim log log

2n

n
nn nX

H Y a
n n 

 
    

 
.                                     (s30) 

By substituting (s30) in (s27), the communication capacity upper bound can be written as 

                                                                2

1 5
( ) log

2
C F

 
   

 
.                                                   (s31) 

To obtain the communication capacity lower bound, we consider equi-probable input 

sequences which do not have two consecutive 1s. In these cases, network outputs will be the same 
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as the network inputs (see the second column of table S2), i.e., n nY X , which means 

( | ) 0.n nH Y X   By substituting this in the second equation of (s26) and dropping sup we obtain 

                                                               
1

( ) lim ( )n

n
C F H Y

n
 .                                                       (s32) 

Since the considered input sequences are equi-probable, output sequences are equi-probable as well. 

Therefore, using the definition of the entropy we obtain 

                2 2 2
1 1

( ) ( ) log ( ) (1/ ) log (1/ ) log
n na a

n n n n n
i i i i n n n

i i

H Y P Y y P Y y a a a
 

        ,               (s33) 

with na  given in (s29). By substituting (s33) in (s32) and calculating the limit, the communication 

capacity lower bound can be written as 

                                                          2

1 5
( ) log

2
C F

 
   

 
.                                                          (s34) 

Overall, the communication capacity of the NFκB network with normal A20 can be obtained 

by noticing that its upper and lower bounds in (s31) and (s34) are the same, therefore 

                                                   2

1 5
( ) log 0.7, 0

2
C F p

 
    

 
.                                            (s35) 

Interestingly, the term (1 5) / 2  is the well-known golden ratio [Weis2], and the Fibonacci 

sequence appears in a number of natural and biological systems [Wiki]. Another noteworthy 

observation is that the calculated communication capacity of about 0.7 bits for the TNF-NFκB 

system is based on early and late responses of NFκB to TNF. It falls between the experimentally-

determined individual maximum mutual information of about 0.9 and 0.6 bits for the same system, 

based on early and late NFκB responses, respectively [Cheo11]. 

H2. Communication capacity with dysfunctional A20: In this case A20 has a likelihood 

to be dysfunctional with probability p, such that 0 1p  . Here we consider two scenarios to 

calculate the communication capacity for the NFκB network: 1p   and 0 1p  . 
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When A20 is dysfunctional with probability 1p  , there is no negative feedback in the 

network as A20 is completely inactive, so, the network in figure 4 becomes a linear pathway. It is 

straightforward to show the capacity of such a linear pathway is 1 (see “Additional file 1” of 

[Habi14a] for the method) 

                                                                   ( ) 1, 1C F p  .                                                          (s36) 

When A20 is dysfunctional with the probability of 0 1p  , the NFκB network can be 

considered to be represented by an erroneous network with probability p and an error-free network 

with probability 1 p . Using communication and information theory terminologies, the NFκB 

network can then be considered as a mixed channel [Han03]. Based on capacity formula for mixed 

channels [Han03], the communication capacity of the NFκB network can be written as 

                                                    1 2( ) sup min( ( ; ), ( ; ))C F I I
X

X Y X Y  ,                                          (s37) 

in which 1{ }n
nX 
X  is the set of input sequences, whereas 1 1 1{ }n

nY 
Y  and 2 2 1{ }n

nY 
Y  are the 

sets of sequences at the outputs of the error-free network and the erroneous network, respectively. 

Additionally, we have 

                        
1 1

( ; ) lim ( ; ) lim ( ( ) ( | )), 1, 2n n n n n
i i i i

n n
I I X Y H Y H Y X i

n n 
   X Y .                       (s38) 

To calculate C(F) in (s37), we obtain upper lower and bounds on the communication capacity. For 

the upper bound, we note 

         1 2 2 2

1 5 1 5
( ) min(max ( ; ),max ( ; )) min log ,1 log

2 2
C F I I

     
              

X Y X Y  ,           (s39) 

where we have used (s35) and (s36), respectively. For the lower bound we can write 

        1 2 2 2 2

1 5 1 5 1 5
( ) min( ( ; ), ( ; )) min log , log log

2 2 2
C F I I

        
                    

