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Abstract

Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target
discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are
developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what
extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction
(failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a
molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to
calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a
more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which
two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks
based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published
binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis
shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the
single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more
complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by
increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary
model does not appear to be increased proportionally.
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Introduction

Analysis of molecular networks using a variety of engineering and

computational tools and approaches has been an active area of

research in systems biology in recent years [1]. Molecular systems

biology looks at the orchestrated function of the molecular

components and their complex interactions within the cell, and

typically involves studies on metabolic networks or cell signaling

networks, using a holistic approach to molecular biology research [1].

Systems biology makes heavy use of mathematical and computational

models to understand the pathology of networks, to develop methods

to quantify the functions of molecules within a network, to eventually

understand their roles in the possible malfunction of the network.

Molecular fault diagnosis engineering was introduced in recent years

[2] [3], to find the critical molecules whose dysfunction can have

detrimental impacts on the network’s function. More advanced

applications of molecular fault diagnosis engineering in target

discovery and drug development are discussed in [3] and [4].

In this study, the basic molecular fault diagnosis approach

introduced in [2] is expanded in a number of ways. First, different

levels for fault probability are introduced for each molecule, which

are real numbers between 0 and 1. This allows the network

vulnerabilities to be parameterized using a parameter that changes

in a continuous way between 0 and 1. Then a method for

computing the vulnerabilities of molecules based on the contin-

uous fault probabilities is developed. Moreover, the impact of

different combinations of input activities on the activities of the

output molecules and also the levels of molecular vulnerabilities

are examined. Since Abdi et al. [2] assumed that only one

molecule can be faulty at a given time, in this study we expand this

approach to scenarios where two molecules are simultaneously

faulty. We compute the vulnerability level for each pair of

molecules, to understand how simultaneous faulty states of two

molecules can contribute to the malfunction of the network.

Another assumption considered by Abdi et al. [2] was the binary

activity model for molecules, i.e., a molecule could be either active

or inactive. This modeling approach has been used over years, to

characterize different types of networks; including signaling

networks (see, for example, the review articles [5]–[8]). Here we

extend the fault diagnosis technique by considering three activity

levels, i.e., active, partially active, and inactive states, and then

compute molecular vulnerability levels for the ternary case. This
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allows to evaluate the effect of having more than two activity states

on the computed vulnerabilities.

Methods

Caspase3 is a well characterized molecule that is critically involved

in cell death and cell survival. Several upstream signaling pathways,

typically originated from the ligands EGF, epidermal growth factor,

insulin and TNF (tumor necrosis factor), merge to regulate the

activity of caspase3 (Figure 1). This network is selected for this study

because it has been extensively characterized and experimentally

verified by several independent groups of scientists, and the

experimental data of the activity levels of the molecules measure

under different conditions are available for the comparisons with the

developed methods in this study [9]. There are seventeen interme-

diate molecules between the inputs and the output. To analyze this

network, we define the transition probability matrix, which basically

characterizes the network input-output functional relations. Accord-

ing to Figure 1 and the input-output relationships in Table 1 of [2],

constructed using the experimental findings of [9], the network

transition probability matrix M can be written as:

EGF, insulin, TNF

M~

P(0D000) P(1D000)

P(0D001) P(1D001)

P(0D010) P(1D010)

P(0D011) P(1D011)

P(0D100) P(1D100)

P(0D101) P(1D101)

P(0D110) P(1D110)

P(0D111) P(1D111)

2
666666666666666664

3
777777777777777775

~

1 0

0 1

1 0

1 0

1 0

1 0

1 0

1 0

2
666666666666666664

3
777777777777777775

:

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

caspase3 ~ 0 1

ð1Þ

Each element in the above matrix is a conditional transition

probability of the form P(caspase3DEGF,  insulin, TNF). For any

given set of 0/1 values for the inputs shown in (1), the matrix

specifies the probability of the output to be 0 or 1. For example,

according to the input-output relationships in Table 1 of [2], when

EGF and insulin are active and TNF is inactive, capsase3 be-

comes inactive, i.e., (EGF, insulin, TNF)~(1,1,0) results in

caspase3~0. This implies that P(caspase3~0DEGF~1,
insulin~1, TNF~0)~1 and P(caspase3~1DEGF~1, insulin
~1, TNF~0)~0. Note that the network matrix M in (1) agrees

with the experimental findings of [9]. Equations for the activity

of each molecule in terms of its input signals are provided in

Table S1.

