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systems. In order to incorporate the impact of this random phenomenon on system analysis and design, in many 

cases we need to calculate the probability density function (PDF) of the received signal envelope in multipath fading 

channels. In this paper, we consider a general multipath fading channel with arbitrary number of paths, where the 

amplitudes of multipath components are arbitrary correlated positive random variables, independent of phases, 

whereas the phases are independent and identically distributed random variables with uniform distributions. Since 

the integral form of the envelope PDF for such a general channel model is too complicated to be used for analytic 

calculations, we propose two infinite expansions for the PDF, a Laguerre series and a power series. Based on the 

tight uniform upper bounds on the truncation error of these two infinite series, we show that the Laguerre series is 

superior to the power series due to the fact that for a fixed number of terms, it yields a smaller truncation error. 

This Laguerre series with a finite number of terms, which expresses the envelope PDF just in terms of simple 

polynomial-exponential kernels, is particularly useful for mathematical performance prediction of communication 

systems in those indoor and outdoor multipath propagation environments, where the number of strong multipath 

components is small. 
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I. INTRODUCTION 

In a variety of situations encountered in communication engineering, the multipath structure of 

the transmission channel is such that the received signal exhibits strong fluctuations. These 

fluctuations are generally referred to as multipath fading, and over the past few decades, a great deal of 

attention has been focused on its characterization. 

In this paper, we study the envelope probability density function (PDF) in detail, using a random 

vector model, assuming that the number of multipath components is an arbitrary constant, phases are 

independent with uniform distributions on )2,0[ π , while the amplitudes are dependent positive random 

variables with arbitrary distributions. This scenario is general enough to cover many cases of interest. 

For situations where the number of multipath components is a random variable or the phases have non-

uniform distributions, the interested reader can refer to [1]. 

The rest of the paper is organized follows. The multipath fading channel model is introduced in 

Section II. Two infinite series are presented in Section III for the envelope PDF, a Laguerre series and 

a power series. Calculation of the coefficients of the series is discussed in Section IV. Upper bounds 

on the truncation error and coefficients of the Laguerre series are derived in Sections V and VI, 

respectively. The series truncation error upper bound is minimized in Section VII. By comparing the 

convergence rates, it is shown in Section VIII that for a fixed number of terms, the truncated Laguerre 

series provides a smaller truncation error than the power series. So, from this point of view, Laguerre 

series is preferred to the power series for calculating the envelope PDF. Application of the Laguerre 

series to system performance analysis in multipath channels with several dominant multipath 

components is briefly discussed in Section IX, as well as a numerical case study. Concluding remarks 

are provided in Section X. 

II. A GENERAL MODEL FOR MULTIPATH FADING CHANNELS 

In a multipath fading channel, multipath components can be divided into two independent 

groups: the first group consists of a small number of strong multipath components which do not satisfy 

the conditions of the central limit theorem (CLT) [2], while the second group contains a large number 

of weak multipath components which satisfy the CLT conditions. The first group generates a non-

Gaussian random process with non-Rayleigh envelope PDF, while the second group results in a 

Gaussian random process with Rayleigh envelope PDF. Specifically, if the signal tft ctr ′=′ πϑ 2cos)(  is 
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transmitted through a multipath fading channel, where cf  is the carrier frequency and t′  is the time, 

then the received signal has the following form: 

)(ˆ)()( tttre ′+′=′ ϑϑϑ , (1) 

where )(t ′ϑ  and )(ˆ t ′ϑ  are independent processes defined by: 

ϑ π( ) cos( )′ = ′ +
=∑t A f ti c ii

N 2
1

Φ , (2) 

∑ =
Φ+′=′ N

i ici tfAt
ˆ

1
)ˆ2cos(ˆ)(ˆ πϑ . (3) 

In the above formulas,1 N and N̂  are the number of multipath components in the first and the second 

groups, respectively, Ai’s and iÂ ’s represent the amplitudes of multipath components, while Φi’s and 

iΦ̂ ’s stand for the phases of multipath components. In the first group N is an arbitrary constant, Ai’s 

are dependent positive random variables with arbitrary distributions, independent of Φi’s, and Φi’s are 

independent of each other with uniform distributions on )2,0[ π . A physical interpretation for these 

statistical properties of Φi’s is provided in [3]. The signal ϑ( )′t  generated by the first group is a non-

Gaussian random process with non-Rayleigh-distributed envelope. In the second group, N̂  is large 

enough and the statistical properties of iÂ ’s and iΦ̂ ’s are such that based on CLT, )(ˆ t ′ϑ  can be 

modeled as a Gaussian random process with Rayleigh-distributed envelope. Note that since the rates of 

change of the number of multipath components, their amplitudes, and also their phases are much 

smaller than cf , we can assume that they are (random) constants over relatively short time-intervals. 

