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Abstract — A signal in shallow water environments typically 

undergoes distortion caused by time spreading, which refers to 

receiving multiple copies of the signal at different times due to 

signal propagation through multiple paths. This distortion makes 

signal detection a challenging task. In this paper, we present a 

systematic framework for signal detection in time-spreading 

distortion underwater channels using multiple sensors. Using 

Monte Carlo simulations as well as experimental data collected at 

hydrophones, the performance of the detector is evaluated. Our 

results quantify the effect of the number of correlators per sensor 

on the detection performance, as well as the improvement 

obtained by using multiple sensors in time-spreading distortion 

underwater channels. 

Keywords—Time dispersion, Multipath channels, Underwater 

channels, Signal detection, Multiple sensors. 

I. INTRODUCTION  

The received signals in multipath underwater channels can 

be severely impacted by time-spreading distortion (TSD), 

especially in shallow water. The likelihood ratio test (LRT) 

detector for TSD channels using a single sensor is studied in [1- 

3] and is called the Replica Correlation Integration (RCI) 

detector. This detector can be used to detect signals collected by 

underwater scalar and vector sensors [4]. It can also be 

integrated into the MIMO sonar for multipath channels [5]. In 

this paper, we present a systematic and unified framework for 

signal modeling and detection in TSD underwater channels 

using multiple sensors (extension to joint detection and 

localization [6] is also possible). 

In this work, single-sensor and then multi-sensor detector 

formulations are presented, followed by performance 

assessment using simulations, as well as experimental data 

collected using hydrophones. 

II. LIKELIHOOD RATIO DETECTOR IN TSD CHANNELS 

In this section, first we introduce proper notation and 

equations for signal, channel and noise, in order to derive the 

single-sensor LRT detector in TSD channels. Then we expand 

those to derive the multi-sensor LRT detector, which is suitable 

for TSD channels. 

A. Single-Sensor Detector 

We define two binary hypotheses 0H  and 1H , where 0H  is 

the noise-only hypothesis; 1H represents the hypothesis in 

which the transmitted signal [ ]s i  propagates through the TSD 

channel [ ]h l  and is then corrupted by additive noise [ ]v i : 

         0 : ,H r = v                                         (1)  

            1 :H r = x + v .                                  (2)  

In the above equations, r  is a complex vector with N 

elements: 

 [ [0] [1] [ 1]]
T

r  r  r N= −r L ,    (3) 

where T  is the transpose, v  is the 1N ×  complex noise vector 

 [ [0] [1] [ 1]]
T

v  v  v N= −v L ,  (4) 

and x  is an 1N ×  complex vector that represents the known 

deterministic signal s[i] convolved with the TSD random 

channel function [ ]h l  with duration of hT  and hM  equally-

spaced samples, where h h sM T f=  and sf  is the sampling 

frequency. The convolution embedded in x  can be written as 
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 1/2
( / )ha M=x Sh ,   (5) 

where a  represents echo attenuation [2] and h  is the following 

1hM ×  complex random TSD channel vector 

 [ [0] [1] [ 1]]
T

hh  h  h M= −h L ,   (6) 

with the following covariance matrix 

 †
[ ]E=hC hh ,   (7) 

in which †  represents the transpose conjugate and E is the 

mathematical expectation. Additionally, S in (5) is the hN M×  

transmitted signal matrix given by [7] 

 

[0] 0 0

[1] [0] 0

[ 1] [ 2] [ ]h

s

s s

s N s N s N M

 
 
 =
 
 

− − − 

S

L

L

M M O M

L

,    (8) 

where the thl  column can be represented by the following vector 

 [ [0 ] [1 ] [ 1 ]] , 0,1,..., 1
T

l hs l  s l  s N l    l M= − − − − = −s L ,  (9) 

in which [ ] 0s i =  for 0i <  and 1i N> − . 

To simplify the notation, we assume that the signals are 

approximately orthogonal [2], with this correlation 

    
1 * †

0
[ , ] [ ] [ ] / / [ ]

N

s l l
i

R l l s i l s i l N N l lδ
−

′
=

′ ′ ′= − − = ≈ − s s , (10) 

where *  is the conjugate and [.]δ  is the Kronecker delta 

function. Equation (10) results in ≈†
S S  Ԑ

hMI  for large N, 

where Ԑ 2| [ ] |s i=  is signal energy and 
hMI  is an h hM M×

identity matrix. We also consider that the noise vector v has a 

zero mean complex white Gaussian distribution with variance 
2
.vσ  

The optimal Neyman-Pearson detector [8] for this TSD 

channel formulation using one sensor can be shown to have the 

following log LRT statistic and decides 1H  if 

 † 2 1
( ) ( )v Nσ η−Λ = + >x xr r C C I r ,  (11) 

whereη is the threshold and xC  is N N×  covariance matrix for 

x  

 2 1

ha M
−= †

x hC SC S . (12) 