When a molecule becomes faulty, due to mutations or some

other abnormalities, its activity level does not change in the

network, irrespective of its inputs signals [2]. Note that a

dysfunctional molecule is considered to be inactive, 0, and its

state remains unchanged, no matter what the states of its

regulatory inputs are. Since decreased expression or activity of

molecules occur in many human diseases, in this paper we focus

on the 0 status, reflecting the hypoactivity of a molecule. However,

increased activity or abundance of some signaling molecules are

reported in several diseased conditions as well. In such a scenario,

the same methods developed here can be repeated considering the

1 status, reflecting hyperactivity of a molecule. A faulty molecule in

the network changes the network matrix M. Assume the

probability of a molecule Xi in the network to be faulty is p, i.e.,

p~P(Xi is faulty). The caspase3 network matrix M can be

constructed using the equations in Table S1, by calculating the

conditional probabilities specified in (1). Depending on the faulty

molecule, the network matrix can take different forms. For the

caspase3 network we have observed that there are four different

network matrices: when AKT is faulty, M is given in (2); for a

faulty EGFR, M is provided in (3); a faulty MEKK1ASK1 results

in the M presented in (4); and when other molecules are faulty, M
takes the form given in (5). Note that when AKT is faulty, the

faulty network matrix in (2) is very different from the normal

Figure 1. The caspase3 network. The three input molecules are insulin, EGF and TNF, which regulate the output molecule, caspase3, via some
intermediate molecules.
doi:10.1371/journal.pone.0108830.g001
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matrix in (1). For EGFR and MEKK1ASK1, the faulty network

matrix differs from the normal matrix only in one row. The

network matrix does not change, when others molecules are faulty.

In what follows, we compute the vulnerability level of each

molecule in the network using the faulty network matrices given in

(2–5).

AKT is faulty

with probability p
M~

1
0

1{p

1{p

1{p

1{p

1{p

1{p

0
1

p

p

p

p

p

p

2
6666666666664

3
7777777777775

, ð2Þ

EGFR is faulty

with probability p
M~

1
0

1
1

1
1{p

1

1

0
1

0
0

0
p

0

0

2
666666666664

3
777777777775

, ð3Þ

MEKK1ASK1

is faulty with

probability p

M~

1
p

1
1

1
1
1

1

0
1{p

0
0

0
0
0

0

2
666666666664

3
777777777775

, ð4Þ

IKK, caspase8, ComplexI,

ComplexII, ERK, IRS1, NFkB,

JNK1, MEK, MK2, cFLIPL,

MKK3, MKK7,or p38

is faulty with

probability p

M~

1
0

1
1

1
1
1

1

0
1

0
0

0
0
0

0

2
666666666664

3
777777777775

: ð5Þ

Vulnerabilities of molecules in the caspase network
By definition, vulnerability level of a molecule in a network is

the probability that the network fails (does not provide the

expected output), when that molecule is dysfunctional [2]. The

vulnerability of a network to the dysfunction of each individual

molecule can be computed as follows, using the total probability

theorem [10]:

V ~
X
fP(incorrect outputDEGF, insulin,TNF)

|P(EGF,insulin,TNF)g:
ð6Þ

For eight equi-probable patterns of (EGF,insulin,TNF), the

vulnerability formula in (6) can be written as:

V ~ fP(0D001)zP(1D000)zP(1D010)zP(1D011)

zP(1D100)zP(1D101)zP(1D110)zP(1D111)g=8:
ð7Þ

The above conditional probabilities P(:D:) are elements of the

faulty network matrices M in (2–5). By substituting the elements of

the matrices of (2–5) into (7), the following equations can be

obtained for the vulnerability of each molecule in terms of its fault

probability p:

V ~

6p=8, AKT is faulty,

p=8, EGFR or MEKK1ASK1 is faulty,

0, otherwise:

8><
>:

ð8Þ

The above results are plotted in Figure 2. Based on the

above results, one can categorize the molecules in the network

into three groups: a highly vulnerable molecule (AKT), mole-

cules with low vulnerabilities (EGFR and MEKK1ASK1) and

molecules with zero vulnerabilities (the rest of the molecules).

This is further discussed in the Results and Discussion

sections.

Impact of input activities on the output activity
Output activity with no faulty molecule in the

network. Each input activity represents the probability of a

ligand binding to its receptor on the cell membrane. Beginning

from the case where all the molecules are functioning normally, we

study the impact of input activities on the output activity. Let

the parameters q1~P(EGF~1), q2~P(insulin~1) and q3~P
(TNF~1) be the input activities. Based on the experimentally-

verified caspase network input-output relations provided in Table

1 of [2] we have:

P(caspase3~1)~(1{q1)(1{q2)q3: ð9Þ

This equation is plotted in Figure 3 and explained in Results.