X Y X Y  ,       (s40) 

where the identity is obtained by considering the input probability distribution that achieves the 

capacity of the first network, i.e., the error-free network. Taken together, the communication 
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capacity of the NFκB network when A20 has a likelihood to be dysfunctional with probability p, 

0 1p  , can be obtained by noting that its upper and lower bounds in (s39) and (s40) are the same, therefore 

                                               2

1 5
( ) log 0.7, 0 1

2
C F p

 
     

 
.                                          (s41) 

 

I. Method for calculating computation capacity of the NFκB network: For a system with no 

feedback and no memory, its computation capacity with respect to the error-free output f is given by 

equation (2) in the paper. For a system with feedback and memory, such as the NFκB network, 

equation (2) can be extended as follows 

                                         1
( ) lim sup ( ( ) ( ( ) | ))

n

n n n
f n X

C F H X H f X Y
n

  ,                                      (s42) 

in which ( )nf X  and nY  represent error-free and erroneous output sequences of length n of the 

NFκB network, respectively, whereas nX  is its input sequence of length n. To calculate (s42), we 

consider three possible scenarios for the probability of A20 to be dysfunctional: 0p  , 1p   and 

0 1p  . 

For 0p  , normal A20, we have an error-free network where observed outputs are indeed 

the correct outputs, i.e., ( )n nY f X . Based on the definition of the conditional entropy we obtain 

( ( ) | ) ( ( ) | ( )) 0n n n nH f X Y H f X f X  . On the other hand, since entropy of nX  is less than or 

equal to the logarithm of the number of elements in its range [Cove91], we can write 

2( ) log 2n nH X  , with the equality achieved for equi-probable 0s and 1s. By substituting this and 

the zero conditional entropy in (s42) we obtain ( ) 1fC F   for 0p  . 

If 1p  , completely dysfunctional A20, there is no negative feedback in the network as A20 

is completely inactive, so, the network in figure 4 becomes a linear pathway, where observed 

outputs are actually equal to the inputs, i.e., n nY X . For the conditional entropy this results in 

( ( ) | ) ( ( ) | ) 0n n n nH f X Y H f X X  , where the last identity is obtained because upon knowing 
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,nX  ( )nf X  is completely known, without any ambiguity. By substituting this in (s42) and 

similarly to the previous paragraph, we obtain ( ) 1fC F   for 1p  . 

When 0 1p  , A20 can be dysfunctional with probability p all the time, or can be normal 

with probability 1 p  all the time. In the former case, since A20 is inactive and there is no feedback 

in the network, observed outputs are equal to the inputs, i.e., n nY X , which results in 

( ( ) | ) ( ( ) | ) 0n n n nH f X Y H f X X  . In the latter case, since the network is error-free, observed 

outputs are the correct outputs, i.e., ( )n nY f X , which results in 

( ( ) | ) ( ( ) | ( )) 0n n n nH f X Y H f X f X  . Upon substitution of the zero conditional entropy in (s42) 

and similarly to the previous two paragraphs, we obtain ( ) 1fC F   for 0 1p  . Another way of 

obtaining this result is to note that by looking at the network output sequence, we can always find 

out the correct outputs. If there are two consecutive 1s at the network output, it means A20 in the 

network is dysfunctional (see the third column of table S2). As discussed previously, since in this 

case the observed outputs are equal to the inputs, n nY X , we can find out the inputs, and 

subsequently recover the correct outputs with no ambiguity, by simply computing ( )nf X . On the 

other hand, if there are no two consecutive 1s at the network output, it means A20 in the network is 

normal (see the second column of table S2). In this case the observed outputs are directly giving us 

the correct outputs ( )nf X , as the network is error-free now. 

Overall, the computation capacity of the NFκB network with respect to the error-free output f is 

                                                               ( ) 1, 0 1fC F p   .                                                      (s43) 

 

J. Capacity definitions and formulas: Consider a system such as a signaling network, with X as its 

input, which computes the output according to the error-free mapping f. So, the error-free output is 

( )f X . When the system is erroneous due to the presence of some dysfunctional molecules, the 

mapping is called F, so, the erroneous output is F(X). If we consider the system as a communication 

channel, its communication capacity can be informally expressed as 
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   2

2

( ) log (max number of inputs  such that  can be correctly recovered from ( )),

log (max number of decodable inputs).