When the TSD channel vector h - that is independent of the noise 

vector v - has a zero mean complex white Gaussian distribution 

with variance 
2

hσ , we obtain 
2

hh Mσ=hC I , which simplifies the 

covariance matrix of x  to 

 

2 1 2

12 1 2 †

0
.

h

h h

M

h h l ll

a M

    a M

σ

σ

−

−−

=

=

= 

†

xC SS

s s
  (13) 

Using the matrix inversion lemma [8], together with     

≈†
S S  Ԑ

hMI presented after (10), (11) simplifies to 

 † †
( ) g ηΛ = >r r SS r ,      (14) 

where (g = Ԑ
2 2 2 1

)h v ha M σ σ− − −
+ . Furthermore, we can rewrite 

(14) using the summation expression for †
SS  in (13) as follows 

   
21 12 1 *†

0 0 0
( ) [ ] [ ]

h hM M N

ll l i
g g s i l r i η

− − −

= = =
Λ = = >−  r s r . (15) 

The double summation in (15) agrees with (10) in [2], called the 

RCI detector.  

B. Multi-Sensor Detector 

Here we consider the same hypotheses as (1) and (2), where 

now r , v  and x  are complex vectors of size 1KN × , in which 

N is the number of the samples that are collected by each sensor 

and K is the number of sensors 

                      [ [0] [1] [ 1]]
T T T T

  N= −r r r rL ,           (16) 

     0 1 1[ ] [ [ ] [ ] [ ]] , 0,1,..., 1
T

Ki r i  r i  r i    i N−= = −r L ,        (17) 

where [ ]kr i  represents the received signal at the thi  time index 

and by the thk  sensor, and v  has the same structure as (16), 

given by 

    [ [0] [1] [ 1]]
T T T T

   N= −v v v vL ,   (18) 

 0 1 1[ ] [ [ ] [ ] [ ]] 0,1,.., 1
T

Ki v i  v i   v i ,   i N−= = −v L ,    (19) 

where [ ]kv i  represents the noise at the thi  time index and the 
thk sensor. The convolution embedded in x  can be written 

according to (5), where h now is the 1hKM ×  complex random 

TSD channel vector 

 [ [0] [1] [ 1]]
T T T T

h  M= −h h h hL , (20) 

 0 1 1[ ] [ [ ] [ ] [ ]] , 0,1,.., 1
T

K hl h l  h l  h l    l M−= = −h L , (21) 

in which [ ]kh l  represents the TSD random channel function at  



the thl  time index and measured at the thk sensor. Furthermore, 

now S  is the hKN KM×  matrix of the transmitted signal, given 

by 

      

[0]

[1] [0]

[ 1] [ 2] [ ]

K

K K

K K h K

s

s s

s N s N s N M

 
 
 =
 
 

− − − 

I 0 0

I I 0
S

I I I

L

L

M M O M

L

,  (22) 

with I and 0 being identity and zero matrices, respectively. 

Considering a white Gaussian distribution with variance 
2

vσ  

for the noise vector v, the multi-sensor log LRT statistic can be 

derived as follows and decides 1H  if 

                      † 2 1
( ) ( )v KNσ γ−Λ = + >x xr r C C I r ,  (23) 

where (23) is the optimal Neyman-Pearson multi-sensor 

detector [8] derived for our TSD channel formulation, γ  is the 

threshold, and xC is the x  KN KN× covariance matrix, with 

the same structure as (12). For temporally and spatially 

uncorrelated TSD channels we have 
* 2

[ [ ] [ ]] [ ] [ ]k k hE h l h l l l k kσ δ δ′ ′ ′ ′= − −  and 
2

hh KMσ=hC I , resulting 

in 

 2 1 2

h ha M σ−= †

xC SS .                               (24) 

Using the above result and the matrix inversion lemma together 

with the orthogonality property presented in (10) that leads to 

≈†
S S Ԑ

hKMI , after several analytical steps (23) can be 

eventually simplified to 

            
21 1 1 *

0 0 0
( ) [ ] [ ]

hK M N

kk l i
g s i l r i γ

− − −

= = =
Λ = >−  r , (25) 

where (g = Ԑ
2 2 2 1

)h v ha M σ σ− − −
+ . For 1,K =  (25) simplifies to 

(15) for the single-sensor detector. 