Output activity with one faulty molecule in the

network. When there is one faulty molecule in the network,

the caspase3 activity can be calculated using the total probability

theorem:

P(caspase3~1)~
X
fP(EGF, insulin, TNF)

|P caspase3~1DEGF, insulin, TNFð Þg:
ð10Þ

The term P(caspase3~1DEGF,insulin,TNF) can be obtained

from the second column of the network matrices in (2–5).
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Figure 3. Caspase3 activity in terms of the TNF activity q3. In this figure the activity of TNF changes from 0 to 1, whereas the activities of EGF
and insulin are the same, q1~q2, both fixed at 0.2 (blue graph), 0.5 (black graph), and 0.8 (green graph). Overall, caspase3 activity increases with TNF
activity. However, its activity decreases as EGF and insulin become more active.
doi:10.1371/journal.pone.0108830.g003

Figure 2. Vulnerability versus the fault probability p of each molcule in the caspase3 network. Vulnerability, which is the probability of
the network function failure, shows a non-decreasing trend as the fault probability of a molcule increases. Vulnerability is the highest when AKT is
faulty (black graph). When EGFR or MEKK1ASK1 is faulty, vulnerability is the same (blue graph), but less than AKT’s vulnerability. Vulnerability is zero
(green graph), when each of the rest of the molecules is faulty.
doi:10.1371/journal.pone.0108830.g002
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To see how the activity of a faulty molecule may affect the

output activity, when an input activity changes, consider the

example in which q3, the activity of the input TNF changes from 0

to 100%, whereas similarly to [2], activities of the other two inputs,

EGF and insulin, are fixed at 50%, i.e., q1~q2~1=2. Using (10),

the output activity can be written in terms of q3:

P(caspase3~1Dq1~q2~1=2)

~fP(1D000)(1{q3)zP(1D001)q3zP(1D010)(1{q3)

zP(1D011)q3zP(1D100)(1{q3)zP(1D101)q3

zP(1D110)(1{q3)zP(1D111)q3g=4:

ð11Þ

As discussed previously, the parameters P(:D:) in the above

formula depend on the faulty molecule we are studying. As some

examples, here we examine the output activity when the faulty

molecule has high vulnerability (AKT), low vulnerability (MEK-

K1ASK1) or zero vulnerability (IKK).

a) The faulty molecule is highly vulnerable: When AKT is faulty

with probability p, by replacing the parameters P(:D:) in (11) with

the second column of the network matrix in (2), the output activity

can be written as:

P(caspase3~1Dq1~q2

~1=2, AKT faulty with prob: p)

~0:25 q3zp(1{q3)zpq3f zp(1{q3)

zpq3zp(1{q3)zpq3g

~3(p=4)zq3=4:

ð12Þ

b) The faulty molecule has low or zero vulnerability: When

MEKK1ASK1 or IKK is faulty with probability p, by replacing

the parameters P(:D:) in (11) with the second columns of the

network matrices in (4) or (5), respectively, the output activity can

be written as follows:

P(caspase3~1Dq1~q2

~1=2, MEKK1ASK1 faulty with prob: p)

~0:25 1{pð Þq3f g~(1{p)q3=4,

ð13Þ

P(caspase3~1Dq1~q2

~1=2, IKK faulty with prob: p)

~q3=4:

ð14Þ

Figure 4. Caspase3 activity in terms of the TNF activity q3, when AKT is faulty. In this figure the activity of TNF changes from 0 to 1, whereas
the activities of EGF and insulin are the same, q1~q2~0:5. As a baseline, the black graph shows the output activity when there is no faulty molecule.
When AKT’s fault probability is small, p~0:1, the output activity slightly increases (blue graph). However, when AKT’s fault probability is large, p~0:9,
the output activity increases significantly (green graph).
doi:10.1371/journal.pone.0108830.g004
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Equations (12–14) are graphed in Figure 4, Figure 5 and

Figure 6, respectively, and their biological implications are

discussed in the Results section.

Vulnerabilities of pairs of faulty molecules.
To compute network vulnerabilities, we originally assumed a

single faulty molecule is present in the network at a given time.

Now we study the case where two molecules become simulta-

neously faulty. Let Xi and Xj represent two simultaneously faulty

molecules, such that they are both stuck at 0 (sa0). Therefore we

have P((Xi,Xj)isfaulty)~P(Xi~sa0,Xj~sa0)~1. Biologically,

this means that two molecules remain inactive, irrespective of

their input signals. By calculating the conditional probabilities

specified in (1) for all the double faults in the network, network

matrices for all the double faults are constructed and listed in

Equations (S1) - (S8). By substituting the elements of these

matrices into (7), network vulnerabilities for all possible double

faulty molecules are computed and listed in Table S2, for equi-

probable inputs. Sorted joint vulnerabilities, from the highest to

lowest values, are given in Table S3. A summary of Table S2 is

provided in Table S4, which includes the average of all

vulnerabilities associated with each molecule, when it is jointly

faulty with other molecules. Note that the diagonal elements of

Table S2 are single fault vulnerabilities, which are obtained by

substituting p~1 in (8).

