
 

Page 1 of 19 

On the Second Der ivative of a Gaussian Process Envelope 
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Abstract—In this paper  we explore some dynamic character istics of the envelope of a 

bandpass Gaussian process, which are of interest in wireless fading channels. Specifically, we 

show that unlike the first der ivative, the second der ivative of the envelope, which appears in a 

number  of applications, does not exist in the traditional mean square sense. However, we prove 

that the envelope is twice differentiable almost everywhere (with probability one), if the power  

spectrum of the bandpass Gaussian process satisfies a cer tain condition. We also der ive an 

integral-form for  the probability density function of the second der ivative of the envelope, 

assuming an arbitrary power  spectrum. 

 

Index Terms—Envelope, Envelope second der ivative, Gaussian process, Rayleigh process, Mean 

square differentiability, Almost everywhere differentiability, Differentiability 

with probability one, Fading channels. 

 

List of figure captions: 

 

Fig. 1.  The joint probability density function of R′′  and ′Θ  for two different power spectra: 

Upper: Exponential non-symmetric spectrum ( ) exp( ), 2 2I m mw f f f f f= − − < − < , 

Lower: Gaussian symmetric spectrum 2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 

 

Fig. 2.  The probability density function of R′′  for two different power spectra: 

Upper: Exponential non-symmetric spectrum ( ) exp( ), 2 2I m mw f f f f f= − − < − < , 

Lower: Gaussian symmetric spectrum 2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 

 

Fig. 3.  The joint probability density function of R and R′′  for the Gaussian symmetric spectrum 
2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 
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I . I NTRODUCTION 

The envelope of a bandpass Gaussian process is a slowly varying process that conveys useful 

information about the Gaussian process. For an arbitrary power spectrum, the envelope has a Rayleigh 

probability density function (PDF) [1], while it has been shown by several authors, independently, that 

its first derivative has a Gaussian PDF [2] [3] [4] [5] [6]. However, only the conditional PDF of the 

envelope second derivative has been studied so far, assuming an even-symmetric power spectrum [7]. 

On the other hand, in many real world cases such as wireless propagation channels where the 

scattering of waves might be nonisotropic, experimental results have shown that the underlying 

random process has a nonsymmetric power spectrum in general [8]. So, the assumption of having a 

power spectrum which is not necessarily even-symmetric is far from being of just intellectual or 

theoretical interest and we need to take into account this fact in deriving the PDF of the envelope 

second derivative. 

The first derivative of the envelope can be shown to exist in the mean square (MS) sense. 

However, we prove that the second derivative does not exist in the MS sense. It seems that this fact has 

been overlooked in those studies [1] [7] [9] [10] [11] [12] where the second derivative of the envelope 

has been of concern. Obviously, until it can be demonstrated that the envelope is twice differentiable in 

some sense, it is meaningless to talk about its PDF and the associated statistical properties. In this 

paper we show that the second derivative of the envelope exists almost everywhere (AE). Using the 

equivalent terminology, the envelope is twice differentiable with probability one. This allows us to talk 

about the PDF of the envelope second derivative and its statistical characteristics. 

The rest of the paper is organized as follows. In Section II we prove that the envelope is twice 

differentiable in the AE sense and not the MS sense. In order to derive the PDF of the envelope second 

derivative for the general case, i.e., an arbitrary power spectrum, we derive the joint PDF of the 

envelope and phase and their first two derivatives in Section III. Then we show that the PDF of the 

envelope second derivative can be expressed in terms of a single-fold integral, which cannot be solved 

analytically and needs to be computed numerically. The paper concludes with a summary given in 

Section IV. 
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I I . SECOND-ORDER DIFFERENTIABILITY OF THE ENVELOPE 

According to the Rice’s representation [13] [14], a stationary, bandpass, and zero-mean Gaussian 

process ( )I t  can be written as: 

( ) ( )cos2 ( )sin2c m s mI t I t f t I t f t= −π π , (1) 

where mf  is a representative midband frequency, and ( )cI t  and ( )sI t  are two joint stationary, lowpass, 

and zero-mean Gaussian processes. Using the polar representation we obtain: 

( ) ( )cos[2 ( )]mI t R t f t t= + Θπ , (2) 

in which ( )R t  and ( )tΘ  are the envelope and phase of ( )I t , respectively, defined by: 

2 2( ) ( ) ( )c sR t I t I t= + , tan ( ) ( ) ( )s ct I t I tΘ = . (3) 

In order to investigate the first- and the second-order MS differentiability of R(t), we need the 

autocorrelation function of ( )R t , ( ) [ ( ) ( )]R E R t R tℜ = +τ τ , given in p. 170 of [15]: 

0 2
2 1

1 1
( ) , ;1; ( )

2 2 2R I

b
F

− −� �ℜ = � �
� �

πτ ρ τ , (4) 

where nb  is the nth spectral moment of ( )I t : 

0
(2 ) ( ) ( )n n

n m Ib f f w f df
∞

= −�π , (5) 

and ( )Iw f , 0f ≥ , is the one-sided power spectrum of ( )I t , concentrated around mf  and with a 

bandwidth much smaller than mf . In Eq. (4), ( )2 1 .,.;.;.F  is the hypergeometric function [16], 

2 2
0( ) ( ) ( )I g h b= +ρ τ τ τ , where ( ) [ ( ) ( )] [ ( ) ( )]c c s sg E I t I t E I t I t= + = +τ τ τ  is the autocorrelation 

function of both ( )cI t  and ( )sI t  in (1), whereas ( ) [ ( ) ( )] [ ( ) ( )]c s s ch E I t I t E I t I t= + = − +τ τ τ  is the 

crosscorrelation function between ( )cI t  and ( )sI t . According to [1], ( )g τ  and ( )h τ  can be expressed 

in terms of ( )Iw f : 

0
( ) ( )cos[2 ( ) ]I mg w f f f df

∞
= −�τ π τ ,  

0
( ) ( )sin[2 ( ) ]I mh w f f f df

∞
= −�τ π τ . (6) 

We assume that both ( )g τ  and ( )h τ  are differentiable up to order four. 