C F X X F X


   (s44) 

Formally speaking, the communication capacity formula is 

                                                
( )

( ) max ( ) ( | ( ))
P X

C F H X H X F X  .                                              (s45) 

In contrast, if we consider the system as a computing machine, its computation capacity can 

be informally defined as 

2

2

( ) log (max number of inputs  such that ( )can be correctly recovered from ( )),

log (max number of computable inputs).

fC F X f X F X


(s46) 

Equation (s46) can be re-written as 

1
2

2

1
2

( ) log (max no. of ( ) values that can be correctly recovered from ( ) | ( ) | ),

log (max no. of ( ) values that can be correctly recovered from ( ))

+ log (| ( ) |),

communication capacity of virtu

fC F f X F X f Z

f X F X

f Z





 



 1
2al channel between and + log (| ( ) |),f F f Z

(s47) 

where = ( )Z f X  and 1| ( ) |f Z  is the number of elements in the inverse image of Z through the 

error-free function f. The virtual channel or transformation   defined between f and F, and the 1f   

notation are illustrated in the transition probability diagram, figure S2(c), of the malfunctioning 

system numerical example of the next section. 

We will prove in Section L2 of Supplementary Material that the computation capacity is given as 

                                            
( )

( ) max ( ( ); ( )) ( | ( ))f
P X

C F I f X F X H X f X  .                                  (s48) 

In equation (s48), ( ( ); ( ))I f X F X  is the mutual information between ( )f X  and ( )F X , whose 

maximization results in the communication capacity of the virtual channel   defined between f and 

F, whereas the second term of (s48) is obtained by noting that entropy of a random variable is less 

than or equal to the logarithm of the number of elements in its range [Cove91], i.e., 

1
2log (| ( ) |)( | ( ))H ff X ZX  . Upon replacing ( ( ); ( ))I f X F X  in (s48) by its definition we obtain 

                                
( )

( ) max ( ( )) ( ( ) | ( )) ( | ( ))f
P X

C F H f X H f X F X H X f X   .                         (s49) 
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Based on a property of entropy and conditional entropy [Cove91], we have 

( ) ( | ( )) ( ( )) ( ( ) | )H X H X f X H f X H f X X   . Note that ( ( ) | ) 0H f X X   since f is a 

deterministic function. This indicates ( ( )) ( | ( )) ( )H f X H X f X H X  , that upon substitution in 

equation (s49), results in the computation capacity formula 

                                             
( )

( ) max ( ) ( ( )| ( ))f
P X

C F H X H f X F X  .                                          (s50) 

Based on the data processing inequality, we have ( ( ) ( )) ( ( ))H f X F X H X F X│ │  (the two 

conditional entropies are equal in the special case of  f  being an invertible function, i.e., if and only 

if f is a one-to-one function). Upon comparing equation (s50) with (s45), we conclude that 

( ) ( )fC F C F . Intuitively, this means that it is easier to correctly compute a non-invertible (not 

one-to-one) function than to decode it correctly. 

 

K. An example of a malfunctioning system and its communication and computation 

capacities: Consider a system (figure S2a) that in response to eight different input values 

1 8{ ,..., },x x  generates four different output values { , , , }    , according to the following error-free 

mapping f (with no dysfunctional component in the system) 

                                                                

1 2

3 4

5 6

7 8

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

 ( ) ( ) .

f x f x

f x f x

f x f x

f x f x






 
 

 
 

                                                         (s51) 

Note that 1 8, ...,x x  and , , ,     are all real-valued numbers. The error-free system response is 

graphically shown in the left half of figure S2c. 

When some system components become dysfunctional, the system turns into a 

malfunctioning one that computes some outputs incorrectly (figure S2b). Here we consider the 

following numerical example 
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1 2

3 4

5 6

7

( ) or with probability 1 / 2, ( ) or with probability 1 / 2,

( ) or with probability 1 / 2, ( ) or with probability 1 / 2,

( ) or with probability 1 / 2, ( ) or with probability 1 / 2,

( ) or with probability 1

F x F x

F x F x

F x F x

F x

   
   
   
 

 
 

 
 8/ 2, ( ) or with probability 1 / 2.F x  

              (s52) 