Ternary fault diagnosis
In our previously published papers, we considered two

fundamental activity states of molecules, i.e., active or inactive

states. Now we propose a ternary activity model, where a

molecule could be active, partially active or inactive, repre-

sented numerically by 1, 1/2 and 0, respectively. This

modeling scenario is biologically relevant because in several

disease conditions the activity or the protein levels of molecules

are partially affected [7]. For example, phosphorylation of

AKT at Thr-308 is required for its activity, whereas the second

phosphorylation at Ser-473 can make the molecule more active

[11]. In what follows, we develop a ternary molecular fault

diagnosis method.

The developed ternary fault diagnosis method. The first

step is to write the input-output relationships for each molecule in

the network in a ternary format. This is because there are different

levels of activity in the network, i.e., inactive, partially active and

active states for each molecule, represented numerically by 0, 1/2

and 1, respectively. Using ternary logic [12], an equation for the

activity of each molecule in terms of its input signals is derived

(Table S5). Using these input-output relations, the network matrix

M for the ternary model is computed and presented in Equation

(S9).

Now we introduce a faulty network ternary model for the

caspase3 network, to analyze the impact of dysfunctional

molecules. Suppose the probability of a molecule Xi in the

network to be faulty is p, i.e., p~P(X i is  faulty). When a molecule

is faulty, its activity state does not change in response to its

regulators, and gets stuck at 0. This causes the network matrix in

(S9) to change. The faulty network matrix can be constructed by

calculating the conditional probabilities specified in (S9). Depend-

ing on the faulty molecule, the network matrix in the ternary case

can take six different forms, as listed in (S10–S15). In what follows,

Figure 5. Caspase3 activity in terms of the TNF activity q3, when MEKK1ASK1 is faulty. In this figure the activity of TNF changes from 0 to
1, whereas the activities of EGF and insulin are the same, q1~q2~0:5. As a baseline, the black graph shows the output activity when there is no faulty
molecule. When MEKK1ASK1’s fault probability is small, p~0:1, the output activity slightly decreases (blue graph). However, when MEKK1ASK1’s fault
probability is large, p~0:9, the output activity decreases significantly (green graph).
doi:10.1371/journal.pone.0108830.g005
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we compute the vulnerability level of each molecule in the network

using the faulty network matrices given in (S10–S15).

For twenty seven equi-probable ternary patterns of (EGF,
insulin, TNF), the vulnerability formula in (6) can be written as:

V~fP(
1

2
D000)zP(1D000)zP(0D00

1

2
)zP(1D00

1

2
)zP(0D001)

zP(
1

2
D001)zP(0D0

1

2
0)zP(1D0

1

2
0)zP(0D0

1

2

1

2
)zP(1D0

1

2

1

2
)

zP(0D0
1

2
1)zP(1D0

1

2
1)zP(

1

2
D010)zP(1D010)zP(

1

2
D01

1

2
)

zP(1D01
1

2
)zP(

1

2
D011)zP(1D011)zP(0D

1

2
00)zP(1D

1

2
00)

zP(0D
1

2
0
1

2
)zP(1D

1

2
0

1

2
)zP(0D

1

2
01)zP(1D

1

2
01)zP(0D

1

2

1

2
0)

zP(1D
1

2

1

2
0)zP(0D

1

2

1

2

1

2
)zP(1D

1

2

1

2

1

2
)zP(0D

1

2

1

2
1)zP(1D

1

2

1

2
1)

P(
1

2
D
1

2
10)zP(1D

1

2
10)zP(

1

2
D
1

2
1
1

2
)zP(1D

1

2
1
1

2
)zP(

1

2
D
1

2
11)

zP(1D
1

2
11)zP(

1

2
D100)zP(1D100)zP(

1

2
D10

1

2
)zP(1D10

1

2
)

zP(
1

2
D101)zP(1D101)zP(

1

2
D1

1

2
0)zP(1D1

1

2
0)zP(

1

2
D1

1

2

1

2
)

zP(1D1
1

2

1

2
)zP(

1

2
D1

1

2
1)zP(1D1

1

2
1)zP(

1

2
D110)zP(1D110)

zP(
1

2
D11

1

2
)zP(1D11

1

2
)zP(

1

2
D111)zP(1D111)g=27:

ð15Þ

The above conditional probabilities are elements of the faulty

network matrices M in (S10–S15). By substituting those elements

into (15), the following equations are obtained for the vulnerability

of each molecule in terms of its fault probability p:

V ~

18p=27, AKT is faulty,

7p=27, EGFR is faulty,

4p=27, MEKK1ASK1 is faulty,

3p=27, caspase8, ERK or MEK is faulty,

p=27, IRS1 is faulty,

0, otherwise:

8>>>>>>>><
>>>>>>>>:

ð16Þ

The above results are plotted in Figure 7 and discussed in

Results.