We notice that the multi-sensor detector in (25) is essentially 

an incoherent superposition of multiple correlators, where a 

correlator basically correlates the received signal from a sensor 

with an l-shifted copy of the transmitted signal. Simulation and 

measurement results using the multi-sensor detector in (25) are 

presented in the next section, as well as comparison with the 

single-sensor detector in (15). 

III. SIMULATION RESULTS 

To implement the detector in (25) and study its performance, 

we simulate 10,000 signal receptions per sensor for K  sensors. 

We use a linear frequency modulated (LFM) signal 

1 2

0 0 /[ ] exp( 2 (2 ) ) |
st i fs i j W T tπ −

== ,                  (26) 

where 0W  and 0T  are the signal bandwidth and duration, 

respectively, 0 0/ 2 / 2T t T− ≤ ≤ , 0,..., 1i N= − , and 0 sN T f= , 

with the parameter values chosen to be the same as in [1], i.e., 

0 2T =  s, 0 200W =  Hz and 0sf W= . The signal energy in g of 

(25) is  Ԑ N= , whereas the other parameters of g are chosen to 

be 0.1a = , 10hM = , and 
2 2

1v hσ σ= = . In simulations, 

essentially the LFM signal in (26) is convolved with 5K =  

uncorrelated TSD channels of K sensors, each having hM  

uncorrelated, zero-mean and unit-variance complex Gaussian 

samples. The additive noise terms are all spatio-temporally 

white, zero-mean and unit-variance complex Gaussians, 

independent of the TSD channels. 

In Fig. 1, we plot the receiver operating characteristic (ROC) 

curves for multi- and single-sensor detectors, 5 and 1,K   =  

respectively, using (25). The number of correlators M per sensor 

is chosen to be equal to, larger or smaller than the number of 

TSD channel samples 10hM = , to study the effect of M. 

Additionally, to confirm the accuracy of Fig. 1, ROC curves are 

also generated using the matrix-form multi-sensor detector in 

(23), which completely agree with those generated using (25). 

This validates our derivations and results. 

Upon inspecting Fig. 1, we observe that 

• As the number sensors increases, the detection 

performance improves. One possible explanation is that 

the signal-to-noise ratio (SNR) increases as K increases 

(see TABLE I). 

 
 

Fig. 1. Simulated ROC curves for the developed TSD channel multi-sensor 

detector in (25) (colored), and its matrix form in (23) (black dashed). We note 

the performance improvement as the number of sensors K increases from 1 to 5.  

 



• When M is chosen to be equal to hM , the best performance is 

achieved for both single- and multi-sensor detectors. 

• When M  is chosen to be different from hM , detection 

performance degrades for both single- and multi-sensor 

detectors. The performance loss appears to be less, when 

M is greater than hM . 

IV. EXPERIMENTAL RESULTS 

In this section, we examine the performance of the proposed 

multi-sensor detector in (25) using experimental data collected 

by two hydrophones, A and B, in a large pool, upon transmitting 

100 LFM signals with 0 8W =  kHz centered at 20 kHz, 0 50T =  

ms, and 100sf =  kHz. In Fig. 2, we plot the ROC curves when 

the two hydrophones are jointly used as a detector with 2K =  

sensors. The improved performance of this detector is 

noticeable, with SNR of 12.4 dB, compared to the single-sensor 

detectors that use only hydrophone B or A, with SNRs of 10.1 

and 8.1 dB, respectively. The multi-sensor performance 

improvement demonstrated using measured data agrees with the 

similar observation made using simulations in the previous 

section. 

V. CONCLUSION  

In this paper, we have derived and studied a multi-sensor 

detector for time-spreading distortion (TSD) underwater 

channels that have multiple propagation paths. The detector is 

optimal under certain assumptions mentioned in the paper. We 

have also assessed the performance of the detector using both 

Monte Carlo simulations and experimental underwater data. Our 

results indicate that, as the number of sensors increases, the 

performance of the detector improves. This can be attributed to 

the SNR increase. We have also quantified how the number of 

correlators per sensor can affect the performance. Further 

studies are underway to understand other aspects of signal 

detection in underwater TSD channels. 
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TABLE I.  SNRS FOR THE ROC CURVES IN Fig. 1 (dB) 

�� = 10 � = 5 � = 10 � = 15 

� = 1 9.9 12.9 13.8 

� = 5 17 20 20.8 

 
 

 

Fig. 2. Experimental ROC curve using two hydrophones jointly with 20M = , 

versus individual experimental ROC curves when each hydrophone is 

individually used for signal detection. 