To develop the random vector model for our multipath fading channel, we note that the sums of 

cosine waves in (2) and (3) can be replaced by the following single cosine waves: 

)2cos()( Φ+′=′ tfAt cπϑ , (4) 

)ˆ2cos(ˆ)(ˆ Φ+′=′ tfAt cπϑ . (5) 

These representations lead to the following representation for )(tre ′ϑ  in (1): 

ϑ πre ct R f t( ) cos( )′ = ′ +2 Θ . (6) 

                                                                                                                                                                                     
1 The notation in (2) and (3) is fine for narrowband transmission, where the duration of ( )tr tϑ ′  is large. 
For wideband transmission, with a short-duration ( )tr tϑ ′ , of course ˆN N+  represents the total number 
of multipath components that reach the receiver with the same delay. Without loss of generality, this 
delay is set to zero, to simplify the notation. 
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Clearly, the pairs (A, Φ) and ( Â , Φ̂ ) represent the envelopes and the phases of signals from the first 

and the second groups of multipath components, respectively, while R and Θ  are the envelope and 

phase of the signal composed of the two groups of multipath components. The interrelationships 

among the random variables A, Φ , Â , Φ̂ , R, and Θ  can be understood by using the amplitude-phase 

notation: 

A j A ji ii

Nexp( ) exp( )Φ Φ=
=∑ 1

, ∑ =
Φ=Φ

N

i ii jAjA
ˆ

1
)ˆexp(ˆ)ˆexp(ˆ , )ˆexp(ˆ)exp()exp( Φ+Φ=Θ jAjAjR ,

 (7) 

where j = −1. Similar to [4], it can be shown that the PDF’s of A and R are given by [3]: 

00
( ) ( ) ( )Af a a J a dλ λ λ λ

∞
= Λ∫ ,2 (8) 

2

00
( ) ( )exp( ) ( )

2Rf r r J r dλλ λ λ λ
∞

= − Λ∫ , (9), 

where J0(.) is the zero order Bessel function and: 

1 ... 01
( ) [ ( )]

N

N
A A ii

E J Aλ λ
=

Λ = ∏ . (10) 

The PDF given in (9) completely characterizes the statistical behavior of the envelope in our 

general multipath fading channel model. However, its integral form is not convenient for analytic 

calculations, which are essential for mathematical analysis of communication systems in multipath 

fading channels. In this paper, we focus on Laguerre and power series to represent )(rf R , which are 

more suitable for analytic studies. A review of different representations for )(rf R  is provided in [3]. 

III. EXPANSION OF ( )Rf r  IN TERMS OF LAGUERRE AND POWER SERIES 

According to (7), it can be seen that the conditional PDF f r aR A( ) is a Rice PDF [5]: 

f r a r r a I arR A( ) exp( ) ( )= −
+2 2

02
, (11) 

where I0(.) is the zero order modified Bessel function. After averaging with respect to A we obtain: 

f r E f r a r r E A I ArR A R A A( ) [ ( )] exp( ) [exp( ) ( )]= = − −
2 2

02 2
. (12) 

                                                                                                                                                                                     
2 A Laguerre series for the PDF of A is derived in [4]. For the case where the amplitudes Ai’s are 
constant, one can use the recursive solution provided in [6]. 
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The following generating function for Laguerre polynomials can be found in [7]: 

exp( ) ( ) ( )
!

σ τσ τ σJ L
n

n
n

n0 0
2 =

=

∞∑ , (13) 

where Ln (.)  is the Laguerre polynomial of order n. For τ β= − r2 4 and σ β= A2 , (13) changes to: 

0,))(
4

(
!

1)exp()(
2

0

22

0 ≠−−= ∑∞

=
β

β
β

β
n

n n
ArL

n
AArI , (14) 

while for τ β= A2  and σ β= − r2 4, (13) modifies to: 

±∞≠−= ∑∞

=
ββ

β
β ,)

4
)((

!
1)

4
exp()(

22

0

2

0
n

n n
rAL

n
rArI . (15) 

Equations (14) and (15) may be considered as parametric expansions for I Ar0( ) where the parameter 

β  is a real number, non-zero for (14) and finite in (15). For β = ±∞  in (14) and β = 0 in (15), we obtain 

the Maclaurin series of I0(.): 

I Ar
n

Ar
n

n
0 20

21
2

( )
( !)

( )=
=

∞∑ . (16) 

In order to proceed further, we need to define the following function: 

h z E zA An A
n( ) [exp( ) ]= − 2 2 , (17) 

where z is an arbitrary real number and the PDF of A is given in (8). This function will be discussed in 

detail in Section IV. 

By replacing )(0 ArI  in (12) with (14) and (15), we obtain the Laguerre and the power series for 

f rR( ) , respectively: 

0),,()()(
0

≠= ∑∞

=
βββ rgwrf nn nR , (18) 

±∞≠= ∑∞

=
βββ ),,()()(

0
rdvrf nn nR , (19) 

in which: 

)1
2
1(

!
1)(

ββ
β += nnn h

n
w , (20) 

g r r r L r
n n( , ) exp( ) ( )β β

= − −
2 2

2 4
, (21) 
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v
n

E A L A
n A n( )

!
[exp( ) ( )]β

β
= −

1
2

2 2

, (22) 

d r r r r
n

n( , ) exp( ( ) )( )β β β
= − − −

1
2 4 4

2
2

. (23) 

In order to calculate the coefficient wn( )β  in (18), only hn( )1 2 1+ β  is required. However, for 

computing the coefficient vn( )β  in (19), we need to determine the values of h0 1 2( ), ..., hn( )1 2 , since 

according to the polynomial representation for (.)nL  [7]: 

L z n
n k k

zn

k

k

n k( ) ( ) !
( )!( !)

=
−
−=∑ 1

20
, (24) 

equation (22) can be written as: 

v
n k k

hn

k

kk

n
k( ) ( )

( )!( !)
( )β

β
=

−
−=∑ 1 1

220
. (25) 

Note that our starting point is the conditional Rice PDF in (11) and replacement of I0(.) in (12) 

with an infinite series. The advantage of this approach, in comparison with expanding f rR ( ) directly in 

terms of an infinite series, is the fact that it provides a non-Rayleigh but perturbed-Rayleigh PDF. In 

other words, we usually expect a Rayleigh PDF for f rR ( ) in a multipath fading channel. In the 

presence of several strong multipath components which violate the CLT, f rR ( ) deviates from Rayleigh 

PDF. The amount of this deviation can be quantified in terms of the statistical properties of the 

amplitudes of these CLT-violating multipath components, if we use the conditional-Rice-PDF 

approach. This will be further discussed in Section IX. 