This erroneous system response is graphically depicted in the right half of figure S2c. The solid and 

dashed arrows represent correct and incorrect transitions, respectively, with their probabilities 

provided next to the arrows. This diagram reflects that, for example, 1( )F x   is a correct 

response, whereas 1( )F x   is an incorrect response. The transition probabilities (figure S2c) are 

basically conditional probabilities, as defined below 

 

Figure S2. A malfunctioning system numerical example to explain and compare 

communication and computation capacity concepts. (a) The system error-free mapping 

function f and its eight input and four output values. (b) The system erroneous mapping 

function F, its eight input and four output values, and the input-output transition 

probabilities. (c) The system transition probability diagram. The solid and dashed arrows 

represent correct and incorrect transitions, respectively, with their probabilities provided next 

to the arrows (transition probability is 1, if a number is not provided). The notation at the 

upper left corner means 1( )f   corresponds to the set 1 2{ , }x x . 
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1/ 2, { , }, if or ,

( | )
1/ 2, { , }, if or .

y z
P Y y Z z

y z

   
   

 
     

                                   (s53) 

Communication capacity ( )C F  of the malfunctioning system (figure S2b) with the given 

transition probability diagram (figure S2c): Transition probability channel matrix |Y XM  of a 

system with input X and output Y is a matrix whose x-th row and y-th column is the conditional 

probability ( | )P Y y X x  . According to the system transition probability diagram (figure S2c), 

the transition probability channel matrix for the malfunctioning system (figure S2b) can be written 

as 

                                                      |

1 / 2 1/ 2 0 0

1/ 2 1/ 2 0 0

1/ 2 1/ 2 0 0

1/ 2 1/ 2 0 0

0 0 1/ 2 1/ 2

0 0 1/ 2 1/ 2

0 0 1/ 2 1/ 2

0 0 1/ 2 1/ 2

Y X

 
 
 
 
 
   
 
 
 
 
  

M .                                             (s54) 

Since all rows of |Y XM  are permutations of each other, and all columns of |Y XM  are permutations 

of each other, |Y XM  represents a symmetric channel [Cove91]. Communication capacity of a 

symmetric channel is: 2 |log (number of output values) entropy of one row of Y X M  [Cove91]. For 

these two terms in our example we have 2log (4) 2  and 

2 2 2 2(1/ 2) log (1/ 2) (1/ 2) log (1/ 2) 0 log (0) 0 log (0) 1     , respectively (note that by definition, 

20 log (0) 0 ). Therefore, the system communication capacity is ( ) 1C F   bit. 

Computation capacity ( )fC F  of the malfunctioning system (figure S2b) with the given 

transition probability diagram (figure S2c): First we informally calculate ( )fC F  using the last 

expression in equation (s47). For its first term, i.e., “communication capacity of the virtual channel 

Ф between f and F ” (figure S2c), we note that its transition probability channel matrix |Y ZM  with 

input Z and output Y, using the transition probability diagram (figure S2c), can be written as 
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                                                 |

1 / 2 1/ 2 0 0

1/ 2 1/ 2 0 0

0 0 1/ 2 1/ 2

0 0 1/ 2 1/ 2

Y Z

 
 
 
 
 
 

M .                                                  (s55) 

Since |Y ZM  represents a symmetric channel, using the previously explained communication 

capacity formula for such channels [Cove91], the communication capacity of the virtual channel Ф 

between f and F can be verified to be: 

2 |log (number of output values) entropy of one row of 2 1 1Y Z   M  bit. For the second term of 

the last expression in equation (s47), we note that it is equal to 2log (2) 1  bit, because 1| ( ) | 2f Z   

for each Z from the set { , , , }     (see, for example, upper left corner of figure S2c). By 

substituting these results in the last formula of equation (s47), the system computation capacity is 

obtained to be ( ) 1 1 2fC F     bits. 

To formally calculate ( )fC F , using equation (s48), we note that by definition,

( ( ); ( )) communication capacity of the virtual channel between andI f X F X f F , where the latter 

was shown after equation (s55) to be 1 bit, therefore, ( ( ); ( )) 1I f X F X  . Additionally, as stated at 

the end of the paragraph immediately after equation (s48), 

1
2 2log (| ( ) |) log (2) 1( | ( ))H X f ZX f    , { , , , }Z      . Overall, we have 

( ( ); ( )) ( | ( )) 1 1 2I f X F X H X f X    , where the equality can be achieved using a uniform 

distribution over four input values, for example, 1 2 5 6{ , , , }x x x x  (by selecting these four values, the 

correct output ( )f x  can be unambiguously obtained from F(x)). Therefore, according to equation 

(s48) we finally obtain ( ) 2fC F   bits. Note that it is greater than ( ) 1C F   bit, as expected, 

because f is not a one-to-one function (as graphically shown in the left half of figure S2c). 