Results

In Figure 2 the vulnerability levels of molecules in the caspase3

network (Figure 1) are plotted in terms of the fault probability p,

using Equation (8). The figure reveals different fault behaviors in

the network, depending on the faulty molecule. According to the

figure, AKT has an important role in the function of the network.

When AKT is faulty, the network vulnerability rapidly increases

with p. On the other hand, the vulnerability is low and also less

sensitive to the changes in p for some molecules such as EGFR and

MEKK1ASK1. This means that their role is less critical to the

network function. For the rest of the molecules, the vulnerability is

zero. This finding is biologically relevant and in agreement with

the fact that molecular networks typically have high redundancy

and the function of signaling molecules are often compensable

through different mechanisms [2] [13].

Input-output activity relashionships in the presence or
absence of a faulty molecule

First we consider the case where there is no faulty molecule in

the network. Based on Equation (9), the graphs in Figure 3 show

how the capase3 activity changes with the input activities. When

activities of EGF and insulin are fixed at a certain level, increasing

the activity of TNF makes caspase3 more active. However, for a

fixed TNF activity, increasing the activity of EGF and insulin

reduces the activity of caspase3. These results are consistent with

the experimental data [9], i.e., activation of caspase3 by TNF and

the subsequent cell death are inversely correlated with the activity

of EGF and insulin.

To study possible impacts of faulty molecules on the output

molecule, we consider molecules with different vulnerability levels.

According to Equation (12), when AKT, a highly vulnerable

molecule, is faulty, we observe that the output activity can

significantly change (Figure 4), depending on the fault probability

of AKT. This is biologically relevant, since the activity of AKT has

a positive correlation with caspase3 activity [11]. On the other

hand, based on Equation (13), when a molecule with low

vulnerability such as MEKK1ASK1 is faulty, it makes only some

small changes to the output (Figure 5). When a molecule such as

IKK whose vulnerability is zero becomes faulty, Equation (14), no

change in the output activity is observed (Figure 6). This is because

when IKK is faulty, there are other molecules and pathways in the

network that allow the output to be properly regulated by the

input signals. In other words, the activity of IKK is readily

compensable in this network, whereas the activity of AKT is

required for propagation of input signals, to correctly regulate the

output activity.

The effect of input activities on vulnerabilities
In Supporting Information, Equation (S17) that relates vulner-

abilities to the input activities is derived. The results are graphed in

Figure 8 and Figure 9, to show how the vulnerability of a molecule

may depend on the inputs’ activity levels. When TNF activity is

low, vulnerability of AKT rapidly increases with the fault

probability p, whereas the vulnerability of other molecules is

almost zero (Figure 8). This indicates the critical role of AKT in

the network. When the activity of TNF is increased, we observe

that the vulnerability of AKT still rapidly increases with p, whereas

the vulnerabilities of other molecules are zero, except for EGFR

and MEKK1ASK1 (Figure 9). Due to the increased activity of

TNF, these two molecules now show some level of vulnerability,

which was not present when TNF activity was low.

Vulnerability levels of pairs of faulty molecules
So far we have discussed the case where there is only one faulty

molecule in the network, to understand the role of each individual

molecule in the failure of network. Now we discuss the results we

have obtained for a more complex scenario, where two molecules

in the network become simultaneously dysfunctional. Vulnerability

levels for all pairs of molecules are provided in Table S2. To better

comprehend the results, all pairs are sorted in Table S3 in a

descending order, according to their vulnerability levels. Analysis

of double faults shows that a pair with high vulnerability typically

includes one molecule that has high vulnerability, individually. In
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the caspase3 network, we notice that one of the molecules of the

pairs with high double fault vulnerability level is AKT. As shown

above, in this network AKT exhibits the highest vulnerability level

in the single fault analysis scenario (see Equation (8) and Figure 2).

Additionally, we observe that if a molecule has a low vulnerability

level in the single fault model, it typically exhibits low vulnerability

levels when paired with other low vulnerable molecules.