IV. CLOSED FORM FORMULAS FOR (.)nh  

Based on the definition of h zn ( )  in (17) we have: 

h z d
dz

h zn
n

n

n( ) ( ) ( )= −1 0 , (26) 

in which: 

h z E zAA0
2( ) [exp( )]= − . (27) 

Now we consider two cases separately. In the first case we assume that )(af A  is nonzero over the 

nonnegative real line. This assumption yields a simple solution for (.)nh . In the second case, which is 
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more general and also more realistic, )(af A  is assumed to be nonzero over an arbitrary finite interval. 

As we expect, the expressions derived for (.)nh  are more complicated in this case. 

A. 0 ≤ < ∞A  

In this case we calculate the expectation in (17) directly. Equation (17) can be written as: 

∫
∞

−=
0

22 )()exp()( daafazazh A
n

n . (28) 

Based on the equation for )(af A  in (8) we obtain: 

∫ ∫
∞ ∞+ Λ−=

0 0 0
122 )()()exp()( dadaJazazh n

n λλλλ . (29) 

By the Fubini theorem [14], we can change the order of integration in (29). Based on the following 

relation [15]: 

0),
4

()
4

exp(
2

!)()exp(
22

10 0
212 >−=− +

∞ +∫ z
z

L
zz

ndaaJzaa nn
n λλλ , (30) 

it can be shown that: 

∫
∞

>Λ−=
0

0,)4()()exp(!)( zdzL
z
nzh nnn ξξξξ . (31) 

Since Ln (.)  is a polynomial given in (24), (31) can be rewritten as: 

0),(
)!()!(

)1()!()( ,0 2

2

>
−
−

= ∑ =
zzh

kknz
nzh kn

n

k

k

nn , (32) 

where: 

∫
∞

>Λ−=
0, 0,)4()exp()( zdzzh k

kn ξξξξ . (33) 

B. A A Amin max≤ ≤  

To calculate )(zhn  for this case, first we derive a closed-form expression for h z0( ) in (27) and 

then calculate the nth derivative in (26). By the straightforward extension of a result in [13], h z0( ) can 

be expressed in terms of the hypergeometric series: 

0)],,...,;([)( 22
1...0 1

≥= zzAzANEzh NAA N
ψ , (34) 

in which the hypergeometric series ψ  is defined as [13]: 
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∑ ∏∑ ∞

= =

∞

=

−
++=

0 1 2101 )!(
)(

)!...(...),...,;(
1 N

k

m

N

k
k

m
k

NmN m
mmN

ξ
ξξψ . (35) 

So: 

0,)]([
)!(

)!...(
...)( ...

1
2

...0

1
2

1
00

1

11
≥−

++
= ++

=

∞

=

=

∞

= ∏∑
∏

∑ zzAE
m

mm
zh Nk

NN

mmN

k
m

kAAm N

k k

N
m

. (36) 

Assuming that the multiple series in (36) converges, successive differentiation yields: 

0,)(][
)!(

)!...(
...)1()( ...

1
2

...0

1
2

1
0

1

11
≥−

++
−= ++

=

∞

=

=

∞

= ∏∑
∏

∑ zz
dz
dAE

m

mm
zh Nk

NN

mm
n

n
N

k
m

kAAm N

k k

N
m

n
n . (37) 

Equation (37) is useful for mathematical analysis of bit error probability in fading channels with 

arbitrary number of paths [21]. However, in numerical calculations, (37) is of limited use due to its 

multiple summation, specially when N is large. Hence, in what follows we derive another formula for 

h zn ( ) . 

Apparently, direct calculation of the expectation in (17) is not possible, because in contrast with 

(30), there seems to be no useful closed-form solution for the following integral in terms of known 

mathematical functions: 

∫ −+max

min

)()exp( 0
212A

A

n daaJzaa λ . (38) 

Nevertheless, substitution of exp( ) ( )−za J a2
0 λ  with its associated Maclaurin series may yield useful 

results, because powers of a can be easily integrated from Amin  to Amax . In [20] it is shown that: 

∑ ∫
∞

=

∞
++++

Λ−
−

++
−

=
0 0

2222
min

222
max )()

4
(

!
)(

222
)(

k k

kknkn

n d
z

L
k
z

kn
AA

zh λλλλ . (39) 

Depending on the behavior of Λ( )λ , there might be cases where some of the integrals in (39) diverge, 

specially for large values of k. In situations where neither (37) nor (39) work, h zn ( )  has to be 

computed by numerical calculation of the expectation in (17), which is a double-fold integral: 

∫∫
∞ + Λ−=

0 0
122 )()()exp()( max

min

dadaJazazh nA

An λλλλ . (40) 

So far, two infinite series have been introduced in (18) and (19) for )(rf R , and several methods 

have been discussed for calculating their coefficients in (20) and (22), which are functions of (.)nh . 

The kernels of these two series, given in (21) and (23), are of the general form )exp( 2rr m α− , where 
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m is a nonnegative integer and α  is a positive real number. Such a function is very convenient for 

mathematical manipulations, specially analytic integration, which usually appears in average bit error 

rate calculations, performance evaluation of diversity systems, etc. over multipath fading channels. 