Intuitively speaking, the maximum number of correctly computable inputs in this example is 

( )2 4fC F  , whereas the maximum number of correctly decodable or distinguishable inputs is 

( )2 2C F  . 
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L. Communication and computation coding theorems for malfunctioning systems: In this 

section, first we review a fundamental coding theorem for error-causing communication channels 

[Cove91], that highlights the implications of the communication capacity concept. Then we present 

and prove a similar coding theorem for error-causing computing machines [Simo10], to elucidate 

the computation capacity concept and its significance. To simplify the notation, we use C and fC

for communication and computation capacities, respectively, instead of C(F) and ( )fC F . 

L1. Communication capacity: To reliably transmit (communicate) M values 1{ , ..., }Mx x  of 

the input X through an error-causing channel, as taught by Shannon [Cove91], one needs to design 

and transmit M codewords instead, each of length n. The codeword n
mx  is assigned by an encoder to 

the m-th value mx , and contains n symbols, i.e., ,1 ,( ,..., )n
m m m nx x x , with n being as large as needed. 

To transmit mx , n values of the codewrod n
mx  are transmitted one after the other (n transmissions). 

The communication rate of this (M,n) code is 2log ( ) /R M n  bits per channel use. 

In a memoryless channel, for each transmitted value ,m ix , 1,...,i n , the receiver obtains a 

possibly different version of ,m ix , called ,( )i m iy F x . The receiver collects all the iy  values into a 

vector 1( ,..., )n
ny y y , and carries out decoding with the goal of identifying the transmitted 

codeword n
mx , or, equivalently, the originally transmitted mx  value of the input X. The decoding 

function ( )ng y , which returns a value in the set 1{ , ..., }Mx x , can be interpreted as partitioning the 

space of received values into M decision regions. If mx  is transmitted through the channel and after 

decoding at the receiver, it turns out that ( )n
mg y x , transmission is successful and error free, 

otherwise, it is erroneous. 

Here is a simple example to better understand the process. To transmit 1x , the encoder 

generates and transmits the codeword 1
nx  of length n through the communication channel. The 

received codeword of length n is ny , which upon decoding results in ( )ng y . If 1( )ng y x , the 

transmission is successful and error free, i.e., correct recovery or decoding or distinguishing 1x , 

whereas if 2( ) or ... orn
Mg y x x , the transmission is unsuccessful and erroneous. The associated 

conditional decoding error probabilities are ( ( ) | ), 1, ...,n
m m mP g Y x X x m M     , and the 
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maximal decoding error probability for an (M,n) code is defined as ( ) max , 1, ...,n
m m M   . 

With these definitions, the fundamental coding theorem for discrete memoryless communication 

channels can be written as follows [Cove91] 

Communication channel coding theorem: In a discrete memoryless communication channel, 

for any rate R C , reliable communication with arbitrarily low error probability is possible, i.e., 

there exists a sequence of (2 , )nR n  codes such that the maximal decoding error probability ( ) 0n   

as n    (rate achievability). Conversely, any sequence of (2 , )nR n  codes with ( ) 0n  , as 

n   , must satisfy R C  (converse property). This means for any rate R C , reliable 

communication with arbitrarily low error probability is not possible, i.e., ( )n  does not approach 0. 

L2. Computation capacity: Now we turn our attention to a coding theorem for error-

causing computing machines [Simo10], which clarifies the computation capacity concept and what 

it implies. The reliable computation goal is to compute a function 𝑧 ൌ 𝑓ሺ𝑥ሻ reliably from its 

erroneous version 𝑦 ൌ 𝐹ሺ𝑥ሻ, for a set of input values 𝑥 selected uniformly at random within a given 

set. The computation capacity aims at quantifying the number M of distinct inputs for which an 

observer of the possibly incorrect output value 𝑦 ൌ 𝐹ሺ𝑥ሻ, can recover the desired function value 

𝑧 ൌ 𝑓ሺ𝑥ሻ. In other words, the computation capacity quantifies the number of computable inputs, 

rather than the number of inputs that can be correctly communicated. 

