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Abstract__ The automatic recognition of the modulation format of a detected signal, the intermediate step between signal 

detection and demodulation, is a major task of an intelligent receiver, with various civilian and military applications. 

Obviously, with no knowledge of the transmitted data and many unknown parameters at the receiver, such as the signal 

power, carrier frequency and phase offsets, timing information, etc., blind identification of the modulation is a difficult task. 

This becomes even more challenging in real-world scenarios with multipath fading, frequency-selective and time-varying 

channels. In this paper we provide a comprehensive survey of different modulation recognition techniques, in a systematic 

way. A unified notation is used to bring in together, under the same umbrella, the vast amount of results and classifiers, 

developed for different modulations. The two general classes of automatic modulation identification algorithms are discussed 

in detail, which rely on the likelihood function and features of the received signal, respectively. The contributions of 

numerous articles are summarized in compact forms. This helps the reader to see the main characteristics of each technique. 

However, in many cases, the reported results in the literature have been obtained under different conditions. So, we have also 

simulated some major techniques under the same conditions, which allows a fair comparison among different methodologies. 

Furthermore, new problems that have appeared as a result of emerging wireless technologies are outlined. At the end, open 

problems and possible directions for future research are briefly discussed.  
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1. INTRODUCTION 
Automatic modulation classification (AMC) is an intermediate step between signal detection and 

demodulation, and plays a key role in various civilian and military applications. Implementation of advanced 

information services and systems for military applications, in a crowded electromagnetic spectrum, is a 

challenging task for communication engineers. Friendly signals should be securely transmitted and received, 

whereas hostile signals must be located, identified and jammed. The spectrum of these signals may range from 

high frequency (HF) to millimeter frequency band, and their format can vary from simple narrowband 

modulations to wideband schemes. Under such conditions, advanced techniques are required for real-time signal 

interception and processing, which are vital for decisions involving electronic warfare operations and other 

tactical actions. Furthermore, blind recognition of the modulation format of the received signal is an important 

problem in commercial systems, especially in software defined radio (SDR), which copes with the variety of 

communication systems. Usually, supplementary information is transmitted to reconfigure the SDR system. Blind 

techniques can be used with an intelligent receiver, yielding an increase in the transmission efficiency by reducing 

the overhead. Such applications have emerged the need for flexible intelligent communication systems, where the 

automatic recognition of the modulation of a detected signal is a major task. A simplified block diagram of the 

system model is shown in Fig. 1. The design of a modulation classifier essentially involves two steps: signal 

preprocessing and proper selection of the classification algorithm. Preprocessing tasks may include, but not 

limited to perform some or all of, noise reduction, estimation of carrier frequency, symbol period, and signal 

power, equalization, etc. Depending on the classification algorithm chosen in the second step, preprocessing tasks 

with different levels of accuracy are required; some classification methods require precise estimates, whereas 

others are less sensitive to the unknown parameters.  

Regarding the second step, two general classes of AMC algorithms can be crystallized, likelihood-based (LB) 

[1]-[26] and feature-based (FB) [27]-[88] methods, respectively. The former is based on the likelihood function of 

the received signal and the decision is made comparing the likelihood ratio against a threshold. A solution offered 

by the LB algorithms is optimal in the Bayesian sense, viz., it minimizes the probability of false classification. 

The optimal solution suffers from computational complexity, which in many cases of interest naturally gives rise 

to suboptimal classifiers. In the FB approach, on the other hand, several features are usually employed and a 

decision is made based on their observed values. These features are normally chosen in an ad-hoc way. Although 

a FB-based method may not be optimal, it is usually simple to implement, with near-optimal performance, when 

designed properly. Once the modulation format is correctly identified, other operations, such as signal 

demodulation and information extraction, can be subsequently performed. In general, AMC is a challenging task, 

especially in a non-cooperative environment, where in addition to multipath propagation, frequency-selectivity 

and time-varying nature of the channel, no prior knowledge of the incoming signal is available. 

In recent years, new technologies for wireless communications have emerged. The wireless industry has 

shown great interest in orthogonal frequency division multiplexing (OFDM) systems, due to the efficiency of 

OFDM schemes to transmit information in frequency selective fading channels, without complex equalizers  
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[89]-[90]. Multiple-input multiple-output (MIMO) systems have also received considerable attention, due to the 

significant capacity increase they offer. Such emerging technologies in wireless communications have raised new 

challenges for the designers of signal intelligence and SDR systems, such as, discriminating between OFDM and 

single carrier modulations [91], identification of signals transmitted from multiple antenna systems, and so on.  

Research on automatic classification of both digital and analog modulations has been carried out for at least 

two decades [1]-[88]. Partial surveys of algorithms for identifying digitally modulated signals are given in [92] 

and [93]. Of course, many techniques have been developed, which are different from each other when it comes to 

details. However, general structures that connect a variety of apparently different techniques can be identified. In 

this paper, we provide a unified comprehensive overview of what has been accomplished so far in this area, 

highlighting the bottlenecks and challenging issues which need to be addressed by further research. A comparison 

among the performance of different LB and FB algorithms is also carried out, emphasizing the advantages and 

disadvantages of diverse techniques.  

The rest of the paper is organized as follows. In Section II the signal model and classifier performance 

measures are discussed. Section III and IV are devoted to LB and FB methods, respectively. Numerical performance 

assessments and comparisons are provided in Section V, and some concluding remarks are given in Section VI.  

2. SIGNAL MODEL AND PERFORMANCE MEASURES 
AMC algorithms proposed in the literature employ information extracted from either the received baseband 

waveform [1]-[9], [14]-[28], [41]-[54], [58]-[65] or intermediate frequency [32]-[38], [55], [88]. A general 

expression for the baseband received complex envelope is given by 

( ) ( ; ) ( ) ,ir t s t n t= +u  (1) 

where  

2 ( )
1

( ; ) ( ( 1) )k
K jj ft j i

i i kk
s t a e e e s g t k T Tφπ∆ θ

=
= − − − ε∑u , 0 t KT≤ ≤  (2) 

is the noise-free baseband complex envelope of the received signal. In (2) we have 2 1j = − , ( )
2

ii s ps
a E E= σ , 

with sE  as the baseband signal energy, ( )
2 1 ( ) 2

1
| |i

i

M i
i ms m

M s−
=

σ = ∑  as the variance of the i th zero-mean signal 

constellation, iM  as the number of equi-probable points in the i th signal constellation, 2| ( ) |p TXE p t dt
∞

−∞
= ∫  as 

the pulse energy, with ( )TXp t  as the transmitter pulse shape, f∆  is the carrier frequency offset, θ  is the time-

invariant carrier phase, 1{ }K
k k=φ  represent the phase jitter, ( )

1{ }i K
k ks =  are K  complex transmitted data symbols taken 

from the i th finite-alphabet modulation format, T  is the symbol period, ε  denotes the timing offset with respect 

to (w.r.t.) the receiver reference clock, such that 0 1≤ ε < , and ( ) ( ) ( )TXg t p t h t= ⊗ , with ( )h t  as the channel 

impulse response and ⊗  as the convolution. For example, for a slowly-varying fading channel with P  

independent paths, 
1

( ) ( )pP j
p pp

h t e tϕ

=
= α δ − τ∑ , with (.)δ  as the Dirac delta function, such that 1{ }P

p p=α , 1{ }P
p p=ϕ  
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and 1{ }P
p p=τ  are the amplitudes, phases and delays of the paths, respectively. We adopt the notation ( ; )is t u  to 

stress the signal dependence on the unknown quantities, i.e., ( ) †
1 1[       ( ) { }  { } ]K i K

i i k k k ka f T g t s= == ∆ θ ε φu , with †  as 

the transpose. The term “unknown quantities” refers to unknown parameters, such as the carrier frequency offset, 

as well as unknown data symbols. Without loss of generality, unit variance constellations will be considered in the 

sequel, obtained by normalizing the signal constellations. For example, for M -ary amplitude-shift keying (ASK) 

the symbols are given by ( -ASK) ( -ASK)
, ,M M

k k Is s=  ( M-ASK )
( -ASK)
, {(2 1 ) / ,  1,..., },M

k I s
s m M m M∈ − − σ =  1,...,k K= ,  

for rectangular M -ary quadrature amplitude modulation (QAM) ( -QAM) ( -QAM) ( -QAM)
, ,

M M M
k k I k Qs s js= + , 

( -QAM )
( -QAM) ( -QAM) 1/ 2 1/ 2
, ,,  {(2 1 )/ ,   1,..., }M
M M

k I k Q s
s s m M m M∈ − − σ = , 1,...,k K= , for M -ary phase-shift-keying (PSK) 

( PSK) ,  mjM
ks e θ− =  {2 ,  0,..., 1},  m m M m Mθ ∈ π = − 1,...,k K=  and for M -ary frequency-shift-keying (FSK) 

2( FSK) mj f tM
ks e π− = , {(2 1 ) ,  1,..., }m df m M f m M∈ − − = , where the subscripts I  and Q  represent the inphase (real) 

and quadrature (imaginary) parts, respectively, ( )
2

is
σ  is the variance of the constellation before normalization, M  

is a power of 2, and df  is the frequency deviation or spacing between any two adjacent FSK constellation points, 

which for orthogonal signaling is a multiple of 1/ 2T  (see, for example, [94] Ch. 4). Note that the data symbols depend 

on t  for FSK. For others, such as ASK, PSK, QAM, ( )i
ks  is constant for each period ( 1)k T−  to kT . To simplify the 

notation, subsequently we use ( )i
ks  without t  also for FSK signals, unless otherwise mentioned. Note that ( )n t  in (1) is 

the aggregate baseband complex noise, i.e., receiver noise, as well as cochannel interferences and jammers. 

A classifier is supposed to correctly choose the modulation format of the incoming signal from a pool of modN  

candidate modulations, denoted by the integers mod1,...,i N= , or to decide that the modulation format cannot be 

recognized. The latter case is not discussed here, as not addressed in the literature. Due to the lack of space, we 

focus on algorithms for ASK, PSK, QAM, and FSK classification. 

As a basic performance measure, let ( '| )i i
cP  denote the (classification) probability to declare that the 'i th signal 

format has been sent, when the modulation format of the incoming signal is i . For mod, ' 1,...,i i N= , these 

probabilities can be arranged as a mod modN N×  confusion matrix, where the diagonal element ( | )i i
cP  is the 

probability of correct classification for the ith modulation. In classifying modN  equi-probable modulations, the 

average probability of correct classification is defined by 

mod1 ( | )
mod 1

.N i i
cc ci

P N P−
=

= ∑  (3) 

Obviously, one can use the complementary probabilities as a performance measure, i.e., the probability of error 

for the ith modulation, defined as ( ) ( | )1i i i
e cP P= − , and the average probability of error, defined as 1e ccP P= − . Most 

of the AMC work used ccP , or equivalently, eP , as a performance measure. However, by using the confusion 

matrix, one gains more insight into the classifier behavior. 
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Clearly, a desirable classifier should provide a high probability of correct classification in a short observation 

interval, particularly for a large range of signal-to-noise ratio (SNR). In addition, it should satisfy these 

requirements: capability to recognize many different modulations in environments with diverse propagation 

characteristics, robustness to model mismatches, real-time functionality, and low computational complexity. 

3. LIKELIHOOD-BASED APPROACH TO AMC 
Within the LB framework, AMC is a multiple composite hypothesis-testing problem. The idea behind the  

LB-AMC is that the probability density function (PDF) of the observed waveform, conditioned on the embedded 

modulated signal, contains all information for classification. Depending on the model chosen for the unknown 

quantities, three LB-AMC techniques are proposed in the literature: average likelihood ratio test (ALRT) [1]-[13], 

[21], [23], generalized likelihood ratio test (GLRT) [14], [17], [18] and hybrid likelihood ratio test (HLRT) [14]-

[16], [19]-[20]. Quasi ALRT [3]-[5], [7], [9]-[13] and quasi HLRT [20]-[22] are also proposed in the literature.  