Now the important issue is the number of terms which should be considered in those infinite series, in 

order to achieve a given truncation error. Note that for a fixed number of terms, the truncation error 

depends on r. So, for different values of r, different number of terms are required to obtain the same 

truncation error over the entire range ∞<≤ r0 . To avoid this problem, we need a uniform truncation 

error formula, which does not depend upon r. In the subsequent sections, we derive uniform upper 

bounds on the truncation errors of both series. Based on these bounds we can easily determine the 

minimum number of terms that one should take into account, in order to obtain a specified truncation 

error over the entire range of r. 

V. UPPER BOUND ON THE TRUNCATION ERROR OF LAGUERRE SERIES 

If we consider max 1n +  terms in (18), the following truncation error appears: 

∑∞

+=
≠=

1maxmax
0),,()(

nn nnn rgwE βββ . (41) 

Based on the triangular inequality we have: 

∑∞

+=
≠≤

1maxmax
0,),()(

nn nnn rgwE βββ . (42) 

If we define the two upper bounds qn ( )β  and un ( )β  as: 

),(max)(,)()( rguwq nrnnn ββββ =≥ , (43) 

we obtain: 

∑∞

+=
≠==≤

1max maxmax
0,)()(

nn Luubnnnn eEuqE βββ , (44) 

in which the subscript uub stands for uniform upper bound. By uniform we mean that 
uubnE

max
 (or 

simply, eL ) is an upper bound for Enmax
 which is independent of r. The remainder of this section has 

been devoted to un ( )β , while qn ( )β  will be discussed in Section VI. 

The Laguerre polynomial L zn( )  is positive and monotonically increasing for z < 0, while for 

z > 0 first it oscillates with n zeros over the range 0 4< <z n  (assuming n is large) and then increases 
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or decreases monotonically for z n> 4 , provided that n is even or odd, respectively [16]. For large n, 

Plancherel-Rotach type asymptotic formulas accurately describe the behavior of Laguerre polynomial: 

nz
n
z

n
znzzz

n
z

n
nzzz

n
zLzL nn

nn 4,)4)(
2

4exp()()
2

4(
2
1)(ˆ)( 41

2

22
2

2

>−
−−

−
−+

=≈ −−

π
, (45) 

nznnzzz
n

zLzL
n

nn 40),
4

3sin()
2

exp()1()(ˆ)( 41
41

<<+−
−

=≈ − ππ
π

, (46) 

0,)4)(
2

4exp()()
2

4(
2
1)(ˆ)( 41

2

22
2112

2

<−
−+

−
−+−

=≈ −−−+ z
n
z

n
znzzz

n
z

n
nzzz

n
zLzL nn

nn π
. (47) 

We have derived (45) and (46) from [17] after some simple manipulations, while (47) is given in [18] 

exactly. Note that besides the small differences between (45) and (47), which are due to the variations 

among the methods of approximation and representation used in [17] and [18], these two formulas can 

be obtained from each other by a simple reasoning [19]. 

According to the above properties of Laguerre polynomials and depending on β , g rn( , )β  

exhibits different behaviors versus r. Based on the unimodal shape of r rexp( )− 2 2 , g rn( , )β  must 

have only one maximum for β > 0, and n +1 maxima for β < 0. Clearly, the first n maxima fall into the 

region 0 16< < −r n β , and the last one is out of this region, assuming n is large. Using the Sonin-

Polya theorem [17] [23], it is shown that if n is large enough, then [20]: 

1) for β ≤ −4, the maxima of g rn( , )β  constitute an increasing sequence, and, 

2) for − < <4 0β , the maxima of g rn( , )β  form an increasing sequence for r < +2 4( )β , and a 

decreasing sequence for r > +2 4( )β . 

Therefore, un ( )β  takes different functional forms over the regions β ≤ −4, − < <4 0β , and β > 0, as 

derived in [20]: 

22ˆ( ) ( ) exp( ) ( ) , 4
2 2 2 4n n n
n n nu u Lβ β ββ β β

β β β
≈ = − − ≤ −

+ + +
. (48) 

1 4 2 1 42 2ˆ( ) ( ) ( ) [( 4 ) ] , 4 0n nu u n
e

β β β β β
π

−≈ = − − − < < . (49) 

22ˆ( ) ( ) exp( ) ( ), 0
2 2 2 4n n n
n n nu u Lβ β ββ β β

β β β
≈ = − − >

+ + +
. (50) 
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Equations (48), (49), and (50) are asymptotic results, i.e. )()(ˆ ββ nn uu →  as ∞→n . However, 

)(ˆ βnu  is very close to )(βnu  even for n as small as 4, provided that β  is not very close to −4 or 0 . 

This can be easily verified, numerically [20]. 

VI. UPPER BOUND ON THE COEFFICIENTS OF LAGUERRE SERIES 

In order to obtain an upper bound on (.)nh  and then an appropriate expression for qn( )β  (upper 

bound on wn( )β  for all possible joints distributions of Ai’s), we assume that Ai’s are bounded random 

variables, i.e.: 

NiAA ii ,...,1,max, =≤ . (51) 

Note that such an assumption is not restrictive, because Ai,max ’s can be large. In general we have: 

NiAAA iii ,...,1,max,min, =≤≤ , (52) 

and for each i, f aA ii
( ) is zero outside the interval ],[ max,min, ii AA . Hence: 

A A Amin max≤ ≤ , (53) 

which means that f aA( ) is nonzero only over a finite interval. It should be noted that Amin , Amax , Ai,min ’s 

and Ai,max’s are all nonnegative constants. The following upper bound for (.)nh  is derived in [20]: 

h z Kp zn n( ) ( )< , (54) 

where: 

max ,max1

N
ii

A A
=

= ∑ , (55) 

∫
∞

Λ=
0

max )( λλλ
π

d
A

K , (56) 

⎪
⎩

⎪
⎨

⎧

≥

<−
=

+

+

0,

0,)exp(
)(

212
max

212
max

2
max

zA

zAzA
zp

n

n

n . (57) 

It should be noticed that depending on the behavior of )(λΛ , there might be cases where the 

integral in (56) does not converge. In such cases, another upper bound should be found for (.)nh . An 

example is discussed in the Appendix, where N = 2 and A1 and A2  are two constants. This is the 
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classic problem of two sine waves in Gaussian noise. For this special but important case, a finite upper 

bound is derived in [10] for (.)nh . The details are given in the Appendix. 