To elaborate on this notion, it is noted that a constant function has a large computation 

capacity, since the observer can always recover the correct (constant) output from an erroneous 

output. In contrast, a function with significant variations has generally a smaller capacity in the 

presence of errors. These considerations suggest that the size of pre-images or inverse images 

𝑓ିଵሺ𝑧ሻ of the function f plays an important role in the definition of computation capacity: the more 

values of x are mapped to the same value z of the function 𝑧 ൌ 𝑓ሺ𝑥ሻ, i.e., the larger the sets      

𝑓ିଵሺ⋅ሻ  are, the more input values can be computed on, by recovering the corresponding value of 

the function. 
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More precisely, to compute M function values 1{ ( ), ..., ( )}Mf x f x  reliably from their 

erroneous versions 1{ ( ), ..., ( )}MF x F x , for a set of input values 1{ , ..., }Mx x , one needs an encoder. 

The encoder can generate M codewords, each of length n, i.e., ,1 ,( ,..., )n
m m m nx x x , 𝑚 ൌ 1, … , 𝑀, 

with n being as large as needed and each codeword is selected uniformly at random. To compute the 

function value at mx , n function values of the codeword n
mx  are computed one after the other (n 

computations). The computation rate of this (M,n) code is 2log ( ) /fR M n  bits per function use. 

We assume a memoryless model whereby the erroneous function values 𝑦௜ ൌ 𝐹൫𝑥௠,௜൯, 𝑖 ൌ

1, … , 𝑛, are obtained from the corresponding correct values 𝑧௜ ൌ 𝑓൫𝑥௠,௜൯, 𝑖 ൌ 1, … , 𝑛, through the 

independent application of an error-causing channel (see, for example, Ф in figure S2c). Therefore, 

the computed erroneous values {𝑦௜ ൌ 𝐹൫𝑥௠,௜൯} are conditionally independent, given the correct 

function values 𝑧௡ ൌ 𝑓௡ሺ𝑥௠
௡ ሻ ൌ ቀ𝑓൫𝑥௠,ଵ൯, … , 𝑓൫𝑥௠,௡൯ቁ. The observer collects all erroneous outputs 

into a vector 𝑦௡ ൌ 𝐹௡ሺ𝑥௠
௡ ሻ ൌ ሺ𝐹൫𝑥௠,ଵ൯, … , 𝐹൫𝑥௠,௡൯ሻ and carries out decoding with the goal of 

identifying the correct function outputs 𝑓௡ሺ𝑥௠
௡ ሻ ൌ ቀ𝑓൫𝑥௠,ଵ൯, … , 𝑓൫𝑥௠,௡൯ቁ. Importantly, this task is 

different from identifying the sequence of inputs, or equivalently the codeword 𝑥௠
௡ , which is the 

goal in the communication framework. 

The function 𝑓ሺ𝑥ሻ is not generally one-to-one (or bijective), but rather multiple values of the 

input x are mapped to the same value 𝑓ሺ𝑥ሻ (surjective function). For any sequence of correct values 

𝑧௡ of the function, define the set of all inputs 𝑥௠
௡  that map to it as 𝑓ି௡ሺ𝑧௡ሻ ൌ ሼ𝑥௠

௡ : 𝑓൫𝑥௠,௜൯ ൌ 𝑧௜ሽ. 

Note that this is the pre-image of the desired function f when applied n times, and that the set of all 

these pre-images partition the input space. Each input sequence 𝑥௠
௡  maps to a sequence 𝑓௡ሺ𝑥௠

௡ ሻ, and 

the set of all such distinct values is equal to the number of pre-images  𝑓ି௡ሺ𝑧௡ሻ  that intersect with 

the set of input sequences. We index the set of distinct values of 𝑧௞
௡, as the input codeword varies in 

the codebook {𝑥௠
௡ , m=1,…,M}, according to 𝑘 ൌ 1, … , 𝐾 ൑ 𝑀, where equality holds if and only if 

the function f is one-to-one. 