ALRT  

This approach treats the unknown quantities as random variables (r.v.’s) with certain PDFs. So, the likelihood 

function (LF) under the hypothesis iH , representative of the i th modulation, mod1,...,i N= , is given by  

( )[ ( )] [ ( ) | , ] ( ) ,i
A i i i i ir t r t H p H dΛ = Λ∫ v v | v  (4) 

where [ ( ) | , ]i ir t HΛ v  is the conditional LF of the noisy received signal ( )r t  under iH , conditioned on the 

unknown vector iv , and ( | )i ip Hv  is the a priori PDF of iv  under iH . The known PDF of iv  enabled us to 

reduce the problem to a simple hypothesis-testing problem by integrating over iv . 

For a baseband complex additive white Gaussian noise (AWGN) in (1), the conditional LF is given by (see, 

for example, [94] Ch. 6) 

21 * 1
0 0

0 0

[ ( ) | , ] exp 2 Re ( ) ( ; ) ( ; ) ,
KT KT

i i i ir t H N r t s t dt N s t dt− −
   Λ = −  

    
∫ ∫v u u  (5) 

where 0N  is the two-sided power spectral density (PSD) of AWGN in W/Hz, with the autocorrelation 

*
0E{ ( ) ( )} ( )n t n t N+ τ = δ τ  such that E{.}  is expectation and *  denotes the complex conjugate. Furthermore, here 

† †
0[  ]i i N=v u , and Re{.}  stands for the real part. If the chosen ( | )i ip Hv  is the same as the true PDF, ALRT 

results in an optimal classifier in the Bayesian sense. 

GLRT 

In this approach the unknown parameters are treated as unknown deterministics. The best performance is 

achieved by the so-called uniformly most powerful (UMP) test [95]. For a necessary and sufficient condition for 

the existence of an UMP test see, for example, [95] Ch. 2. When an UMP test does not exist or hard to derive, a 

logical procedure is to estimate the unknown quantities, assuming iH  is true, and then use these estimates in a 

likelihood ratio test, as if they were correct. If maximum likelihood (ML) is used for estimates, the test is called 
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GLRT. Obviously, GLRT treats the unknown quantities (including both the parameters and data symbols) as 

deterministic unknowns, and the LF under iH  is given by 

( )[ ( )] max [ ( ) | , ].
i

i
G i ir t r t HΛ = Λ

v
v   (6) 

HLRT 

This is a combination of the aforementioned approaches, for which the LF under iH  is given by 

1 2 2 2
1

( )[ ( )] max [ ( ) | , , ] ( | ) ,
i

i
H i i i i i ir t r t H p H dΛ = Λ∫v

v v v v  (7) 

where 
1 2

† † †[  ]i i i=v v v  and, 
1i

v  and 
2i

v  are vectors of unknown quantities modeled as unknown deterministics and 

r.v.’s, respectively. Usually, 
1i

v  and 
2i

v  consist of parameters and data symbols, respectively. 

Note that ALRT requires a multidimensional integration, whereas GLRT requires a multidimensional 

maximization. The difficulty of performing a multidimensional integration for a large number of unknown 

quantities and the need for knowing the prior PDFs may render the ALRT impractical. On the other hand, 

maximization over the unknown data symbols in GLRT can lead to the same value of the LF for nested signal 

constellations, e.g., BPSK and QPSK, 16-QAM and 64-QAM, [14], [96] Ch. 6, which in turn yields incorrect 

classification. Averaging over the unknown data symbols in HLRT, however, removes the nested constellations 

problem of GLRT. Finally we emphasize that the estimates of the unknown quantities, as by-products of GLRT 

and HLRT, are of interest for data demodulation.  

In a two-hypothesis classification problem, the decision is made according to 

1

2

(1) (2)[ ( )] [ ( )]
H

H
l l lr t r t >

<Λ Λ η , l A= (ALRT), G (GLRT), H (HLRT), (8) 

where lη  is a threshold. The left-hand side is referred to as the likelihood ratio and the test is called average 

likelihood ratio test (ALRT), generalized likelihood ratio test (GLRT) and hybrid likelihood ratio test (HLRT), 

respectively, depending on the method employed to compute the LF. Extension of (8) to multiple classes is 

straightforward (see, for example, [95] Ch.2 and [96] Ch. 3 and 6). Equivalently, the log function can be applied to 

both members of the inequality (8). Accordingly, the terms log-likelihood ratio and log-likelihood ratio test are used. 

Table I lists several LB-AMC algorithms proposed in the literature, emphasizing the type of modulations, 

unknown parameters, and channel used. A simplified signal model of that given in (1) was considered in the 

literature, as follows. The transmit pulse shape was assumed rectangular, i.e., ( ) ( )TX Tp t u t= , where ( ) 1Tu t =  for 

0 t T≤ <  and zero otherwise. So, pE T=  and with ( )
2 1is

σ = , one obtains a S= , in which /sS E T=  is the signal 

power. With all this and ( ) ( )jh t e tϕ= α δ , with α  and ϕ  constant over the K  symbol interval, (2) can be written as 

( ) 2 ( )
1

( ; ) ( ( 1) ),k
K jj j ft i

i k Tk
s t Se e e s u t k T Tφθ+ϕ π∆

=
= α − − − ε∑u  (9) 
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where 1α =  and 0ϕ =  when there is no fading. We define the observed per-symbol SNR 0s ST Nγ = Ω , in which 

1Ω =  when there is no fading. Otherwise, 2E{ }Ω = α  is the average fading power, with α  as the channel 

amplitude. Under fading, S  is set equal to one.  

3.1.  ALRT-based Algorithms  

In this section, optimal and suboptimal ALRT-based algorithms applicable to identify both linearly modulated 

and FSK signals under various conditions will be presented1, as well as ALRT-based classifiers specific to linear 

modulation and FSK, respectively. Suboptimal classifiers are obtained based on the approximations of the LFs at low 

SNR. Interestingly, several FB classifiers are shown to be simplified versions of such suboptimal structures [5]. Hence, 

decision theory can be perceived as a rigorous framework that justifies the selection of features in some FB methods.  

3.1.1. ALRT-AMC for linearly modulated and FSK signals 

ALRT-based classifiers  

With all parameters perfectly known2, i.e., ( ) †
1[{ } ]i K

i k ks ==v , ALRT leads to a structure whose performance is 

better than all the others, which have to deal with some unknown parameters. Therefore, the performance of this 

classifier can be considered as a benchmark. The data symbols ( )
1{ }i K

k ks =  are treated as independent and identically 

distributed (i.i.d.) r.v.’s. The LF under hypothesis iH  is computed by averaging over the constellation points 

corresponding to the i th modulation format. This is done by substituting (5) into (4) (see (37), Appendix A) 

{ }{ }( )
( ) 1 ( ) 2 1 ( ) 2

0 01
[ ( )] E exp 2 Re | | ,i

k

Ki i i
A k ksk

r t S N R STN s− −
=

 Λ = α −α ∏  (10) 

where ( )E {.}i
ks

 is nothing but a finite summation over all the iM  possible constellation points of the i th 

modulation, divided by iM , for the k th interval. Furthermore, 

( ) ( )* ( )*

( 1) ( 1)
( ) ( ) ( ( 1) ) ( ) ( )

kT kTi i i
k k T kk T k T

R r t s t u t k T dt r t s t dt
− −

= − − =∫ ∫ , 1,...,k K= . (11) 

Note that for linear modulations ( ) ( )i
ks t  is constant over the period ( 1)k T−  to kT  and thus, ( ) ( )*i i

k k kR s r= , with 

( 1)
( )

kT

k k T
r r t dt

−
= ∫  the output of the receive matched filter at t kT= . 

With multiple antennas at the receiver, AWGN and block fading, and all parameters perfectly known, i.e., 
( ) †

1[{ } ]i K
i k ks =v = , the LF is given by (see, e.g., [95] Ch.3) 

                                                 
1 Due to the lack of space, in the sequel we give details of some of the algorithms, especially those used in the comparative 

study of the AMC algorithms in Section V, whereas we only mention others. 
2 From now on, we set the known parameters to some fixed numerical values. In AWGN channel, with all parameters 

perfectly known, 1{ } 0K
k kf =θ = ∆ = ε = ϕ = φ =  and 1α = , whereas in a block fading channel 1{ } 0K

k kf =∆ = ε = φ = , 1S = , and θ  

is included into ϕ . Of course, the unknowns will be put into the vector iv . 
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{ }( )
( ) 1 ( ) 2 1 ( ) 2

0 , 0
1 1

[ ( )] exp 2 Re{ } | | ,i
k

L K
ji i i

A k ks
k

t E S N e R STN s− ϕ− −

= =

 Λ = α −α ∏∏r  (12) 

where L  is the number of antennas at the receiver side, je ϕα  is the fading process on each branch, 1,..., L= , 

and ( ) ( )*
, ( 1)

( ) ( )kTi i
k kk T

R r t s t dt
−

= ∫ , 1,...,k K= , 1,..., L= , with ( ) ( ; ) ( )ir t s t n t= +u  as the received signal on the th 

branch, ( ; )is t u  as the noise free envelope, and ( )n t  as the zero-mean AWGN, with the PSD 0N . The expression 

for the noise free envelope on the th branch, ( ; )is t u , can be easily written similar to (9)3. Note that both the 

noise 1{ ( )}Ln t =  and fading processes 1{ }j Le ϕ
=α  among the L  diversity branches are assumed to be independent. 

Actually, a maximal ratio combining (MRC) was used here to combine the received signals. In fading channels 

such a structure takes advantage of the array gain, as well as diversity gain (see, for example, [97] Ch. 5), and 

thus, performance improvement is expected when compared with a single antenna classifier. However, as one can 

easily notice, when in addition to the unknown data symbols, there are other unknown parameters, e.g., 

1 1{ }  and { }L L
= =α ϕ , integration over these parameters becomes more difficult and, the implementation of a multi-

antenna ALRT-based classifier turns out to be even more complex. 

In AWGN, with ( ) †
1[  { } ]i K

i k ks == θv  and uniform distribution for θ  over [ , )−π π , representing no prior 

knowledge of the time-invariant phase, the LF can be shown to be [21] (see (38), Appendix A)2 

{ }( )1
0

( )
1

( ) 1 ( )
0 0{ }

[ ( )] E (2 |) ,
i

K
i K

kk

STNi i
A Ks

r t e I S N
−

=

− η −Λ = ξ|  (13) 

where the notation ( )
1{ }E {.}i K

k ks =
 emphasizes that the averaging is performed over K  data symbols, ( ) ( ) 2

1| |Ki i
K kk s=η = ∑ , 

0 (.)I  is the zero-order modified Bessel function of the first kind, and ( ) ( )
1

Ki i
K kk R=ξ = ∑ . Obviously, such a classifier is 

difficult to implement, as requires K
iM  data sequences to compute the LF under the hypothesis iH . 

In AWGN, under the assumption of per-symbol phase-incoherence due to phase jitter, i.e., 0θ =  and 
( ) †

1 1[{ }  { } ]K i K
i k k k ks= == φv , with 1{ }K

k k=φ  as i.i.d. uniform r.v.’s, it can be easily shown that the LF is given by  

(see (39), Appendix A) 2 

{ }( )1 2
0

( )
| |( ) 1 ( )

0 01
[ ( )] E (2 | |) .

i
k

i
k

K STN si i
A ksk

r t e I S N R
−− −

=
Λ =∏   (14) 

In a slowly-varying flat Rayleigh fading channel2, characterized via a Rayleigh-distributed α  and uniform 

 ϕ , such that ( ) †
1[   { } ]i K

i k ks == α ϕv , the LF is given by  [21] (see (42), Appendix A)  

                                                 
3 With a multi-antenna classifier, in AWGN channel and all parameters perfectly known, we set 

1 1 1{ } { } { } 0L L K
k kf = = =θ = ∆ = ε = ϕ = φ =  and 1{ } 1L

=α = , whereas with a flat block-fading channel 1 1{ } { } 0L K
k kf = =∆ = ε = φ = , 1S =  

and θ  is included into ϕ , 1,...,L= .  
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( )
1

2 ( ) 2
( ) 0

1 ( ) 1 ( ){ }
0 0

|1[ ( )] E exp .
1 1i K

kk

i
i K

A i is
K K

Nr t
TN TN=

−

− −

  Ω ξ Λ =   + Ω η +Ω η   

|  (15) 

One can notice that the LF depends on the average fading power Ω , assumed perfectly known. 