To further investigate double fault vulnerabilities, we consider

some examples. In Table S6 we have listed the network output, for

all different input combinations, when faulty molecules are AKT

or p38 or MEKK1ASK1, as well as the pairs of (AKT, p38) or

(AKT, MEKK1ASK1). Note that faulty (incorrect) outputs are

marked in italic bold. When AKT is faulty (stuck at 0 or sa0), the

number of incorrect outputs is 6, which results in the vulnerability

of 6=8~0:75 for AKT. Also when AKT is jointly faulty with p38,

the number of incorrect outputs is 6, which gives the vulnerability

of 6=8~0:75 for the pair of (AKT, p38). On the other hand, when

AKT and MEKK1ASK1 are jointly faulty, the number of

incorrect outputs in Table S6 becomes 4, which indicates the

vulnerability of 4=8~0:5. So, depending on what pairs are

dysfunctional, the vulnerability level of each pair could be

different.

Another way of analyzing double faults is to look at the

average of all the vulnerabilities associated with a molecule,

when it is jointly faulty with other molecules (Table S4).

Vulnerabilities for single faulty molecules are also provided in

Table S4 for comparison. We notice that if a molecule has a low

single fault vulnerability, on average it exhibits small double

fault vulnerabilities.

Ternary fault diagnosis and comparison with binary fault
diagnosis

Here we study the network fault behavior when each molecule

has three levels of activity. Using Equation (16), vulnerabilities of

different molecules are graphed in Figure 7. This study helps in

understanding how the prediction power changes, when the more

complex ternary model and equations are used for fault diagnosis.

Similarly to the binary activity case, vulnerabilities increase with

the fault probability p. Additionally, AKT still persistently shows

the highest vulnerability in the network. Compared to the binary

case (Equation (8) and Figure 2), in ternary model we observe

more resolution in the vulnerability values of molecules with lower

vulnerabilities, which is reflected by the higher number of

molecules with separate graphs in Figure 7. To investigate this

matter, in Figure 10 ternary and binary vulnerabilities are

graphed together, using Equations (8) and (16). For a highly

important molecule such as AKT, transition from binary to the

more complex ternary model results in a slight change in its

vulnerability. For some molecules such as EGFR and MEK-

K1ASK1, we observe slightly higher yet still small vulnerability

levels in the ternary model, compared to the binary model

(Figure 10). Vulnerabilities of the rest of the molecules have either

changed slightly in the ternary model or remained to be zero,

compared to the binary model. Their vulnerability values all fall

below 0.1 and are not graphed in Figure 10, to keep the figure

easy to read.

Analysis of SHP2 signaling network
We have also analyzed the experimentally-verified model of

SHP2 network [14] using the methodology that is proposed and

developed in this study. This large network is composed of three

Figure 6. Caspase3 activity in terms of the TNF activity q3, when IKK is faulty. In this figure the activity of TNF changes from 0 to 1, whereas
the activities of EGF and insulin are the same, q1~q2~0:5. We observe that the output activity does not change, whether IKK is faulty or not. This is
because IKK’s vulnerability is zero (as shown in Methods).
doi:10.1371/journal.pone.0108830.g006
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Figure 7. Vulnerability versus the fault probability p in the caspase3 network, copmuted using a ternary activity model. Upon
considering three levels of activity for each molecule, active, partially active, and inactive, vulnerability of each molecule is graphed in terms of p. We
observe that in the caspase3 network molecules are categorized into six groups, according to their vulnerability levels. Vulnerability is still the highest
when AKT is faulty (black graph). EGFR vulnerability (blue) is higher than MEKK1ASK1 vulnerability (green). Vulnerabilities of the rest of the molecules
are all below 0.1.
doi:10.1371/journal.pone.0108830.g007

Figure 8. Vulnerability versus the fault probability p for all the molecules in the caspase3 network, while TNF activity is low. Here
TNF activity is 0.2, whereas EGF and insulin activities are fixed at 0.5. We observe that the vulnerability of AKT rapidly increases with p, whereas the
vulnerability of other molecules are almost zero. This indicates the critical role of AKT in the network.
doi:10.1371/journal.pone.0108830.g008
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input molecules and many intermediate molecules that regulate

the output molecule SHP2 (Figure 11A). It has about seventy

interactions and multiple feedback loops [14]. Equations for the

activity of each molecule in terms of its input signals are provided

in Table S7. SHP2 is a nonreceptor phosphatase that is expressed

in every tissue. SHP2-mediated Ras-ERK1/2-MAP kinase path-

way is involved in regulation of cell survival, proliferation,

differentiation, adhesion and migration, depending on cell

contexts. Targeting the activity of SHP2 and other tyrosine

phosphatases is a novel strategy used in anticancer drug discovery

[15].