The appropriate expression for qn( )β  can be obtained by simply combining (20), (43), and (54): 

0),1
2
1(

!
)( ≠+= β

ββ
β nnn p

n
Kq . (58) 

Notice that the condition 0≠β  in (58) comes from (18). 

VII. CONVERGENCE OF eL  AND OPTIMUM β  FOR THE LAGUERRE SERIES 

Based on the expressions derived for )(βnq  and )(βnu  in Sections VI and V, respectively, in 

this section we first investigate the convergence of eL  in (44), an infinite series with positives terms, 

using the ratio test: 

0),()(
)()(

)()(
lim 11 ≠=++

∞→
βββ

ββ
ββ

UQ
uq
uq

nn

nn

n
. (59) 

Here Q( )β  and U ( )β  are defined as: 

0,
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β
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β
β
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β
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n
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n

n u
u

U
q

q
Q . (60) 

It is straightforward to verify that: 

0,01lim)(
2

max ≠==
∞→

β
β

β
n

A
Q

n
. (61) 

For U ( )β  we have three different cases, depending on the value of β . It is shown in [20] that: 

( ) (( / 2) 1), 4U β β β= − + ≤ − , (62) 

04,1)( <<−= ββU , (63) 

( ) ( 2) 1, 0U β β β= + > . (64) 

By putting together the expressions derived for Q( )β  and U ( )β  in (61), (62), (63), and (64), we 

observe that: 

0,01lim)()()(
)()(

)()(
lim 2

max
11 ≠===

∞→

++

∞→
ββββ

ββ
ββ

n
AMUQ

uq
uq

nL
nn

nn

n
, (65) 
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where ML( )β  is a finite positive constant, defined as: 

(1/ 2) (1/ ), 4
( ) 1/ | |, 4 0

(1/ 2) (1/ ), 0
LM

β β
β β β

β β

+ ≤ −⎧
⎪= − < <⎨
⎪ + >⎩

. (66) 

Since 10)()( <=ββ UQ , the infinite series eL  in (44) converges for any β ≠ 0 according to the ratio 

test. This also implies the convergence of Laguerre series in (18) for any β ≠ 0, over the range r ≥ 0, 

and for any joint distribution of Ai’s. 

In order to find an optimal value for β , we define the rate of convergence of eL  as the optimality 

criterion. So, the optimal β  is the one which maximizes the rate of convergence of eL , defined by 

)]()([)()( 11 ββββ ++ nnnn uquq , where n is a fixed large constant. This optimum value can be easily 

found by minimizing ML( )β  in (66) over all β ’s: 

1/ 4, 4
inf ( ) 1/ 4, 4 0

1/ 2, 0
LM

β

β
β β

β

≤ −⎧
⎪= − < <⎨
⎪ >⎩

. (67) 

According to (67), 4−=β  turns out to be the optimum β , since it gives the minimum value of ML( )β , 

i.e., maximizes the convergence rate of eL : 

large,4
)()(

)()(
4
1)(4 2

max,1,1

,,
,, n

A
n

uq
uq

M
optLnoptLn

optLnoptLn
optLLoptL ≈⇒=⇒−=

++ ββ
ββ

ββ . (68) 

Such an optimum value for β  may be attributed to the orthogonality of Laguerre polynomials [11]. 

VIII. COMPARISON OF THE OPTIMUM LAGUERRE AND POWER SERIES 

It has been proved in Section VII that 4, −== optLββ  optimizes the Laguerre series, whereas 

following the same approach, it can be shown that β β= =P opt, 0 optimizes the power series [20]. In 

order to compare these two series, we calculate their convergence rates according to (68): 

2
1 1 max

( 4) ( 4) 4 , large
( 4) ( 4)

n n

n n

q u n n
q u A+ +

− −
≈

− −
. (69) 

The convergence rate of the power series can be shown to be 2
max2 /n A , when n is large [20]. As we 

can see, the convergence rate of the optimum power series is half of the optimum Laguerre series. 
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Therefore, the optimum Laguerre series is superior from this point of view. By substituting (20) and 

(21) in (18) for 4, −== optLββ , the optimum Laguerre series can be written as: 

∑∞

=
≥

−
−=

0
2

2

, 0),(
!)4(
)41(

)
2

exp()(
n nn

n
optR rrL

n
hrrrf , (70) 

where )41(nh  can be computed using any of the methods given in Section IV. 

For 4, −== optLββ , substitution of )4(ˆ4.1 −nu  from (48) and )4(−nq  from (58) into Le  in (44) 

results in the following uniform upper bound on the truncation error of the optimum Laguerre series 

with max 1n +  terms: 

max

2max
, max 1

2.8 ( ) (4 )
! 2

n
L opt nn n

Ane K A L n
n e

∞

= +
= ∑ , (71) 

where maxA  and K are given in (55) and (56), respectively. The factor 1.4 is added because it 

guarantees that ),4()4(ˆ4.1 rgu nn −≥−  for all n and r. This can be easily verified by visual comparison 

of the plots of )4(ˆ4.1 −nu  and ),4( rgn − . 