The ALRT-based classifiers are implemented by replacing the expression of the LF given in (10), (12), (13), 

(14) and (15), respectively, in (8), with 1Aη = ; such a classifier is called the ML classifier. 

Performance analysis of the ML classifier 

Theoretical performance analysis of the ML classifier was performed in [2] for no unknown parameters, when 

identifying linearly modulated signals in AWGN, with the LF given in (10)2. The probability of error under iH  is 

shown to be [2] 

,1 , 1 , 1 , mod

mod

( )

1

1 ... ... ( | )
i i i i i i N

i
e i i iKm K m Km Km

N

P p H d
− +

∞ ∞ ∞ ∞

− − − −

−

= − ∫ ∫ ∫ ∫ b b , mod1,...,i N= , (16) 

where 

( ) /i i iK K= −b a m , 
mod

†
,1 , 1 , 1 ,[ ... ... ]i i i i i i i Na a a a− +=a , ( ) ( )

, 1
[ln( ( )) ln( ( ))]K i j

i j A k A kk
a r r

=
= Λ − Λ∑ , j i≠ , 

( )
( ) 1 ( )* 1 ( ) 2

0 0( ) E {exp[2 Re{ } | | ]}i
k

i i i
A k k k ks

r S N r s STN s− −Λ = − , 
mod

†
,1 , 1 , 1 ,[ ... ... ]i i i i i i i Nm m m m− +=m , and 

( ) ( )
, E{ln( ( )) ln( ( )) | }i j

i j A k A k jm r r H= Λ − Λ , j i≠ . The mod( 1) 1N − ×  vector ib  is shown to be the sum of K  i.i.d. 

random vectors which satisfies the multivariate central limit theorem if K  is large. Therefore, ( | )i ip Hb  was 

considered as a multivariate Gaussian density, with zero mean and covariance matrix, †E{ | }i i iHb b , depending on 

the first and second order statistics of ( ) ( )ln( ( )) ln( ( ))i j
A k A kr rΛ − Λ  [2]. The integral in (16) was numerically calculated 

for V. 29, 16-QAM, 32-QAM and 64-QAM, for K = 100 , 200  and 1000  [2]. Note that V.29 is a special QAM 

modulation, with 16 points in the signal constellation [2]. 

Quasi ALRT-based classifier  

A synchronous classifier ( 0ε = ) can be simply transformed into an asynchronous one, with the timing offset 

ε  as a uniformly distributed r.v. over [0,1) , using the following approximation of the LF [9], [10], [13] 

1( ) 1
0

[ ( )] [ ( ) | , ] ,Di
A d id

r t D r t H−−
=

Λ ≈ Λ ε∑  (17) 

where D  is the number of levels to which the timing offset is quantized and /d d Dε = , 0,..., 1d D= − . For such a 

scenario, ( )i
kR , as defined in (11), needs to be replaced by ( )

( )*
1

( ) ( ) ( ) ( ( 1) )d

d

kT T i
k d k T dk T T

R r t s t u t k T T dt+ε

− +ε
ε = − − − ε∫ . This 

approximation improves as D →∞ , since the summation converges to an integral. The value of D  directly 

determines the classifier complexity, as introduces more terms in (17). Note that a similar approximation can be 

also used when the carrier phase θ  is unknown, by discretizing the range of its values. 
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3.1.2. ALRT-AMC for linearly modulated signals 

In the sequel we present various classifiers for linear modulation classification under different conditions, 

such as a differential ALRT algorithm designed for unknown carrier phase, quasi ALRT classifiers designed also 

for unknown carrier phase, as well as unknown carrier phase/ timing offset, etc. 

Differential ALRT with unknown carrier phase 

A differential data solution was proposed in [1] to classify linearly modulated signals in AWGN channel, with 

the unknown carrier phase uniformly distributed over [ , )−π π , i.e., ( ) †
1[  { } ]i K

i k ks == θv . The joint PDF of the 

magnitude | |kr  and phase difference 1 mod 2k k k+ π
∆ψ = ψ −ψ , such that , ,tan /k k Q k Ir rψ =  and , ,k k I k Qr r jr= + , was 

used to derive the LF. Under the assumption that the signal amplitude and phase difference are approximately 

independent r.v.’s at large SNRs, the LF is given by [1] 

{ }( ) ( )
1

1( ) ( ) ( ) ( )
1{ , }1

[ ( )] E (| | , ) ( , , ) ,i i
k k

Ki i i i
A k k i k k k is sk

r t p r s H p s s H
+

−

+=
Λ = ∆ψ∏  (18) 

in which | |kr  was taken as Ricean-distributed and, for large SNRs, k∆ψ  was approximated by a Gaussian PDF. 

Due to the lack of space we omit here the expressions for the PDFs of | |kr  and k∆ψ . For details see [1], p. 219.  

The advantage of using the phase difference instead of phase itself is that the effect of a time-invariant phase 

offset will be mitigated. However, the classifier performance can still be degraded due to the phase jitter.  

The differential ALRT-based classifier was implemented with the decision rule given in (8) ( 0Aη = ) and the 

expression of the LF given in (18). 

Quasi ALRT with unknown carrier phase4 

With ( ) †
1[  { } ]i K

i k ks == θv , where θ  is uniformly distributed over [ , )−π π , approximations of the LF were 

developed in [3]-[5], [7] for AWGN channel, leading to suboptimal classification structures. A low SNR 

approximation of the LF for PSK and QAM signals is given by5 

( ){ }( )

/ 2 1( ) 1
0 2 , , 1, ,1 0

ˆ[ ( )]  exp ( ) !( )! | || ( ) | ,i

ni n
A n q r n q ns n qn q

r t S N K q n q m m∞ −  −
− −= =

 Λ ≈ υ − ∑ ∑ 0  (19) 

where ( ) ( )
( ) ( )*

, ,
E {( ) ( ) }i i

i n q i q
s n q s

m s s−=  is the n th-order/ q -conjugate moment of the i th constellation, 

1 *
, , 1 1ˆ ( ) ( )K n q q

r n q n k kkm K r r− −
− == ∑0  is the sample estimate of the n th-order/ q -conjugate moment at zero-delay vector 

1n−0 6, .    denotes rounding up to the nearest integer, and finally 2n q−υ  is 1 if / 2q n=  and 2  if / 2q n< . Eq. (19) 

                                                 
4 The quasi ALRT classifier was originally derived as an LB method. However, it can be considered as an FB technique as 

well. 
5 Eq. (19) can be easily obtained from eq. (5) given in [7], by using the signal moments. 
6 For the definition of the n th-order moment/ q -conjugate, , , 1( )r n q nm −τ  and the cumulant , , 1( )r n q nc −τ  of a stationary random 

process, as well the relations between the moments and cumulants, see, e.g., [98] and [99] Ch.2. A 1n−0  delay vector is an 

( 1) 1n − ×  vector, with all the elements equal to zero. 
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can be further simplified, as for symmetric constellations the odd order moments are equal to zero [63]. The right-

hand side of (19) is actually a measure of the correlation between the theoretical moments of the i th constellation 

and sample estimates. Theoretical values of the n th order/ q -conjugate moment ( ) , ,is n q
m , with 2,4,6,8n =  and 

0,..., / 2q n=    , are given in Table II for different signal constellations. These values were computed as ensemble 

average over the ideal-noise free constellation under the constraint of unity variance and the assumption of 

equiprobable symbols. As one can notice from Table II, the lowest order statistic to distinguish between M -PSK 

and 'M -PSK ( 'M M> ) is the M th-order / zero-conjugate moment, ( ) , ,0is M
m . On the other hand, also from  

Table II, this property does not hold for QAM signals. A general rule for QAM signals is that ( ) , ,
0is n q

m =  when n  is 

a multiple of four ( 4n =  and 8  in Table II) and q  is odd or n  is not a multiple of four ( 6n =  in Table II) and q  is 

even.  

By resorting to only the lowest order statistics, small n ’s, suboptimal but implementationally manageable 

classifiers were proposed to discriminate PSK and QAM in [3]-[5] and [7], respectively. Based on the afore-

mentioned property of moments for PSK signals, Polydoros et al. proposed a binary decision tree classifier for 

PSK signals [3]-[5], where the decision at each node was made by comparing the following metric  

, 1

K M
M PSK kk

v r
=

= ∑  (20) 

against a threshold, denoted here by ( PSK, ' PSK)
M

M M
v

− −η . As an example, see Appendix B for the derivation of (20) for 

BPSK/QPSK classification. The decision rules involving the approximations of the LFs require appropriate 

thresholds. In order to maximize the probability of correct classification when discriminating between the  

M -PSK and 'M -PSK modulations, the threshold ( PSK, ' PSK)
M

M M
v

− −η  was chosen to satisfy 

( PSK) ( PSK, ' PSK) ( ' PSK) ( PSK, ' PSK)( ) ( )
M M

M M M M M M
v vp p− − − − − −η = η ,  (21) 

where ( PSK) ( )M
Mp v−  and ( ' PSK) ( )M

Mp v−  are the PDFs of the metric Mv  under the hypothesis that M -PSK and  

'M -PSK are the modulation formats of the incoming signal, respectively. A closed-form solution was derived in 

[5] for classifying PSK signals with unknown carrier phase. Under the assumption of a large number of available 

symbols K , this threshold was approximated by7  

( PSK, ' PSK) / 2 / 2
M

M M M M
v KS T− −η = . (22) 

As one can notice, the threshold depends on the signal power, S . In the sequel we denote it by ,QA TEη , where QA  

and TE stand for quasi-ALRT and theoretical, respectively. An example of a binary decision tree classifier used 

for PSK signals is shown in Fig. 2. 

                                                 
7 The original presentation in [4] used 02 /kr N T  instead of kr  in the metric in (20). To account for this difference, the 

threshold we give in (22) is indeed 0( / 2)MN T  times the threshold of [4]. 
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As previously explained, the n th order/ q -conjugate moments for QAM signals do not have the attractive 

property used to devise a binary decision tree for PSK signal identification. Using (19) and the results given in 

Table II, it can be easily noticed that the lowest order statistics which can be used for QAM signals classification 

is of order 4n =  ( 0,2q = ). Following the same procedure as in the example given in Appendix B for BPSK and 

QPSK signals, it can be easily shown that the lowest order metric which can be used to distinguish between any 

two QAM signals is given by 

4 4
4, 1 1

| |K K
QAM k kk k

A r B r
= =

ν = +∑ ∑ , (23) 

where the coefficients A  and B  depend on the theoretical values of the fourth-order/ zero- and two-conjugate 

moments of the QAM signals, respectively. Such a metric was used in [7] to discriminate between 16-QAM and 

V.29, with 0.0135A =  and 0.0246B = − . The decision was made by comparing the metric against a threshold, 

which was empirically set8. We denote this threshold by ,QA Eη , where QA  and E stand for quasi-ALRT and 

empirical, respectively. 

By comparing (20) and (23) with (13), one can say that the complexity of a quasi-ALRT classifier is much less 

than that of the ALRT classifier, as it needs neither an averaging operation nor the computation of the Bessel function.  

Quasi ALRT with unknown carrier phase and timing offset 

In AWGN, with ( ) †
1[   { } ]i K

i k ks == θ εv , where the carrier phase θ  and timing offset ε  are uniformly distributed over 

[ , )−π π  and [0,1) , respectively, the following statistic was used to distinguish between M -PSK and 'M -PSK [5] 

1
, 0 1

( / )D K M
M PSK kd k

r d D−

= =
ν =∑ ∑ , (24) 

with ( )1
( ) ( ) ( ( 1) )d

d

kT T
k d T dk T T

r r t u t k T T dt+ε

− +ε
ε = − − − ε∫ . Similar to Fig. 2, a binary decision tree classifier was employed 

for PSK signal classification, with (24) compared against a threshold. The threshold was empirically chosen, 

following the “histogram method”8. 