When the correct function value sequence is 𝑧௞
௡, if the decoding function gives 𝑔ሺ𝑦௡ሻ ൌ 𝑘, 

then computation is successful and error free, while it is otherwise erroneous. The associated 



Page 28 of 31 

conditional decoding error probabilities are 𝜆௞ ൌ 𝑃ሺ𝑔ሺ𝑌௡ሻ ് 𝑘 | input is in set 𝑓ି௡ሺ𝑧௞
௡ሻ ሻ,   𝑘 ൌ 1,

. . . , 𝐾 ൏ 𝑀 (none one-to-one f ), and the maximal decoding error probability for an (M,n) code is 

defined as 𝜆ሺ௡ሻ ൌ max 𝜆௞ , 𝑘 ൌ 1, . . . , 𝐾 ൏ 𝑀. With these definitions, we have the following coding 

theorem for discrete-alphabet memoryless functions and computing machines [Simo10] 

Computing machine coding theorem: For a discrete memoryless computing machine, for 

any rate f fR C , reliable computation of f with arbitrarily low error probability is possible, i.e., 

there exists a sequence of (2 , )fnR n  codes such that the maximal decoding error probability 

( ) 0n   as n    (rate achievability). Conversely, any sequence of (2 , )fnR n  codes with 

( ) 0n  , as n   , must satisfy f fR C  (converse property). This means for any rate f fR C , 

reliable computation with arbitrarily low error probability is not possible, i.e., ( )n  does not 

approach 0. 

Proof: The rate achievability can be proved using random coding [Cove91] and the error 

probability analyzed for the virtual communication channel between f and F (see [Simo10] for 

details). 

To prove the converse property, we note that there are 2 fnRM   codewords nX , which if 

are uniformly selected at random, result in ( )n
fH X nR , using the definition of entropy. By 

adding { ( ( )) ( ( )| ( ))}n n n n n nH f X H f X F X  to ( )nH X  we obtain 

       
(a) (b) (c)

( ( )) ( ( ) )( ) | ( ) ( ( )) ( ( )| ( ))n n n n n n n n n n n nn
fn HR H H f X H f X F X H fX X f X F X          .       (s56) 

According to the paragraph under equation (s49), expression (a) is equal to ( | ( ))n n nH X f X , 

whereas expression (b) is nothing but ( ( ); ( ))n n n nI f X F X , i.e., the mutual information between 

( )n nf X  and ( )n nF X , and expression (c) will be discussed later. Upon substitution of these 

identities, fnR  in equation (s56) reduces to 

                       
(a) (b) (c)

( | ( )) ( ( ); ( )) ( ( )| ( ))n n n n n n n n n n n
fn H X f X I f X F X H f X F XR      .                     (s57) 
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Since entropy of a set of random variables is less than or equal to the sum of individual entropies 

[Cove91], we obtain   1
( | ( )) ( ) | ( )

nn n n n n
i ii

H X f X H X f X


  for expression (a) in (s57). 

Additionally, since for a discrete memoryless channel, n-term joint mutual information between 

input and output vectors is less than or equal to the sum of n individual mutual information terms 

[Cove91], for the virtual channel between f and F, we can write 

    1
( ( ); ( )) ( ) ; ( )

nn n n n n n
i ii

I f X F X I f X F X


  for expression (b) in (s57). Moreover, based on 

vanishing error probabilities in the converse property assumption and using Fano’s inequality 

[Cove91], we have ( ( )| ( ))n n n n
nH f X F X n  for expression (c) in (s57), such that 0n   as 

n . Upon substituting these inequalities in equation (s57), we obtain the following upper bound 

for fnR  

                               1
( ) | ( ) ( ) ; ( )

n n n n n
i i i i nif H X f X I f Xn F X nR 


   .                     (s58) 

Based on the definition of the computation capacity fC  in equation (s48), the term within the curly 

brackets in (s58) is upper bounded by fC . Therefore 

                                                                  nf fn n nR C   .                                                          (s59) 

Since 0n   as n , the inequality in (s59) reduces to f fR C . This completes the proof of the 

converse property. 

The above theorem can be extended to systems with memory using standard information-

theoretic tools (see, e.g., [Cove91]). It can also be generalized to mixed channels, such as the one 

considered in Section H2 of Supplementary Material. 
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