In a given problem with specific values for optLe ,  and maxA , we can find a rough estimate for 

maxn . According to (69) and for large n, the terms of the series eL opt,  in (71) have a maximum in the 

vicinity of n np= , assuming maxA  is not too small, say 3max ≥A : 

]
4

[
2

maxA
np = , (72) 

where [.] gives the integer part. Since this maximum can be very large, specially for large maxA , nmax  

should be several times greater than np , to obtain a small value for eL opt, . 

IX. APPLICATIONS AND A NUMERICAL CASE STUDY 

As discussed at the end of Section III, our approach results in a non-Rayleigh but perturbed-

Rayleigh PDF for the signal envelope in multipath fading channels. This important characteristic can 

be better understood by rewriting (70) as: 

∑∞

=
≥−−+−=

1
2

22

0, 0),()
2

exp()1(
!4
)41(

)
2

exp()41()(
n n

n
n

n
optR rrLrr

n
hrrhrf . (73) 

Notice that [15]: 
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n
n drrLrr )1()()

2
exp(

0

2
2

−=−∫
∞

. (74) 

Moreover, since the area under )(, rf optR  is unity, according to (70) we must have: 

∑∞

=
=

0
1

!4
)41(

n n
n

n
h

. (75) 

Hence, the equation in (73) represents the non-Rayleigh envelope PDF as a mixture (more precisely, 

convex combination) of the Rayleigh PDF )2exp( 2rr −  and the unit-area kernels 

)()2exp()1( 22 rLrr n
n −− , ...,2,1=n . Notice that these kernels are not PDF since they take negative 

values for some r. However, it may be useful to consider them as pseudo PDF’s since they integrate to 

one. When there is no strong multipath component, i.e. 0=N , we have 1)41(0 =h  and 

0...)41()41( 21 === hh , which in turn yield )2exp()( 2
, rrrf optR −= . In the presence of at least one 

strong multipath component, i.e. when 1≥N , we get 1)41(0 0 <≤ h  while 0)41( >nh  for at least one 

n from the set ,...}2,1{ . 

As an example of the insightful role of the mixture representation in (73) for analytic 

calculations in non-Rayleigh multipath fading channels, one can look at the problem of average bit 

error rate (BER) calculation in such channels [3]. In [3] it is shown that the average BER of any 

modulation method in multipath fading channels can be decomposed into two separate parts: the first 

part represents the average BER due to a large number of weak multipath components (which generate 

Rayleigh fading), whereas the second part shows the contribution of the few strong multipath 

components to the average BER. This representation provides a better understanding of the 

performance of communication systems and techniques in those wireless multipath indoor and outdoor 

channels, where the number of dominant multipath components is limited. A more comprehensive 

analysis of BER in multipath channels with a limited number of strong components is provided in [21]. 

Now we consider a numerical example and use the optimum Laguerre series to calculate the 

envelope PDF. Consider a multipath fading channel where in addition to the large number of weak 

multipath components, there are four CLT-violating multipath components: 5.01 =A , 2 1A = , 3 3.5A =  

and 4 5A = . Suppose that for representing the envelope PDF, we want to truncate the optimum 

Laguerre series in (70) with max 1n +  terms such that 4
, 10−≤optLe . Notice that according to (55) and 

(10) we have, respectively, max 10A =  and 0 0 0 0( ) (0.5 ) ( ) (3.5 ) (5 )J J J Jλ λ λ λ λΛ = . Using (71), it is easy 

to verify that max 75n =  is the smallest integer which satisfies 4
, 10−≤optLe . The coefficients )41(nh  for 
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0, 1, ...,75n =  are computed using (40) and are listed in [22]. Note that in our example Amin = 0. Since 

for any n we have 0)41( ≥nh , according to (75) we obtain !4)41( nh n
n ≤ , which is a tight upper 

bound only for small n. 

The truncated form of the optimum Laguerre series in (70) with 76 terms, given by: 

2 75 2
, 0

(1 4)( ) exp( ) ( ), 0
2 ( 4) !

ntruncated
R opt nn n

r hf r r L r r
n=

= − ≥
−∑ , (76) 

is plotted in Fig. 1. Note that as expected, it is nonnegative for any r. The average power of the signal 

envelope in our example is given by 2[ ] 40.5E R = . An equivalent Rayleigh PDF 
2( / 20.25)exp( 40.5)r r− , which has the same average power, is plotted in Fig. 1 as a reference. Fig. 1 

also includes an equivalent Rice PDF 2
0exp( ( 38.5) / 2) ( 38.5 )r r I r− + , with the same average power 

of 40.5. Note that this PDF is the same as the one in (12), where the random amplitude A is replaced by 

the constant amplitude 38.5 . Comparison of the plots in Fig. 1 reveals the inadequacy of Rayleigh 

and Rice models for characterizing the envelope PDF in the considered multipath channel. The natural 

logarithm of the truncation error of the Laguerre series, Le in (44), is plotted in Fig. 2 versus the 

parameter β . We notice in Fig. 2 that at 4β = − , the truncation error attains its minimum. This agrees 

with our theoretical results which suggested 4β = −  as an optimal choice. 

X. CONCLUSION 

In this paper we have considered a general model for multipath fading channels where in 

addition to a large number of weak multipath components, there are several strong multipath 

components. The presence of few dominant multipath components is more profound in wideband 

systems where the number of scatterers corresponding to a given delay bin decreases as the bandwidth 

increases [25], or in systems with smart antenna arrays, in which the receiver amplifies only few 

multipath components coming from particular directions and rejects the rest [12]. 