ALRT with unknown signal level 

An ALRT algorithm was developed in [8] to identify PSK signals in AWGN, with ( ) †
1[  { } ]i K

i k ks == αv , where 

the signal level  α is a Rayleigh-distributed r.v. The decision rule given in (8) was employed, with the threshold 

Aη  set to one. 

Miscellaneous classifiers 

Numerical calculation of the integrals in ALRT using a Markov chain Monte Carlo method was performed in 

[24]. In the algorithms previously described, AMC was treated as a hypothesis testing problem with a fixed 

                                                 
8 This threshold is set to maximize the average probability of correct classification over a large number of data and noise 

realizations. It is assumed that such simulations can be run off-line and the threshold can be stored as a function of the noise 

and signal parameters. In a practical implementation, the threshold is therefore obtained from a look-up table. 
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number of received symbols. By formulating the AMC problem as a variable sample size hypothesis testing 

problem, an algorithm based on the sequential probability ratio test was proposed in [25], [26]. 

3.1.3. ALRT-AMC for FSK signals 

ALRT-based classifier under the assumption of per-symbol phase-incoherence 

In AWGN, under the assumption of per-symbol phase-incoherence, i.e., ( ) †
1 1[{ }  { } ]K i K

i k k k ks= == φv , with 1{ }K
k k=φ  

as i.i.d. uniform r.v.’s, the LF of (14), with ( )| | 1i
ks = , was derived in [9]. As one can easily notice from (11) and 

(14), the implementation of such classifier requires the explicit calculation of the Fourier spectrum of the received 

waveform at a set of iM  candidate frequencies [9]. The signal bandwidth of an iM -FSK signal is defined as 

1
i i iBW M T −= , with iT  as the symbol period under the hypothesis iH . Optimal structures were developed for the 

three possible cases: the same signal bandwidth and distinct symbol period (equal 1
i iM T − , with different iT ), the 

same symbol period and distinct bandwidth (different 1
i iM T − , with equal iT ), and both the symbol period and 

signal bandwidth different (different 1
i iM T − , with different iT ) [9]. The decision was made based on the rule given 

in (8), with 0Aη = . 

Quasi ALRT-based classifier under the assumption of per-symbol phase-incoherence4 

On the other hand, with ( ) †
1 1[{ }  { } ]K i K

i k k k ks= =φv = , by using a power series expansion of the modified Bessel 

function in (14), an approximation of the LF based on higher-order correlations (HOCs) was given in [9]-[12]. For 

a single symbol interval this is given by 

( ) 2 *
1 1, 2 1, 3 1, 2,

2 *
4 2, 5 1, 3,

[ ( )]  1 (0) | ( ) | ( ) ( )

               | ( ) | ( ) ( ) ...

T Ti
A r r r rT T

T T

r r rT T

r t C c C c d C c c d

C c d C c c d

− −

− −

Λ ≈ + + τ τ + τ τ τ

+ τ τ + τ τ τ +

∫ ∫
∫ ∫

, (25) 

where ,1( )rc τ  is the signal autocorrelation, defined as  

*

0
,1 | | *

0

( ) ( ) ,          0 ,
( )

( | |) ( ) ,      - 0.

T

r T

r t r t dt T
c

r t r t dt T

−τ

− τ

 + τ ≤ τ <τ = 
 + τ ≤ τ <

∫
∫

, 

and , ( )r nc τ  is the n th-order ( 2n ≥ ) correlation, defined as the autocorrelation of , 1( )r nc − τ , 

2

2

2

2

2 * 1
, 1 , 12

, 2 | | * 1
, 1 , 12

( ) ( ) ,          0 2 ,
( )

( | |) ( ) ,      2 0.

n

n

n

n

T n
r n r nT

r n T n
r n r nT

c t c t dt T
c

c t c t dt T

−

−

−

−

−τ −
− −−

− τ −
− −−

 + τ ≤ τ <τ = 
 + τ − ≤ τ <

∫

∫
.  

The coefficients 1 2 3 4,  ,  ,  C C C C , and 5C  are given by 1
0(2 )s N T BW −γ × , 1

0(16 )s N T BW −γ × , 

1
0(288 )s N T BW −γ × , 1

0(9216 )s N T BW −γ ×  and 1
0(460800 )s N T BW −γ × , respectively. When the received signal 

includes K  i.i.d. symbols, the LF is simply the product of K  LFs, each one given by (25). To increase the 

accuracy of the LF approximation in (25), one needs to use higher-order correlations. This results in a better but 
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more complex classifier. The decision was made by comparing the metric against an empirical threshold, ,HOC Eη , 

where HOC and E denotes higher-order correlation and empirical, respectively. 

An FSK signal classifier based also on an approximation of the LF was proposed in [13] for flat Rayleigh 

fading channels. Usually, in the literature only one incoming signal is assumed at the receiver. The case of 

multiple FSK signals at the receiver was discussed in [13]. Using (17), the previously discussed ALRT- based and 

quasi-ALRT synchronous algorithms were transformed into asynchronous classifiers, where the timing offset ε  

was assumed uniformly distributed over [0,1)  [10], [12], [13].  

3.2.  GLRT- and HLRT-based Algorithms 

As the ALRT algorithm suffers from high computational complexity in most practical cases, GLRT and 

HLRT algorithms have been investigated as possible solutions to identify linear modulations [14]-[22]. In AWGN 

and with ( ) †
1[  { } ]i K

i k ks == θv , the LF for GLRT and HLRT are respectively given by [14]  

( ){ }( )

( ) ( )* 1 ( ) 2
1

[ ( )] = max max Re[ ] 2 | | ,
i

k

Ki i j i
G k k kk s

r t s r e ST s− θ −
=θ

Λ −∑   (26) 

{ }{ }( )
( ) 1 ( )* 1 ( ) 2

0 01
[ ( )] max E exp 2 Re[ ] | | .i

k

Ki i j i
H k k ksk

r t S N s r e STN s− − θ −
=θ

 Λ = − ∏  (27) 

These relations can be easily derived according to (6) and (7), respectively, after substituting (9)2 into (5). The 

empirical histogram method8 was used to set the thresholds with the GLRT and HLRT tests [14]. Here we denote 

these thresholds as ,G Eη  and ,H Eη , respectively. 

GLRT displays some implementation advantages over ALRT and HLRT, as it avoids the calculation of 

exponential functions and does not require the knowledge of noise power to compute the LF. However, it suffers 

from the nested constellation problem discussed earlier. Note that HLRT does not have this problem.  

Other GLRT- and HLRT-based classifiers investigated in the literature are as follows. The AMC problem was 

examined in an intersymbol interference (ISI) environment, where the signal was considered to be degraded by 

AWGN and ISI [17], [18]. The LF was computed using the ML estimates of the data sequence and channel 

coefficients 1{ }P
p pg = , with the per-survivor processing technique employed for estimation [18]. Obviously, this is 

GLRT with ( ) †
1 1[ { }  { } ]P i K

i p p k kg s= ==v . The threshold used for decision was empirically set8. With ( ) †
1[   { } ]i K

i k kS s == θu  

and unknown PSD 0N , i.e., ( ) †
1 0[   { }  ]i K

i k kS s N=θv = , an HLRT classifier was explored in [15], where ML estimates 

of S  and 0N  were used, together with the approximate LF in (19), obtained by averaging over  θ  and ( )
1{ }i K

k ks = . In 

other words, the LF is computed based on (7), with 
1

( ) †
1[   { } ]i K

i k ks == θv  and 
2

†
0[  ]i S N=v . Both empirical and 

theoretical thresholds were used. An HLRT-based multi-antenna classifier was developed for BPSK/QPSK in 

AWGN [16], with ( ) †
1[  { } ]i K

i k ks == ϑv , where ϑ  is an unknown phase shift between two adjacent antenna elements, 

which appears due to their spatial separation. The decision rule given in (8) was employed, with the threshold set to 

one. HLRT-based classifiers were developed for linear modulation identification in flat block fading channels in 
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[19]-[20], with ( ) †
1[   { } ]i K

i k ks == α ϕv  and ( ) †
1 0[   { }  ]i K

i k ks N== α ϕv , respectively. The LF was computed by averaging 

over the data symbols and using the ML estimates of the unknown parameters. The threshold Hη  used for 

decision was set to one. HLRT has the advantage over ALRT that no prior PDFs of the channel parameters are 

needed, and therefore, it is applicable to different environments, e.g., Rician and Rayleigh fading [19]-[20].  

Quasi HLRT classifier  

HLRT does not seem to be a good solution with an increased number of unknown parameters, as finding their 

ML estimates can be very time consuming. Quasi-HLRT classifiers, which use low-complexity yet accurate 

estimates, can be used instead. Such classifiers were proposed in [20]-[21] to identify linear digital modulations in 

block fading, with ( ) †
1[   { } ]i K

i k ks == α ϕv  and ( ) †
1 0[   { }  ]i K

i k ks N== α ϕv , respectively. A quasi-HLRT classifier was also 

proposed in [22] to discriminate QAM signals in AWGN channels, with ( ) †
1[  { } ]i K

i k kf s == ∆v .  

As an example, to discriminate QAM signals in block fading channels, the estimators used in [21] for the channel 

amplitude and phase are given, respectively, by 

( ) ( )
4 4 2 2 1

,2,1 ,4,2 3 ,2,1 ,4,2
ˆ ˆ ˆ[2 (0) - ( )](2 ) ,i ii r r s sT m m m m −= −0α  (28) 

and 

1 4
1ˆ 4 angle( )K

kk r−
== ∑ϕ . (29) 

Then, using these estimators, the LF was calculated according to2 

{ }( )
ˆ( ) 1 ( )* 2 1 ( ) 2

0 01
ˆ ˆ[ ( )] E exp 2 Re[ ] | |i

k

Ki i j i
quasi H i k k i ksk

r t N s r e TN s− − ϕ −
− =

 Λ = α −α ∏ . (30) 

The decision rule is given in (8), with the threshold set to one. A multi-antenna quasi-HLRT classifier was also 

proposed in [21], with (28) and (29) used to estimate the channel phase and amplitude on each branch, 

respectively. The threshold used for decision was set to one. 

4. FEATURE-BASED APPROACH TO AMC 
The design of a FB algorithm first needs some features for data representation and then decision making 

[100]. Examples of features are the correlation between the in-phase and quadrature signal components [27], the 

variance of the centered normalized signal amplitude, phase and frequency [28], the variance of the zero-crossing 

interval [32], [33], the variance of the magnitude of the signal wavelet transform (WT) after peak removal  

[36]-[38], the phase PDF [44]-[46] and its statistical moments [47]-[49], moments, cumulants, and cyclic 

cumulants of the signal itself [41]-[43], [53], [54], [58]-[66], etc. The entropy [67], [68], fuzzy logic [69], [70], a 

moment matrix technique [71], [72] and a constellation shape recovery method [73] were also used for AMC. 

Different methods were employed for decision making, such as PDF-based [41]-[53], the Hellinger distance [74], 

[75], the Euclidian distance [60]-[65] and unsupervised clustering techniques [76], [77]. Table III summarizes 

most of the FB-AMC work, emphasizing the selected features, type of modulations, channel and the unknown 

parameters. In its first part, algorithms which employ information extracted from the instantaneous amplitude, 
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phase and frequency of the received signal are presented. The second and third parts include classifiers based on 

the wavelet transform and signal statistics, respectively. Finally, a classifier based on spectral properties of FSK 

signals is mentioned. In what follows, these FB-AMC algorithms are presented1 with a hierarchical approach in 

mind, i.e., the modulation class of the incoming signal is first identified (e.g., ASK, PSK, QAM, FSK), and then 

the modulation order M  within the recognized class. A single signal in AWGN, with the parameters perfectly 

known, and a rectangular pulse shape ( )Tu t  were assumed, except otherwise mentioned. In addition to ASK, 

PSK, QAM and FSK, the identification of other modulations was examined in the literature, e.g., MSK [66],  

[78]-[80], OQPSK [79], continuous-phase FSK (CPFSK) [81].  