Analysis of single faults in the SHP2 network (Figure 11B) shows

that Abl, Gab2, LAT, TCRb, TCRp, and ZAP70 are highly

vulnerable molecules, Fyn has low vulnerability, and the rest of the

molecules have zero vulnerability. The critical roles of some of

these highly vulnerable molecules in cancer are well documented.

Abl is a protein tyrosine kinase that is not only critically involved in

the progression of many types of malignancies, but also its

inhibitor Gleevec, also known as Imatinib, is considered as a

breakthrough in targeted therapy of cancer [16]. Gab2 is a

scaffolding protein that contains various structural domains and

docking sites that serve as a platform for the assembly of signaling

systems. Gab2 contributes to an invasive and metastatic phenotype

in breast carcinogenesis and is known as a potential therapeutic

target in cancer therapy [17].

Double fault analysis of the SHP2 network (Figure 11C)

demonstrates that a pair with zero vulnerability typically includes

two molecules that have zero vulnerabilities, individually. How-

ever, a pair with at least one highly vulnerable molecule exhibits

high vulnerability (Figure 11C). These results agree with the

double fault analysis of the caspase network.

There are some cases that deserve further discussion. Grb2 and

Gads both have low vulnerabilities, individually. However, when

they are jointly faulty, the pair shows high vulnerability. This can

be explained as follows: According to Table S7, Gab2(t+
1) = LAT(t) & ZAP70(t) & (Gads(t) * Grb2(t)), where & and *

stand for AND and OR, respectively. The equation means that for

Gab2 to be active at the time instant t+1, LAT and ZAP70 and

either Gads or Grb2 have to be active at the previous time instant

t. When Grb2 and Gads are jointly faulty, stuck at 0, Gab2

remains inactive regardless of the states of LAT and ZAP.

According to the equation we have Gab2(t+1) = LAT(t) &

ZAP70(t) & (0*0) = LAT(t) & ZAP70(t) & 0 = 0. Since Gab2 is

the sole activator of SHP2, SHP2 remains inactive when both

Grb2 and Gads are stuck at 0. Under these circumstances and

according to our calculations, for four out of eight different input

combinations, the activity of SHP2 is different from its normal

states, which results is the vulnerability of 0.5 for the faulty pair of

Grb2 and Gads. Another similar case is the highly vulnerable pair

of Fyn and CD45, where none of them are highly vulnerable,

individually. Similarly to the previous case, this can be explained

using the equations in Table S7. In biological terms, many

complex trait disorders are reported to be associated with the

simultaneous dysfunction of more than one gene. In the Discussion

Section below, we provide the example of schizophrenia, where

simultaneous dysfunction of a few signaling molecules are reported

to be associated with the development of pathology [18,19].

Figure 9. Vulnerability versus the fault probability p for all the molecules in the caspase3 network, while TNF activity is high. Here
TNF activity is 0.8, whereas EGF and insulin activities are fixed at 0.5. We observe that the vulnerability of AKT rapidly increases with p, whereas the
vulnerabilities of other molecules are zero, except for EGFR and MEKK1ASK1. Due to the increased activity of TNF, these two molecules show some
level of vulnerability, which was not present when TNF activity was low.
doi:10.1371/journal.pone.0108830.g009
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Discussion

In this study, more advanced fault analysis methods are

developed and applied to caspase and SHP2 networks. We have

analyzed the networks under different assumptions and conditions.

In the first fault analysis paper [2], we considered the case where

there is only one single faulty molecule in the network at a given

time. Here we have extended the work by considering pairs of

simultaneously faulty molecules, and have developed a method for

calculating network vulnerabilities to the dysfunction of pairs of

molecules. The results indicate that high double fault vulnerabil-

ities in the casepase network are for cases where AKT is one of the

faulty molecules. To further analyze double faults, we have

computed the average of all the vulnerabilities associated with a

molecule, when it is jointly faulty with other molecules in the

network. It is observed that if a molecule has a low single fault

vulnerability, on average it exhibits small double fault vulnerabil-

ities.