When there is no strong component, the envelope PDF reduces to Rayleigh, while the presence 

of at least one strong component results in a non-Rayleigh PDF for the envelope. There are several 

multipath fading models such as Nakagami, Weibull, lognormal, etc., which are not effective in 

characterizing the non-Rayleigh envelope PDF in some propagation environments [26] [27]. The 

proposed model of this paper is general enough to cover many cases of interest. The envelope PDF in 

our channel model can be expanded in terms of two polynomial-based infinite series: a Laguerre series 
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and a power series, which both are very convenient for mathematical calculations. We have shown that 

the Laguerre series is preferred to the power series, since for a fixed number of terms it provides a 

smaller truncation error. Furthermore, we have derived an equation by which one can easily determine 

the minimum number of terms in the Laguerre series, which yields a specified truncation error over the 

entire positive real line. For the application of the Laguerre series to system performance analysis and 

bit error rate calculations, the interested reader can refer to [3] and [21]. The results derived in this 

paper can be used in other contexts such as radar clutter or light scattering, where the basic mechanism 

of random signal fluctuations can be modeled by the sum of random vectors. 

APPENDIX 
ENVELOPE PDF OF TWO SINE WAVES IN GAUSSIAN NOISE 

There are many cases, such as two path propagation environments [24], where we encounter the 

sum of two sine waves in Gaussian noise (see [10] for more examples). A variety of techniques for 

calculating this envelope PDF are discussed in [8]-[11]. 

If the two sine waves have uniformly distributed phases over [0,2 )π , then the envelope PDF of 

the sum of two sine waves in Gaussian noise is given by (9), where 2N = , 1 1A a= , and 2 2A a=  ( 1a  

and 2a  two positive constants): 

2

00
( ) ( ) exp( ) ( ) , 0

2Rf r r J r d rλλ λ λ λ
∞

= − Λ ≥∫ . (77) 

Based on (10), ( )λΛ  in the above formula is: 

1 2( ) ( ) ( )o oJ a J aλ λ λΛ = . (78) 

When there is no noise, the envelope PDF of two sine waves can be written in closed form by solving 

the integral in (8) [9]: 

[ ]
[ ]

2 2 2 2
min max min max

min max

2 /( ( )( ) ), , ,( )
0, , ,A

a a a a a a a af a
a a a
π⎧ − − ∈⎪= ⎨
∉⎪⎩

 (79) 

where: 

min 1 2 max 1 20,a a a a a a= − ≥ = + . (80) 

For min minA a=  and max maxA a= , the integral in (56) does not have a finite value. Therefore, the upper 

bound for ( )nh z  in (54) cannot be used in this case. Clearly, the upper bound ( )nq β  given in (58) does 



On the Utility of Laguerre Series for the Envelope PDF in Multipath Fading Channels                        Ali  Abdi 

Page 18 of 21 

not work as well. In what follows, we present an appropriate upper bound for ( )nh z  and the 

corresponding expression for ( )nq β . 

In [20] the following expression is derived for ( )nh z : 

2 2
min min 1 2

1 1 1 2220
min

exp( ) ! ( 1 2) 4 1( ) ( ) ( , 1, 4 )
( )!( !) 2

n
n k

n k

a z a n k a ah z F k k a a z
n k k aπ =

− Γ +
= + + −

−∑ , (81) 

where 1 1(.,.,.)F  is the confluent hypergeometric function [15]. By obtaining an upper bound for 

1 1(.,.,.)F  and after some algebraic manipulations, the following upper bound for ( )nh z  is derived [20]: 

2 2
1 2 min max( ) exp(4 ) n

nh z a a z a z a≤ − . (82) 

Comparison of (82) with (54), the upper bound on ( )nh z  for the general case of arbitrary N and 

correlated iA ’s in Section VI, reveals that both upper bounds are exponential in n. So, here we expect 

to obtain an expression similar to the one given in Section VI for ( )nq β , the upper bound on the 

coefficients of the Laguerre series in (18). In fact, by combining (20), (43), and (82) we obtain: 

2 2
1 2 min max

1 1 1 1 1( ) exp(4 ( )) , 0
2 2 !

n
n nq a a a a

n
β β

β β β
= + − + ≠ , (83) 

which has the same functional relationship with n as ( )nq β  in (58). 

Based on the similarities between the functional form of ( )nq β  in this appendix for 2N =  and 

the one in Section VI for an arbitrary N, all the results of Section VII and subsequent sections hold 

here. This means that for the envelope PDF of two sine waves in Gaussian noise, the optimum 

Laguerre series ( 4β = − ) is superior to the optimum power series ( 0β = ). The optimum Laguerre 

series is the same as (70) in Section VIII, with ( )nh z  given in (81). 

Similar to (71) in Section VIII, with 4, −== optLββ , substitution of )4(ˆ4.1 −nu  from (48) and 

)4(−nq  from (83) into Le  in (44) results in the following uniform upper bound on the truncation error 

of the optimum Laguerre series with max 1n +  terms: 

max

2
2maxmin

, 1 2 1
2.8exp( ) ( ) (4 )

4 ! 2
n

L opt nn n

aa ne a a L n
n e

∞

= +
= − ∑ , (84) 

where mina  and maxa  are defined in (80). Similar to (71), the factor 1.4 is added as it ensures that 

ˆ1.4 ( 4) ( 4, )n nu g r− ≥ −  for all n and r. For a given maxa  and based on the same type of argument used in 

Section VIII, maxn  should be chosen much larger than 2
max[ 4]pn a= , if ,L opte  is required to be small. 
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For 2N =  and 2, 4β = − − , Laguerre series equivalent to (18) are derived in [9] and [11], 

respectively, via approaches different from ours. Nevertheless, the power series and its truncation error 

are not considered in [9] and [11], as well as the truncation error of the Laguerre series. 