4.1.  FB Algorithms to Distinguish between Different Classes 

Instantaneous amplitude, phase and frequency-based algorithms 

The most intuitive way to identify the modulation class of the incoming signal is to use the information 

contained in its instantaneous amplitude, phase and frequency. To extract such information, different methods 

were applied in the literature [28]-[40]. The following differences between signal classes were employed for 

classification in [28]-[31]: •FSK signals are characterized by constant instantaneous amplitude, whereas ASK 

signals have amplitude fluctuations, and PSK signals have information in the phase. The maximum of the discrete 

Fourier transform (DFT) of centered9 normalized instantaneous amplitude was used as a feature to distinguish 

between FSK and ASK/ PSK classes, •ASK and BPSK signals have no information in the absolute phase, 

whereas M -PSK ( 2M > ) has. The variance of absolute centered9 normalized phase was used to distinguish 

between M -PSK ( 2M > ) and real-valued constellation, BPSK and ASK, •ASK signals have no phase 

information by their nature, whereas BPSK has. Variance of direct (not absolute) centered9 normalized phase was 

used to distinguish between BPSK and ASK classes. A binary decision tree structure was employed to 

discriminate between classes, and furthermore, within each class, as we will briefly mention in Sections 4.2 and 

4.3. At each node of the tree, the decision was made by comparing a statistic against a threshold8.  

In [32] and [33], the variance of the zero-crossing interval was used as a feature to distinguish FSK from PSK 

and the unmodulated waveform (UW). The zero-crossing interval is a measure of the instantaneous frequency, 

and it is a staircase function for FSK signals, whereas a constant for UW and PSK signals. The AMC is treated as 

a two hypothesis testing problem: 1H  for FSK and 2H  for UW and PSK. The hypotheses are formulated based on 

the Gaussian assumption for the estimated feature, i.e, 2( , )
i iH Hµ σN , 1,2i = , with the hypothesis-dependent mean 

iHµ
10 and variance 2

iHσ . An LRT is used for decision, which due to the Gaussian assumption is simplified to the 

comparison of the feature against a threshold η , derived from the LRT. For any two class problem, assuming 

equal priors, the average probability of error is then given by  

                                                 
9 The term “centered” specifies that the average is removed from the data set. 
10 The mean is actually the theoretical value of the feature under iH , whereas the variance is estimated under each 

hypothesis.  
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1 1 2 2
[erfc(( ) / ) erfc(( ) / )]/ 2e H H H HP = η−µ σ + µ −η σ , (31) 

where erfc(.)  is the complementary error function, defined as 1/ 2 2erfc( ) (2 ) exp( / 2)
x

x u du
∞−= π −∫ . 

The variance of the instantaneous frequency was also employed in [34], [35] to discriminate FSK from UW 

and PSK. In fact, the autoregressive spectrum modeling was used to extract the instantaneous frequency. The 

decision was made by comparing the feature against a threshold8.  

Wavelet transform-based algorithms 

The utility of the wavelet transform to localize the changes in the instantaneous frequency, amplitude and 

phase of the received signal was also studied for AMC. The distinct behavior of the Haar WT (HWT) magnitude 

for PSK, QAM and FSK signals was employed for class identification in [36]-[38]. For a PSK signal this is a 

constant, with peaks occurring at phase changes. On the other hand, because of the frequency and amplitude 

variations in FSK and QAM, respectively, the HWT magnitude is a staircase function with peaks at phase 

changes. These peaks do not provide useful information for non-continuous phase FSK signals. If only the phase 

is retained for a QAM signal, it behaves like a PSK signal and thus, the HWT magnitude is constant. On the other 

hand, as PSK and FSK signals are of constant amplitude, amplitude normalization has no effect on their HWT 

magnitude. After peak removal, the variance of the HWT magnitude with amplitude normalization was used to 

discriminate FSK from PSK and QAM. Furthermore, the variance of the HWT magnitude without amplitude 

normalization was employed to distinguish between QAM and PSK. The decisions were made by comparing the 

features against some thresholds, chosen based on the statistical analysis of the features, to minimize the 

probability of error for PSK signals [36]-[38].  

Neural networks (NNs) were also used for classification in [28]-[31], [35]. The Wigner-Ville distribution was 

used in [82] to distinguish between PSK and FSK signals.  

Signal statistics-based algorithms 

To discriminate among BPSK, ASK, M -PSK ( 2M > ) and QAM, the cumulant-based feature 
2

,4,0 3 ,2,1( ) / (0)r rc c0  was proposed in [41], where , , 1( )r n q nc −0 6 is the n th-order/ q -conjugate cumulant of the output 

of the matched filter 1{ }K
k kr = , at the zero delay vector. For decision, an LRT based on the PDF of the sample estimate 

of the feature was formulated to achieve minimum probability of error. The moment-based feature 
3

,6,3 5 ,2,1( ) / (0)r rm m0  was used in [42], where , , 1( )r n q nm −0  is the n th-order/ q -conjugate moment of the output of the 

matched filter 1{ }K
k kr = , at the zero delay vector. The goal was to distinguish between PSK and QAM. A joint power 

estimation and classification was performed in [42]. The decision was made based on the minimum absolute value 

of the difference between the sample estimate and prescribed values of the feature. Reference [43] combined several 

normalized moments and cumulants for training a NN, to identify FSK, PSK and QAM in multipath environments. 

4.2.  FB Algorithms for Linearly Modulated Signals 

Classifiers summarized in Table III, which can be applied to identify the modulation order M  of linear 

modulations, are discussed in the sequel.  
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Instantaneous amplitude and phase-based algorithms 

Information extracted from the instantaneous amplitude and phase of the received signal was exploited for 

linear modulation recognition, as follows. The variance of the absolute value of the normalized centered9 

instantaneous amplitude was used to distinguish between 2-ASK and 4-ASK, as for the former the amplitude 

changes between two levels, equal in magnitude and opposite in sign, so, it has no information in the absolute 

amplitude, whereas it has for the latter [28]-[31]. The statistic was compared against a threshold for decision 

making8 at a tree node, as part of the binary decision tree classifier mentioned in Section 4.1. The phase PDF and 

its statistical moments were investigated for PSK signal recognition in [44]-[50]. The phase PDF is multimodal, 

and the number of modes provides information for the PSK order identification. In the high-SNR region, M -PSK 

exibits M  distinct modes, while when the SNR decreases or M  increases, the peaks smear off and finally the 

PDF converges to a uniform PDF [48]. Specifically for PSK signal classification, an approximation using the 

Tickhonov PDF and a Fourier series expansion of the phase PDF were employed in [44]-[46], with a log-

likelihood ratio test for decision. By using these methods to compute the phase PDF, closed-form expressions for 

the phase statistical moments were derived, and the PDFs of the sample estimates of the moments were used for 

decision making [47]-[50]. The distribution of the sample estimate of the n th-order moment was assumed to be 

Gaussian, 2
, ,( , )

i in H n Hµ σN , where the mean , in Hµ  and variance 2
, in Hσ  depend on the hypothesis iH  and n . The 

decision criterion was further reduced to comparing the sample estimates of the phase moments with a threshold. 

The histogram of the phase difference between two adjacent symbols was used in [32], [33], [39] for PSK order 

identification, with the decision made based on the comparison of the histogram against particular patterns. The 

periodic components of the phase PDF were analyzed for PSK order identification in [51], using the DFT of the 

phase histogram. In other words, the empirical characteristic function of the phase was exploited for classification 

in this work. Furthermore, in [52] the algorithm was extended to QAM signal classification, by exploiting the 

additional information provided by the magnitude of the received signal. Other features extracted from the 

instantaneous amplitude and phase were investigated for PSK and QAM identification in [40], [78], [83], [84], 

such as the kurtosis of the amplitude. 

Wavelet transform-based algorithm 

Different PSK signals give rise to different sets of peak values in the magnitude of the Haar wavelet 

transform. The histogram of the peak magnitudes was employed to identify the order of a PSK signal in [37], with 

the decision made by comparing the histogram with the theoretical PDFs corresponding to different orders. 

Signal statistics-based algorithms 

Cumulant-based features were proposed in [41] to identify the order of ASK, PSK, and QAM modulations, as 

follows: the normalized cumulant of fourth-order/ two-conjugate, 2
,4,2 3 ,2,1( ) / (0)r rc c0 , for ASK, the magnitude of 

the normalized cumulant of fourth-order/zero-conjugate, 2
,4,0 3 ,2,1( ) / (0)r rc c0 , for PSK ( 2M > ), and the normalized 

cumulant of fourth-order/zero-conjugate, 2
,4,0 3 ,2,1( ) / (0)r rc c0 , for QAM. The theoretical values of the n th-order/ 

q -conjugate cumulant ( ) , ,is n q
c , 0,..., / 2q n= , n even, for several linear modulations are given in Table IV. These 
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values were computed using the moment to cumulant formula6, in which the nth-order moments were calculated as 

ensemble averages over the noise-free unit-variance constellations with equiprobable symbols. Note that due to the 

symmetry of the signal constellations considered, the nth-order moments for n odd are zero and hence, using the 

moment to cumulant formula, it is easy to show that the nth-order cumulants for n odd are also zero. On the other 

hand, for n  even we have ( ) ( ), , , ,i is n q s n n qc c −= . An LRT was formulated based on the PDFs of the sample estimates of 

features, which are Gaussian, i.e., 2( , )
i iH Hµ σN 10. With a simplifying approximation, i.e., equal variances under all 

the hypotheses, the decision was further reduced to comparing the sample estimate of the chosen feature ω̂  against a 

threshold, with ω  as any of the cumulant-based features previously mentioned. For an modN  hypothesis testing 

problem, with the hypotheses ordered such that 
1 2 mod

...
NH H Hµ < µ < < µ , the decision rule is to choose iH  if  

1 1
ˆ( ) / 2 ( ) / 2

i i i iH H H H− +
µ + µ < ω< µ + µ , (32) 

where 
0Hµ = −∞  and 

1modNH +
µ = ∞ .  

Note that the cumulant-based features 2
,4,2 3 ,2,1( ) / (0)r rc c0  and 2

,4,0 3 ,2,1( ) / (0)r rc c0  do not depend on a fixed carrier 

phase θ , as for / 2q n=  the exponential factors which depend on θ  cancel each other, whereas for / 2q n≠  the 

phase dependency is dropped by taking the magnitude. This work was extended in [53] to classify linear 

modulations in frequency-selective channels. The blind alphabet-matched equalization algorithm (AMA) [101], 

which was used for equalization, was also employed for classification. Some other cumulant-based features were 

added [30] to the set of features extracted from the instantaneous amplitude, phase and frequency [28]-[29], to 

include QAM signals in the set of candidate modulations to be recognized.  

Signal moments were applied to distinguish between QPSK and 16-QAM in [54]. Specifically, a linear 

combination of the fourth-order/two-conjugate moment and the squared second-order/one-conjugate moment 

were employed, with the coefficients and the delay vector optimized to maximize the probability of correct 

classification. A set of features was chosen for certain values of the delay vector, and classification was made 

based on the correlation between the sample estimate and theoretical feature vectors. The signal-moment feature 
3

,6,3 5 ,2,1( ) / (0)r rm m0  was employed to identify the order of QAM signals in [42], with the decision made based on 

the minimum absolute value of the difference between the sample estimate and prescribed values of the feature. 

Signal cyclostationarity was also exploited for linear modulation identification [55]-[65], via two approaches: 

spectral line generation when passing the signal through different nonlinearities [55]-[57], and periodic 

fluctuations with time of cumulants up to the n th-order [58]-[65]. We note that the n th-order cycle frequencies 

(CFs) are given by ( 2 ) /n q f m T− ∆ + , with m  an integer [60], [63]. The n th-order CF formula also holds for an 

IF signal, where f∆  is replaced by the IF frequency, IFf . With this property, the cyclostationarity of the received 

signal was exploited for AMC through a pattern of sine-wave frequencies in signal polynomial transformations. 