Analysis of double faults in a more complex network such as the

SHP2 network provides further interesting results. In the SHP2

network, Grb2 and Gads both have low vulnerabilities, individ-

ually. However, when they are jointly faulty, the pair shows high

vulnerability. Although certain experiments are necessary to

confirm this specific finding empirically, this particular example

shows that changes in the activity of a single molecule may easily

be compensated and tolerated by the network. However, when it is

accompanied by changes in the activity of another molecule

involved in the regulation of the same output, then the

compensatory mechanisms may not be sufficient to overcome

the failure of the network. Analysis of double and multiple faults in

molecular networks is particularly important because they can be

used to model complex trait disorders. Complex trait disorders are

resulted from the dysfunction of multiple genes. The most

common human disorders are in fact complex trait disorders. In

a wide variety of complex human disorders, including cancer,

metabolic disorders such as diabetes, neurological disorders such

as Alzheimer’s disease, and psychiatric disorders such as schizo-

phrenia, depression and addiction, the critical roles of several

signaling molecules are consistently reported by multiple groups of

independent scientists. For example, in a complex disorder such as

schizophrenia, it has been consistently reported that several

specific signaling molecules, including AKT, DISC1, NRG1 and

calcineurin, are associated with the disease [18] [19] [20].

Moreover, a variety of neurotransmitter systems that are heavily

regulated through intracellular signaling networks, including

glutamate, dopamine, serotonin and GABA neurotransmitter

systems, have been reported for many decades to play a critical

role in the pathogenesis of schizophrenia.

Review of the literature published during the past few years

provides strong support for the involvement of AKT/GSK3

signaling pathway in the development of schizophrenia. A number

of studies strongly suggest that targeting this pathway is a

promising approach for development of novel psychotropic drugs

for treatment of schizophrenia and mood disorders. At the same

time, there are several other signaling molecules and pathways that

show conclusive evidence for being involved in the pathogenesis of

schizophrenia. Despite many differences in the approach of

scientists working on schizophrenia, they have come to a general

consensus that schizophrenia is most likely caused by the altered

function or expression of many genes. Such genes may individually

contribute only to a small risk, but their cumulative effects cause

the dysfunction of brain, which manifests itself by the clinical

Figure 10. Comparing vulnerabilities in the caspase3 network obtained via binary and ternary network models. In this figure dashed
and solid graphs represent vulnerabilities for binary and ternary activity models, respectively. In both models AKT shows high vulnerability. While in
the binary model EGFR and MEKK1ASK1 exhibit the same vulnerablity, the ternary model shows somewhat different yet still low vulnerability for
EGFR. Since vulnerablities for the rest of the molcules are very low in both models, they are not shown, to keep the figure easy to read.
doi:10.1371/journal.pone.0108830.g010
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picture we call schizophrenia [20]. Although there has been

significant progress in identification of the role of several signaling

molecules in schizophrenia, we still do not know how much each

gene contributes to the development of pathology. Therefore, we

need new systems biology tools that can quantify the role of

individual or multiple genes in disease development. The recently

developed fault diagnosis engineering technology for molecular

networks is a promising tool that has such capabilities and can

model complex trait disorders such as schizophrenia [18]. The

double fault model presented in this study can be extended to a

multi-fault model, in which simultaneous dysfunction of several

genes involved in schizophrenia could be studied. The presented

fault diagnosis approach can model a complex trait disorder such

as schizophrenia because it can quantify the role of each individual

gene, pairs of genes, as well as the combination of multiple genes

known to be involved in the pathogenesis of this complex trait

disorder [19].

In the previous fault analysis paper [2] we studied the case

where each molecule had an active or inactive state. Here we have

expanded the approach by considering three levels of activity for

each molecule, and have developed a method for calculating

network vulnerabilities for the ternary model. Our results for the

caspase network show that predictions obtained using the more

complex ternary model are about the same as the predictions of

the simpler binary approach. Our results suggest that for the

purpose of fault diagnosis it is more practical to start with the less

complex active/inactive fault diagnosis approach, to analyze the

malfunction of signaling networks. This assists in identifying many

molecules whose dysfunction do not contribute to the network

failure (molecules with low vulnerability) [2]. Afterwards, if one

may want to further study the role of molecules with medium or

high vulnerabilities, he can focus on building a less complex model

where only the small set of such molecules have three activity

levels. Overall, the important conclusion is that by increasing

the number of activity levels for each molecule, the complexity of

the model and its fault analysis significantly increases. However,

the predictive power of the model does not necessarily appear to

increase proportionally.

There have been some recent studies on tristability in genetic

networks [21] [22]: It is shown that the microRNA-transcription

factor self-activating chimera toggle switches can exhibit three

metastable states [21], whereas the microRNA/ZEB ternary

switch is shown to result in three phenotypes [22]. Our ternary

network analysis, however, is different from these studies. We have

focused on signaling networks with ligands as inputs and some

molecules as outputs, and have considered three activity levels for

each molecule. Our goal is to determine the vulnerability of the

network to the possible dysfunction of its molecular components.

This research goal is different from those considered in [21] and

[22], and the methodology developed here addresses a different

problem.
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