REFERENCES 

[1] A. Abdi and M. Kaveh, “Envelope PDF in multipath fading channels with random number of paths and 
nonuniform phase distributions,” in Wireless Personal Communications: Emerging Technologies for 
Enhanced Communications. W. H. Tranter, T. S. Rappaport, B. D. Woerner, and J. H. Reed, Eds., Boston, 
MA: Kluwer, 1999, pp. 275-282. 

[2] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., Singapore: McGraw-Hill, 
1991. 

[3] A. Abdi, “A general framework for the characterization of multipath fading,” in Proc. Conf. Inform. Sci. 
Syst., Princeton University, Princeton, NJ, 2002, pp. 414-418. 

[4] A. Abdi, H. Hashemi, and S. Nader-Esfahani, “On the PDF of the sum of random vectors,” IEEE Trans. 
Commun., vol. 48, pp. 7-12, 2000. 

[5] P. Beckmann, Probability in Communication Engineering. New York: Harcourt, Brace & World, 1967. 
[6] M. K. Simon, “On the probability density function of the squared envelope of a sum of random phase 

vectors.” IEEE Trans. Commun., vol. 33, pp. 993-996, 1985. 
[7] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of 

Mathematical Physics, 3rd ed., New York: Springer, 1966. 
[8] C. W. Helstrom, “Distribution of the sum of two sine waves and Gaussian noise,” IEEE Trans. Inform. 

Theory, vol. 38, pp. 186-191, 1992. 
[9] R. Esposito and L. R. Wilson, “Statistical properties of two sine waves in Gaussian noise,” IEEE Trans. 

Inform. Theory, vol. 19, pp. 176-183, 1973. 
[10] A. Abdi and S. Nader-Esfahani, “An optimum Laguerre expansion for the envelope PDF of two sine 

waves in Gaussian noise,” in Proc. IEEE Southeastcon Conf., Tampa, FL, 1996, pp. 160-163. 
[11] R. Price, “An orthonormal Laguerre expansion yielding Rice's envelope density function for two sine 

waves in noise,” IEEE Trans. Inform. Theory, vol. 34, pp. 1375-1382, 1988. 
[12] G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, “More complete probability density functions for 

fading in mobile communications,” in Proc. IEEE Vehic. Technol. Conf., Houston, TX, 1999, pp. 985-989. 
[13] M. Nesenbergs, “Error probability for multipath fading-The “slow and flat” idealization,” IEEE Trans. 

Commun. Technol., vol. 15, pp. 797-805, 1967. 
[14] J. D. DePree and C. W. Swartz, Introduction to Real Analysis. New York: Wiley, 1988. 
[15] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged ed., A. 

Jeffrey, Ed., New York: Academic, 1980. 
[16] J. Spanier and K. B. Oldham, An Atlas of Functions. Washington: Hemisphere, 1987. 
[17] G. Szego, Orthogonal Polynomials, 3rd ed., Providence, RI: Amer. Math. Soc., 1967. 
[18] W. Van Assche, Asymptotics for Orthogonal Polynomials. Lecture Notes in Mathematics, vol. 1265, 

Berlin: Springer, 1987. 
[19] W. Van Assche, private communication, 1997. 



On the Utility of Laguerre Series for the Envelope PDF in Multipath Fading Channels                        Ali  Abdi 

Page 20 of 21 

[20] A. Abdi, “Sum of random vectors problem and its applications in communication engineering,” M.S. 
Thesis, Dept. Elec. Comp. Eng., University of Tehran, Feb. 1996. 

[21] R. K. Bandila and A. Abdi, “On the performance limits in fading channels with arbitrary number of multipath 
components,” in Proc. Conf. Inform. Sci. Syst., Princeton University, Princeton, NJ, 2004, pp. 1186-1189. 

[22] R. K. Choppala, “Alternative approaches to multipath fading,” M.S. Project Report, Dept. Elec. Comp. 
Eng., New Jersey Institute of Technology, Newark, NJ, Aug. 2003. 

[23] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction 
with Applications. Basel, Germany: Birkhauser, 1988. 

[24] T. Kurner, D. J. Cichon, and W. Wiesbeck, “Concepts and results for 3D digital terrain-based wave 
propagation models: An overview,” IEEE J. Select. Areas Commun., vol. 11, pp. 1002-1012, 1993. 

[25] A. S. Molisch, “Mobile radio channels,” in Wideband Wireless Digital Communications. A. F. Molisch, 
Ed., Upper Saddle River, NJ: Prentice Hall PTR, 2001, pp. 20-48. 

[26] T. Kurner, D. J. Cichon, and W. Wiesbeck, “Evaluation and verification of the VHF/UHF propagation channel 
based on a 3-D-wave propagation model,” IEEE Trans. Antennas Propagat., vol. 44, pp. 393-404, 1996. 

[27] M. Lebherz, W. Wiesbeck, and W. Krank, “A versatile wave propagation model for the VHF/UHF range 
considering three-dimensional terrain,” IEEE Trans. Antennas Propagat., vol. 40, pp. 1121-1131, 1992. 

 

Fig. 1. The envelope PDF in a multipath fading channel with few strong multipath components: True PDF calculated 

using the proposed Laguerre series (solid), equivalent Rayleigh PDF (dashed), equivalent Rice PDF (dotted). 

 

Fig. 2. Truncation error of the Laguerre series versus the parameter b. 
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