For example, the 2 IFf  and 4 IFf  sinusoids that appear in the second and fourth powers of the received signal, 

respectively, were used in [55] to distinguish between BPSK and QPSK. In [56], [57] the same property was 
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explored for a baseband signal. By increasing the order of the nonlinear signal transformation beyond fourth 

powers, this argument can be extended to identify modulations of order higher than QPSK. Note that the quasi-

optimal algorithm derived within the LB framework for PSK signal classification also exploits such a property, by 

using the information extracted in time domain [3]-[5]. However, the signal cyclostationarity is not exploited in 

this work, as the sampling is performed at the symbol rate 1T − . 

Cyclic-cumulant (CC) based features of different orders were investigated for modulation classification in 

[58]-[65]. A feature based on fourth-order/two-conjugate and second-order/one conjugate CCs at the CF equal to 

the symbol rate, similar to the one that used moments [54], was proposed in [58] and [59], to identify the order of 

QAM modulations. The same decision criterion as in [54] was employed. In [61] a generic algorithm was 

proposed to exploit signal cyclostationarity for classification. A feature vector was proposed, whose components 

were the magnitudes of the CCs up to the n th-order, raised to the power of 2 / n , when n  goes to infinity, and 

computed at all possible CFs and delay vectors. Apparently, such a classifier is hard to implement. Note that 

raising the n th-order CC magnitudes to the power of 2 / n  forces the features to take values within the same order 

of magnitude. Therefore, the classical Euclidian distance can be used for decision. 

For linear modulations, the n th order/ q -conjugate CC of ( )r t , where ( )r t  is given in (1), with 0kφ = , 

1,...,k K= , ( )g t  as a raised cosine pulse shape, and ( )n t  as the AWGN, and the set of CFs are given by [60], [63]  

1

1
( )

12 ( ) (*) (*)( ) 1 2 ( 2 ) 2
, , -1 , , 1

( ) ( ) ( ) ,
n

u uu n u
i

nj fi n j T j n q j t
r n q n us n q u

c a c T e e e g t g t e dt
−

=
∞ −π∆ − τ− − πβε − θ − π β

=−∞

∑γ = + τ∏∫τ; 0,..., ,q n=  (33) 

{ }( )
, , , -1:  ( 2 ) ,  ,   integer,  ( ) 0 i

n q r n q nn q f k T k cκ = γ γ = β + − ∆ β = γ ≠τ; , (34) 

where γ  is a CF, (*)u  represents a possible conjugation of the u th term, 1,...,u n= , such that the total number of 

conjugations is q , and ( )u−  is the minus sign associated with the possible conjugation (*)u , 1,..., 1u n= − . Since ( )n t  

is a stationary, zero-mean Gaussian process, its cumulants are time independent and non-zero only for the second order. 

Therefore, AWGN does not have any contribution to the higher-order ( 3n ≥ ) CCs of ( )r t . One can easily notice that 

by taking the magnitude of the n th order CC, a feature robust to the carrier phase and timing offset is obtained.  

In [60]-[61] and [62], the magnitudes of the CCs up to the fourth- and sixth-order, at a CF equals to 

( 2 ) 1/n q f Tγ = − ∆ +  and a delay vector for which a maximum is reached (i.e., -1 -1n n=τ 0  [63]), were investigated 

as features, respectively. Based on these features, a feature vector was proposed in [62], as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) †
,2,0 ,2,2 ,4,0 3 ,4,4 3 ,6,0 5 ,6,6 5[| ( 0) | ... | ( 0) || ( ) | ... | ( ) || ( ) | ... | ( ) |]i i i i i i i

r r r r r rc c c c c c= γ γ γ γ γ γF 0 0 0 0; ; ; ; ; ; , mod1,...,i N= .  (35) 

The CC-based features are estimated from Kρ  samples, taken over the observed K  symbol interval [102]. Note 

that the received signal is oversampled in order to exploit signal cyclostationarity. The sampling frequency is 

equal to /Tρ , with ρ  a positive integer, called the oversampling factor. The decision is made by comparing the 

sample estimate with prescribed feature vectors from a look-up table, 

mod

( )

1
ˆˆ arg min ( , )i

i N
i d

≤ ≤
= F F , (36) 
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where î  represents the decision on the modulation type of the intercepted signal, ( )iF  is the theoretical feature-

vector which corresponds to the i th modulation in the look-up table, F̂  is the estimated feature vector, and (.,.)d  

is the Euclidean distance. Joint detection and classification was investigated in [62], with single and multiple 

incoming signals present at the receiver, respectively. Multiple signals, which overlap in time and frequency but 

have distinct symbol rates and hence, different cycle frequencies, can be distinguished using CCs (selectivity 

property of CCs) [103]. Moreover, it is claimed that all the parameters necessary for identification, i.e., symbol 

period, carrier frequency offset, excess bandwidth and signal amplitude are estimated. However, no details are 

given about the estimation methods. Eight-order CC-based features, i.e., the magnitude of the eighth-order 

( 0,...,8q = ) CCs at the CF 1/ ( 2 )T n q fγ = + − ∆  and zero delay vector were investigated in [63] for classifying 

real- and complex-valued constellations, respectively. The n th-order ( 4,6,8n = ) CC-based features were shown to 

be robust to a carrier frequency offset and phase jitter for / 2q n=  and used for QAM classification in [64]. Features 

similar to those proposed in [63] were investigated in [65] for classifying linear modulations in block fading 

channels. In this case, the features were extracted from the signal at the output of a selection combiner. Such a CC-

based multi-antenna classifier takes advantage of the robustness of the CC-based features to phase, timing errors and 

stationary noise, as well as of the ability of the selection combiner to mitigate the impact of fading via spatial 

diversity. Furthermore, the classifier is robust to the variations of the Ricean factor and a possible correlation among 

the antennas. By increasing the number of antenna elements, a smaller number of symbols is needed to attain a 

specific performance. In [63]-[65] the minimum Euclidian distance between the sample estimate and prescribed 

feature-vectors was also used for decision making. A raised-cosine pulse shape was considered in [60]-[65]. 

Miscellaneous classifiers 

Finally, the Radon transform was investigated for QAM classification in [85]-[87]. 

4.3.  FB Algorithms for FSK Signals 

Similar to using the information contained in the instantaneous phase to identify the order of the PSK 

modulation, the information extracted from the instantaneous frequency is exploited to recognize the order of the 

FSK modulation. In [28]-[31], the variance of the absolute value of the normalized centered9 instantaneous 

frequency was used to distinguish between 2-FSK and 4-FSK. The feature was compared against a threshold8 for 

decision, at a tree node, as part of the binary decision tree classifier mentioned in Section 4.1. In [34], the 

instantaneous frequency derivative was used to distinguish between 2-FSK and 4-FSK, under the assumption of 

the same bandwidth of the signals. The height of the peaks which occur in the differentiated instantaneous 

frequency is proportional to the frequency deviation, and thus, for 4-FSK this is expected to be two times lower 

than for 2-FSK. If the peak average falls below a certain threshold, 4-FSK is chosen, otherwise 2-FSK. As for 

PSK order identification, the number of modes in the instantaneous frequency histogram was employed to 

determine the order of the FSK modulation in [32] and [33]. The number of modes in the histogram of the Haar 

wavelet transform magnitude was investigated for the FSK order identification in [36], [37]. If / 2 1M +  to M  
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modes appear in the histogram, the input is identified as M -FSK. Finally, spectral properties of FSK signals were 

explored for classification in [88]. 

5. NUMERICAL RESULTS 
After scanning the literature to answer the question “which AMC technique is the best in terms of 

performance under realistic conditions?,” it turned out that performance comparison of published classifiers is not 

straightforward. There are a number of reasons for this. First, performance of different classifiers cannot be 

compared, unless the candidate modulations are the same. Second, most of the classifiers are designed to handle 

specific unknown parameters. So, one cannot really compare their performance, unless the uncertainties the classifiers 

take into account are the same. Nevertheless, to obtain some insight, we make some comparisons in Sections 5.1, 5.2, 

and 5.3. We rely on some numerical results reported in the literature. However, we have also simulated some of the 

algorithms under the same conditions, to make the comparison possible. 

5.1. Comparative Study of Classifiers for PSK signals 

Performance achieved with several algorithms for classifying PSK signals in AWGN is presented in Table V. 

We consider here the ideal scenario, i.e., no unknown parameters, as well as the scenarios with unknown carrier 

phase, and unknown carrier phase/ timing offset, respectively. We have examined the ALRT, quasi-ALRT, 

HLRT, and cumulant-based algorithms. For illustration, BPSK and QPSK are considered as candidate 

modulations. Of course, when higher order modulations are included in the modulation pool, higher SNRs and/or 

a larger number of symbols are needed to achieve the same performance [2], [5], [19]. We have simulated these 

modulations to draw some basic yet insightful conclusions, which shed some light on major techniques.  

Subsequently, the probability of correct classification ccP  is used to evaluate the classification performance, 

with ( | )i i
cP  estimated based on 1000 Monte Carlo trials. Unless otherwise mentioned, the pulse shape is 

rectangular, the received SNR per symbol is defined as 0ST Nγ = , the symbol period and signal power are set to 

1T =  and 1S = , respectively, and the number of symbols is 100K = . 

Under ideal conditions, the ALRT-based classifier in (10) and (8), with 1Aη = , provides a ccP  of 0.975 at the 

3− dB SNR (V-1)11. A 3dB SNR improvement is achieved with an extra antenna, i.e., 2L = , and maximal ratio 

combining at the receiver, presented in (12)3 and (8), with 1Aη =  (V-2). With a carrier phase θ  uniformly 

distributed over [ , )−π π , the performance of the ALRT-based classifier designed for no unknown parameters, 

shown in (10) and (8) with 1Aη = , drops to 0.63 at -3dB (V-3). With the quasi-ALRT classifier in (20) and (22), 

with 2M = , a ccP  of 0.96 at 2− dB SNR is achieved (V-4), which is close to that under ideal condition (V-1),  

(V-4). As noticed from (V-5), a slightly better performance is achieved with the HLRT designed for an unknown 

carrier phase θ , given in (27) and (8), with the threshold Hη  set to 1. Using the cumulant-based classifier in (32) 

                                                 
11 When necessary, we refer to the i th row in Table V, Table VI and Table VII as (V-i), (VI-i), and (VII-i), respectively. 
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with 2
,4,0 3 ,2,1ˆ ˆ ˆ( ) / (0)r rc cω = 0  (for the cumulant estimator formula one can see [41], eqs. (5) and (6)), mod 2N = , 

1
1Hµ =  and 

2
2Hµ = , 4dB SNR is required to attain a ccP  of 0.96 (V-6). However, a timing error degrades the 

performance of the quasi-ALRT classifiers dramatically, i.e., a 13dB SNR loss (V-4), (V-7), whereas only 2dB 

loss is observed for the cumulant-based classifier (V-6), (V-8). 

As expected, the ALRT-based classifier designed for an ideal scenario fails under an unknown carrier phase 

offset. Investigated solutions are the HLRT, quasi-ALRT and cumulant-based classifiers. A slightly better 

performance is achieved with HLRT, when compared with the quasi-ALRT. Also, the quasi-ALRT provides a 

better performance than the cumulant-based classifier. However, a synchronization error dramatically degrades 

the performance of the former, whereas it has a smaller effect on the latter. Though, the quasi-ALRT can be 

modified as in (24) to further account for the unknown timing. Performance enhancement can be achieved by 

using multiple receive antennas, even with 2L = . More examples of modulation recognition with multiple 

antennas can be found in [21]-[22], [65]. 

5.2. Comparative Study of Classifiers for QAM Signals 

The performance of several algorithms is given in Table VI, when discriminating between 16-QAM and V.29 

signals in AWGN. We consider here the ideal scenario, as well as the case with the unknown carrier phase θ . We 

have investigated the ALRT, quasi-ALRT, HLRT, quasi-HLRT, cumulant- and cyclic cumulant- based 

algorithms. Under ideal conditions, ALRT in (10) and (8), with 1Aη = , recognizes 16-QAM and V.29 with a ccP  

of 0.99 at 7dB SNR (VI-1). With an unknown carrier phase θ , uniformly distributed over [ , )−π π , the ALRT 

classifier designed for ideal conditions fails (VI-2), as expected. For a detailed sensitivity analysis of the ALRT-

based classifier to model mismatches one can see [93]. A 2dB SNR degradation occurs when using the cumulant-

based algorithm in (32), with 2
,4,0 3 ,2,1ˆ ˆ ˆ( ) / (0)r rc cω = 0 , mod 2N = , 

1
0.68Hµ = − , and 

2
0.5185Hµ = , under ideal 

conditions (VI-3). This also fails when the unknown carrier phase θ  appears (VI-4). On the other hand, even the 

quasi-ALRT which is designed for an unknown carrier phase scenario (see (23), with 0.0135A = , 0.0246B = − , 

and the threshold ,QA Eη 12), provides a ccP  of 0.88 at 30dB SNR (VI-5). An acceptable performance is attained with 

the HLRT classifier in (27) and (8), with ,H Eη 12, designed for unknown carrier phase: a ccP  of 0.99 at 9dB SNR  

(VI-6). By using the low complexity quasi-HLRT classifier, with the LF given in (30)13 , the carrier phase as in (29), 

and threshold set to 1, 19dB SNR is requested to attain the same performance (VI-7). By increasing the number of 

symbol to 6000, 11dB SNR is needed to obtain a ccP  of 0.91 (VI-7). On the other hand, with 6000 symbols, the CC-

based classifier in (35) and (36) provides a ccP  of 0.99 at only 9dB (VI-8). Moreover, this classifier is robust to the 

timing offset, is applicable to a larger pool of modulations, including QAM, PSK and ASK, and benefit from the 

                                                 
12 The values of these thresholds were not specified in the papers. 
13 The LF in (30) is simplified for the AWGN channel, with the carrier phase as the only unknown parameter, and ˆ iα  

replaced by S , which is assumed perfectly known. 
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selectivity property of CCs. Note that with the CC-based classifier, the pulse shape is raised cosine, with a roll-off 

factor of 0.35 and the SNR is defined at the output of the root raised cosine receive filter. With multiple receive 

antennas one can enhance the performance, as shown for quasi-HLRT [21]-[22] and CC-based classifiers [65]. 

We can conclude that the ALRT- and cumulant-based classifiers, designed for an ideal scenario, fail when the 

unknown carrier phase offset is present. Investigated solutions are the quasi-ALRT, HLRT, quasi-HLRT, and  

CC-based classifiers. With the quasi-ALRT classifier, QAM signals are not identified accurately enough. As 

expected, the HLRT classifier provides a better classification performance compared with the quasi-HLRT. By 

increasing the number of processed symbols, the performance of the quasi-HLRT classifier improves. However, 

with enough symbols, the CC-based classifier provides superior performance when compared to the quasi-HLRT, 

taking also advantage of the CC properties.  

5.3. Comparative Study of Classifiers for FSK signals 

Here we mainly take the numerical results from [9]. Performance of the optimal ALRT and quasi-ALRT 

algorithms is given in Table VII, to distinguish between 32-FSK and 64-FSK in AWGN, under the assumption of 

per-symbol phase incoherence and identical bandwidths of the incoming signals. The symbol period of 64-FSK is 

two times larger than that of 32-FSK, under the assumption of the equal bandwidths. With the same observation 

interval, 10K =  and 5  symbols are considered for 32-FSK and 64-FSK, respectively, to have a fair comparison. 

The optimal ALRT in (14) and (8), with 1Aη = , provides a ccP  of 0.975 at 6dB SNR (V-1). The quasi-ALRT 

classifier based on the first-order correlation, i.e., (25) with the first three terms and the threshold ,HOC Eη 12 for 

decision making, provides a ccP  of 0.74 at the same SNR (V-2). The quasi-ALRT classifier that employs the first- 

and second-order correlations, i.e., the first five terms in (25), provides a ccP  of 0.90 (V-3). The ALRT-based 

classifier essentially breaks down for a frequency drift of half of the frequency deviation, i.e., / 2df f∆ =  (V-4), 

whereas the quasi-ALRT classifier is insensitive to such a model mismatch [9].  

The performance of the quasi-ALRT classifier approaches to the optimal ALRT, by increasing the correlation 

order. The quasi-ALRT classifier has the advantage of robustness to the carrier frequency offset. 

6. CONCLUSION 
Based on a comprehensive literature survey, this paper has summarized the two main approaches to automatic 

modulation classification (AMC), i.e, the likelihood based (LB) and the feature based (FB) methods, and has 

lightened their advantages and drawbacks. Although the LB approach provides optimal performance, it is difficult 

to obtain an exact analytical solution for the decision function, when the number of unknown parameters 

increases. When a closed-form solution exists, the computational complexity can make the classifier impractical. 

By using a low SNR approximation of the likelihood function (LF), the so-called quasi-ALRT algorithms were 

proposed in the literature. These algorithms provide near optimal performance for identifying PSK and FSK 

signals. Nevertheless, they are not accurate for recognizing QAM signals. Using ML estimates of the unknown 

quantities, GLRT and HLRT techniques were investigated as two alternatives. Although GLRT has some 
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advantages, it fails in identifying nested constellations. On the other hand, HLRT does not have this problem. 

However, with several unknown parameters, finding the ML estimates can be very time consuming. The 

complexity is reduced in quasi-HLRT classifiers, which rely on low-complexity yet accurate estimators. 

Obviously, there is a trade-off between the complexity and performance, which depends on the estimation 

method. In the FB approach, some signal features are employed to identify the modulation format. Although 

suboptimal, FB algorithms can be simpler to implement. Many AMC algorithms which use the instantaneous 

amplitude, phase, frequency, signal wavelet transform, and signal statistics such as moments, cumulants, and 

cyclic cumulants, were compactly presented, as well as other miscellaneous techniques. In a hierarchical 

classification system, some of these features can be used to identify the modulation class and then, within each 

class, the modulation order can be determined. 

Accurate preprocessing is required for the effective implementation of most of the known AMC algorithms. 

Devising low complexity blind algorithms for joint parameter estimation is a topic of interest in AMC. In 

addition, development of classification methods which rely less on preprocessing is another topic for further 

investigation. New classification problems have raised as a result of emerging wireless technologies, such as, 

single carrier versus multicarrier modulation recognition, classification of signals received from single and 

multiple transmit antennas, identification of space-time modulation format, etc. These issues mean that AMC in 

real-world environments continues to be a dynamic research field. 

APPENDIX A: DERIVATION OF (10), (13), (14) AND (15) 

First we assume that the parameters are known, except for the symbols, i.e., ( )
1[{ } ]i K

i i k ks == =v u . Then, by 

inserting (5) into (4) and averaging w.r.t. the unknown symbols, the following LF can be written  
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which upon using the signal model in (9)2 changes to 
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and after some manipulations, becomes  
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−
= − −∫ . 

In AWGN, with ( ) †[  { }]i
i ks= θv  and uniform distribution for the carrier phase θ  over [ , )−π π , the same for all 

K  symbols, the LF can be obtained by averaging (37), simplified for the AWGN channel2, over the phase 
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where ( )i
kR

θ  and ( )
1

iK
k kR=∑θ  are the phases of ( )i

kR  and ( )
1

K i
kk

R
=∑ , respectively, and 0 ( ) E {exp[ cos( )]}I u uθ= θ + ψ , 

where ψ  is an arbitrary phase. 

Similarly, in AWGN and under the assumption of per-symbol phase-incoherence due to phase jitter, i.e., 
( ) †

1 1[{ }  { }  ]K i K
i k k k ks= == φv , with 1{ }K

k k=φ  as i.i.d. r.v.’s, one can easily obtain the expression of the LF, 
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With ( ) †
1[   { } ]i K

i k ks == α ϕv , α  a Rayleigh distributed r.v. and ϕ  the uniform phase of the fading channel, the 

LF can be obtained by averaging (38), written for the block fading channel2, w.r.t. α   
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By using  
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APPENDIX B: DERIVATION OF (20) FOR DISCRIMINATING BETWEEN BPSK AND QPSK 

The n th order moments of symmetric constellations are zero for n  odd. Using the values of the moments 

( ) , ,is n q
m  for 2,4,6,8n =  and 0,..., / 2q n=    , for BPSK and QPSK, given in the first and second columns of  

Table II, (19) can be written, respectively as  

(( ) 1 2 1 2
0 ,2,0 0 ,2,1ˆ ˆ[ ( )]  exp ( ) | | 2( ) | |BPSK

A r rr t K S N m S N m− −Λ ≈ +  
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1 1 4 1 1 4 1 1 4
0 ,4,0 0 ,4,1 0 ,4,2ˆ ˆ ˆ12 ( ) | | 3 ( ) | | 4 ( ) | |r r rS N m S N m S N m− − − − − −+ + +  

)1 1 6 1 1 6 1 1 6 1 1 6
0 ,6,0 0 ,6,1 0 ,6,2 0 ,6,3ˆ ˆ ˆ ˆ360 ( ) | | 60 ( ) | | 24 ( ) | | 36 ( ) | | ... ,r r r rS N m S N m S N m S N m− − − − − − − − + + + + +   (43) 

and 

(( ) 1 2 1 1 4 1 1 4
0 ,2,1 0 ,4,0 0 ,4,2ˆ ˆ ˆ[ ( )]  exp 2( ) | | 12 ( ) | | 4 ( ) | |QPSK

A r r rr t K S N m S N m S N m− − − − −Λ ≈ + +  

)1 1 6 1 1 6 1 1 6
0 ,6,1 0 ,6,2 0 ,6,3ˆ ˆ ˆ60 ( ) | | 24 ( ) | | 36 ( ) | | ... .r r rS N m S N m S N m− − − − − − + + + +   (44) 

The difference between the log-LFs is therefore given by 

( )( ) ( ) 1 2 1 1 4 1 1 6
0 ,2,0 0 ,4,1 0 ,6,0ˆ ˆ ˆln [ ( )] ln [ ( )] ( ) | | 3 ( ) | | 360 ( ) | | ...BPSK QPSK

A A r r rr t r t K S N m S N m S N m− − − − −Λ − Λ ≈ + + + . (45) 

As one can easily notice from (45), the lowest order statistic which can be used to discriminate between BPSK 

and QPSK is 2
,2,0 1ˆ| | K

r kkK m r== ∑ , i.e., 2,PSKν . 
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Table I A SUMMARY OF LIKELIHOOD-BASED CLASSIFIERS. 

Author(s) Classifier(s) Modulations14 Unknown parameter(s) Channel 

Sills [1] ALRT BPSK, QPSK, 16QAM, V29, 

32QAM, 64QAM  

Carrier phase θ  AWGN 

Wei and Mendel [2] ALRT 16QAM, V29 - AWGN 

Kim and Polydoros  

[3], [4] 

Quasi-ALRT BPSK, QPSK Carrier phase θ  AWGN 

Huang and Polydoros 

[5] 

Quasi-ALRT UW, BPSK, QPSK, 8PSK, 

16PSK 

Carrier phase θ  and  

timing offset ε  

AWGN 

Sapiano and Martin [6] ALRT UW, BPSK, QPSK, 8PSK - AWGN 

Long et al. [7] Quasi-ALRT 16PSK, 16QAM, V29 Carrier phase θ  AWGN 

Hong and Ho [8] ALRT BPSK, QPSK Signal level α  AWGN 

Beidas and Weber [9] ALRT 

Quasi-ALRT 

32FSK, 64FSK Phase jitter 1{ }K
k k=φ  AWGN 

Beidas and Weber  

[10], [12] 

ALRT 

Quasi-ALRT 

32FSK, 64FSK Phase jitter 1{ }K
k k=φ  

and timing offset ε  

AWGN 

Panagiotu et al. [14] GLRT 

HLRT 

16PSK, 16QAM, V29 Carrier phase θ  AWGN 

Chugg et al. [15] HLRT BPSK, QPSK, OQPSK Carrier phase θ , 

signal power S  and 

PSD 0N  

AWGN 

Hong and Ho [16] HLRT BPSK, QPSK Angle of arrival ϑ  AWGN 

Dobre et al. [19] HLRT BPSK, QPSK, 8PSK, 16PSK, 

16QAM, 64QAM 

Channel amplitude α  

and phase ϕ  

Flat  

fading 

Dobre and Hameed [20] HLRT 

Quasi-HLRT 

BPSK, QPSK, 8PSK, 16PSK Channel amplitude α  

and phase ϕ , and 

noise PSD 0N  

Flat  

fading 

Abdi et al. [21] ALRT 

Quasi-HLRT 

16QAM, 32QAM, 64QAM Channel amplitude α  

and phase ϕ  

Flat  

fading 

Li et al. [22] Quasi-HLRT 4QAM, 16QAM, 64QAM Frequency offset f∆  AWGN  

 
 
 
 
 
 
 
                                                 
14 These modulations have been used in the simulations in the original papers. 
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Table II THEORETICAL MOMENTS FOR SEVERAL UNIT-VARIANCE SIGNAL CONSTELLATIONS WITH 

EQUIPROBABLE SYMBOLS. 
 BPSK QPSK 8-PSK 16-PSK V.29 16-QAM 64-QAM 

( ) ,2,0is
m  1 0 0 0 0 0 0 

( ) ,2,1is
m  1 1 1 1 1 1 1 

( ) ,4,0is
m  1 1 0 0 0.5158 -0.68 -0.619 

( ) ,4,1is
m  1 0 0 0 0 0 0 

( ) ,4,2is
m  1 1 1 1 -0.5816 1.32 1.38 

( ) ,6,0is
m  1 0 0 0 0 0 0 

( ) ,6,1is
m  1 1 0 0 -1.5243 -1.32 -1.298 

( ) ,6,2is
m  1 1 0 0 0 0 0 

( ) ,6,3is
m  1 1 1 1 1.4897 1.96 2.22 

( ) ,8,0is
m  1 1 1 0 -5.6304 2.2 1.91 

( ) ,8,1is
m  1 0 0 0 0 0 0 

( ) ,8,2is
m  1 1 0 0 9.4585 -2.48 -2.75 

( ) ,8,3is
m  1 0 0 0 0 0 0 

( ) ,8,4is
m  1 1 1 1 -8.5370 3.12 3.96 
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Table III A SUMMARY OF FEATURE BASED CLASSIFIERS. 

Author(s) Features Modulations14 Unknown parameters Channel(s) 

Azzouz and 

Nandi [28]  

Maximum power spectral 

density of normalized centered 

amplitude, standard deviations 

of normalized centered 

amplitude, phase and frequency 

2ASK, 4ASK, BPSK, 

QPSK, 2FSK, 4FSK 

 

 

- 

AWGN 

Soliman and 

Hsue [32], [33] 

Variance of the zero-crossing 

interval sequence, phase 

difference and zero-crossing 

interval histograms 

UW, BPSK, QPSK, 

8PSK, BFSK, 4FSK, 

8FSK 

 

- 

AWGN 

Soliman and 

Hsue [44]-[46] 

PDF of phase UW, BPSK, QPSK, 

8PSK 

 

- 

AWGN 

Soliman and 

Hsue [47]-[49] 

Statistical moments of phase UW, BPSK,  

QPSK, 8PSK 

 

- 

AWGN 

Sapiano et al. 

[51] 

DFT of phase PDF UW, BPSK,  

QPSK, 8PSK 

 

- 

AWGN 

Ho et al.  

[36], [37] 

Variance of HWT magnitude, 

HWT magnitude and peak 

magnitude histograms 

BPSK, QPSK, 8PSK, 

2FSK, 4FSK, 8FSK, 

CP2FSK, CP4FSK, 

CP8FSK, MSK 

 

- 

AWGN 

Hong and Ho 

[38] 

Variance of HWT magnitude 

and normalized HWT 

magnitude 

QPSK, 4FSK, 16QAM  

- 

AWGN 

Swami and 

Sadler [41] 

Normalized fourth-order 

cumulants of the received 

signal 

BPSK, 4ASK, 16QAM, 

8PSK, V32, V29, V29c 

Carrier phase θ , 

frequency f∆  and timing 

offsets ε  

AWGN, impulsive 

noise, cochannel 

interference 

Swami et al. 

[53] 

Normalized fourth-order 

cumulants of the received 

signal and AMA cost function 

BPSK, 4ASK, QPSK, 

16QAM, V29, V32, 

64QAM 

 

- 

 

Frequency 

selective channel 

Martret and 

Boiteau [54] 

Fourth- and second-order 

moments of the received signal 

QPSK, 16QAM  

- 

AWGN 

Marchand et 

al. [58], [59] 

Fourth- and second-order 

cyclic cumulants of the 

received signal 

QPSK, 16QAM, 

64QAM 

 

- 

AWGN 
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Spooner et al. 

[60]-[62] 

Sixth-, fourth-, and second-

order cyclic cumulants of the 

received signal 

MSK, QPSK, BPSK, 

8PSK, 8QAM, QPSK, 

16QAM, 64QAM, V29 

Frequency offset f∆ , 

excess bandwidth EBW, 

symbol period T , signal 

amplitude a  

AWGN, 

cochannel 

interference 

Dobre et al. 

[63] 

Eighth-order cyclic cumulants 

of the received signal 

BPSK, QPSK, 8PSK, 

4ASK, 8ASK, 16QAM, 

64QAM, 256QAM 

 

- 

AWGN 

Dobre et al. 

[64] 

Eighth-, sixth-, and fourth- 

order cyclic cumulants of the 

received signal 

4QAM, 16QAM Carrier phase θ , phase 

jitter 1{ }K
k k=φ , frequency 

offset f∆  

AWGN, impulsive 

noise 

Dobre et al. 

[65] 

Eighth-order cyclic cumulants 

of the  signal at the output of a 

selection combiner 

4ASK, 8ASK, 

BPSK,QPSK, 16QAM, 

32QAM, 64QAM 

- Rayleigh and 

Ricean fading 

channels 

Yu et al. [88] DFT of the received signal 2FSK, 4FSK, 8FSK, 

16FSK, 32FSK 

 

- 

AWGN 
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Table IV THEORETICAL CUMULANTS FOR SEVERAL UNIT-VARIANCE SIGNAL CONSTELLATIONS WITH 

EQUIPROBABLE SYMBOLS. 
 BPSK QPSK 8-PSK 16-PSK V.29 16-QAM 64-QAM 

( ) ,2,0is
c  1 0 0 0 0 0 0 

( ) ,2,1is
c  1 1 1 1 1 1 1 

( ) ,4,0is
c  -2 1 0 0 0.5158 -0.68 -0.619 

( ) ,4,1is
c  -2 0 0 0 0 0 0 

( ) ,4,2is
c  -2 -1 -1 -1 1.4148 -0.68 -0.619 

( ) ,6,0is
c  16 0 0 0 0 0 0 

( ) ,6,1is
c  16 -4 0 0 1.0683 2.08 1.7972 

( ) ,6,2is
c  16 0 0 0 0 0 0 

( ) ,6,3is
c  16 4 4 4 2.2551 2.08 1.7972 

( ) ,8,0is
c  -272 -34 1 0 3.7797 -13.9808 -11.5022 

( ) ,8,1is
c  -272 0 0 0 0 0 0 

( ) ,8,2is
c  -272 34 0 0 2.1993 -13.9808 -11.5022 

( ) ,8,3is
c  -272 0 0 0 0 0 0 

( ) ,8,4is
c  -272 -34 -33 -33 3.7797 -13.9808 -11.5022 
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Table V PERFORMANCE AND DETAILS OF SEVERAL CLASSIFIERS FOR BPSK VERSUS QPSK. 

 Classifier Unknown 

parameter 

Model 

mismatch15 

SNR 

(dB) 

Pcc K 

1 ALRT, 1L =  

(10) and (8), with 1Aη =  

- - -3 0.975 100 

216 ALRT, 2L =  

(12)3 and (8), with 1Aη =  

- - -6 0.975 100 

316 ALRT, 1L =  

(10) and (8), with 1Aη =  

- Carrier phase θ , 

U[ , )−π π  

-3 0.63 100 

4 Quasi-ALRT,  

(20) and (22), with 2M =  

Carrier 

phase θ  

- -2 0.96 100 

516 HLRT,  

(27)17 and (8), with 1Hη =  

Carrier 

phase θ  

- -2 0.968 100 

6 Cumulant-based, (32) with 
2

,4,0 3 ,2,1ˆ ˆ ˆ( ) / (0)r rc cω = 0 , mod 2N = , 

1
1Hµ = , 

2
2Hµ =  

Carrier 

phase θ  

- 4 0.96 100 

7 Quasi-ALRT,  

(20) and (22), with 2M =  

Carrier 

phase θ  

Timing offset 

0.15ε =  

11 0.96 100 

8 Cumulant-based 

(see the sixth row in this table) 

Carrier 

phase θ  

Timing offset  

0.15ε =  

6 0.96 100 

 

 

 

 

 

 

 

                                                 
15 These are not included when designing the classifier, and their impacts on the performance were studied to evaluate the 

classifier robustness. 
16 These numerical results are not given in the papers where the classifiers are proposed, and we have simulated them to 

perform a comparison with other methods. 
17 The maximization procedure w.r.t. the carrier phase θ  was carried out by discrete search with 1 degree resolution. Due to 

the symmetry of the investigated constellations, the maximization procedure can be performed over [0, / 2]π , instead of 

[0,2 ]π  [14], [19], [21]. 
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Table VI PERFORMANCE AND DETAILS OF SEVERAL CLASSIFIERS FOR 16QAM VERSUS V.29. 

 Classifier Unknown parameter Model 

mismatch15 

SNR 

(dB) 

Pcc K 

116 ALRT  

(10) and (8), with 1Aη =  

- - 7 0.99 100 

216 ALRT  

(10) and (8), with 1Aη =  

- Carrier phase 

θ , U[ , )−π π  

7 0.50 100 

3 Cumulant-based, (32) with 
2

,4,0 3 ,2,1ˆ ˆ ˆ( ) / (0)r rc cω = 0 , mod 2N = , 

0
0.68Hµ = − , 

1
0.5185Hµ =  

- - 9 0.99 100 

416 Cumulant-based16,  

(see the third row of this table)  

- Carrier phase 

θ , U[ , )−π π  

9 0.50 100 

5 Quasi-ALRT,  

(23), with 0.0135A =  and 

0.0246B = − , and ,QA Eη 12  

Carrier phase θ  - 30 0.88 100 

6 HLRT 

(27)17 and (8), with ,H Eη 12  

Carrier phase θ  - 9 0.99 100 

19 0.99 100 716 Quasi-HLRT 

(30)13, (29) and threshold set to one 

Carrier phase θ  - 

11 0.91 6000 

8 CC-based 

(35) and (36) 

Carrier phase θ  and 

timing error ε  

- 9 0.99 6000 
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Table VII PERFORMANCE AND DETAILS OF SEVERAL CLASSIFIERS FOR 32FSK VERSUS 64FSK. 
 Algorithm Unknown 

parameter 

Model 

mismatch15 

SNR 

(dB) 

Pcc K 

(32FSK) 

1 ALRT,  

(14) with ( )| | 1i
ks = , and (8) with 1Aη =  

Phase jitter 

1{ }K
k k=φ  

- 6 0.975 10 

2 Quasi-ALRT (first-order correlation), 

(25) with the first three terms, 

calculated based on K ( / 2K ) 

symbols for 32FSK (64FSK) and 

,HOC Eη 12 as the threshold 

Phase jitter 

1{ }K
k k=φ  

- 6 0.74 10 

3 Quasi-ALRT (second-order 

correlation), (25) with the first five 

terms, expressed for K ( / 2K ) 

symbols for 32FSK (64FSK) and 

,HOC Eη 12 as the threshold 

Phase jitter 

1{ }K
k k=φ  

- 6 0.90 10 

4 ALRT 

(see the first row of this table) 

Phase jitter 

1{ }K
k k=φ  

Frequency offset 

( / 2df f∆ = ) 

6 0.57 10 
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Fig. 1. System block diagram.  
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Fig. 2. Binary decision tree for PSK signals using the quasi-ALRT classifier. 
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