Based on the following relations, obtained according to (5) and (6): 
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(4)
0 2 4

(4)
1 3

(0) , (0) 0, (0) , (0) 0, (0) ,

(0) 0, (0) , (0) 0, (0) , (0) 0,

g b g g b g g b

h h b h h b h

= = = − = =

= = = = − =

� �� ���

� �� ���
 (7) 

it can be easily verified that: 

2
0 2 1

2
0

2 4
4 1 3 1 2 1(4)

2 3 4
0 0 0 0

(0) 1,

(0) 0,

(0) ,

(0) 0,

(0) 4 6 3 ,

I

I

I

I

I

b b b

b

b bb b b b

b b b b

=
=

− +=

=

= − + −

�

��

���

ρ
ρ

ρ

ρ

ρ

 

(8)

 

where dot denotes differentiation with respect to τ . Now we list some properties of the 

hypergeometric function [16], which we need in the sequel: 

2 1 2 1

1 1 1 1 4
, ;1;1 , ;2;1

2 2 2 2
F F

− −� � � �= =� � � �
� � � � π

, 

2 1

3 3
, ;3;1

2 2
F
� � = ∞� �
� �

, 

2 2
2 1 2 1

1 1 1 1
, ;1; , ;2;

2 2 2 2 2

d z
F z F z

dz

− −� � � �=� � � �
� � � �

, 

2 2
2 2 2

2 1 2 1 2 12

1 1 1 1 1 3 3
, ;1; , ;2; , ;3;

2 2 2 2 2 4 2 2

d z
F z F z F z

dz

− − � 	� � � � � �= +� � � � � �
 �
� � � � � �� 


. (9) 

Let 0 0b ≠ , whereas 1b  up to 4b  are finite real numbers. Since R(t) is a wide sense stationary 

process, it is MS differentiable if and only if ( )Rℜ τ  is twice differentiable at 0=τ  [13] [14] [17]. 

Based on (4), (8), and (9) we obtain: 

2
0 2 1

0

(0)R

b b b

b

−ℜ = −�� , (10) 

which demonstrates the MS differentiability of R(t) as | (0) |Rℜ < ∞�� . Similarly, R(t) is twice MS 

differentiable if and only if the fourth derivative of ( )Rℜ τ  exists at 0=τ . However, according to (4), 

(8), and (9), we obtain the following relation: 

2
0(4) 2 2 (4) 2

2 1 2 12
1 1

1 1 1 1
(0) 3 (0) , ;1; (0) , ;1;

2 2 2 2 2R I I

z z

b d d
F z F z

dz dz

π ρ ρ
= =

� 	− − − −� � � �ℜ = +
 �� � � �
� � � �� 


�� , (11) 
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which simplifies to (4) (0)Rℜ = ∞ . Hence, R(t) is not MS differentiable, twice. Notice that the identity 

(4)(0) (0)R R′′ℜ = ℜ  [14] yields 2[ ]E R′′ = ∞ . On the other hand, a simple expression is given in [7] for 

2[ | ]E R R′′ , assuming an even-symmetric power spectrum. By averaging this result with respect to R, 

we obtain 2[ ]E R′′ = ∞  for an even-symmetric power spectrum, in agreement with our finding for the 

more general case of an arbitrary power spectrum. 

So far, we have shown that the envelope is not twice MS differentiable. Nevertheless, in the 

following theorem, we prove that the envelope is twice AE differentiable: 

Theorem: For the stationary, bandpass, and zero-mean Gaussian process ( )I t  in (1), with the 

one-sided power spectrum ( )Iw f , let: 

4

0
| | ( )m If f w f dfα

∞
+− < ∞� , (12) 

for some real 0α > . Then ( )R t , the envelope of ( )I t , is twice AE differentiable. In other words, 

( )R t′′  exits almost everywhere (with probability one). 

Proof: Let us define the lowpass-equivalent complex envelope of ( )I t  as 

( ) ( ) ( ) ( )exp[ ( )]c st I t j I t R t j t= + = Θ� , where 2 1j = − . Clearly, ( )t�  is a complex, stationary, 

lowpass, and zero-mean Gaussian process with the two-sided power spectrum ( ) ( )I mw f w f f= +
�

, 

concentrated around 0f = , and the autocorrelation function 

1 *
2( ) [ ( ) ( )] ( ) ( )E t t g j hτ τ τ τℜ = + = +

�
� � , where *  denotes the complex conjugate1. Based on (6), it is 

easy to verify that ( )w f
�

 is the Fourier transform of ( )τℜ
�

. Using the new notation, the condition in 

(12) can be expressed in terms of ( )w f
�

 as 4| | ( )f w f dfα∞ +
−∞ < ∞� �

. Based on Theorem 5.2 in p. 46 of 

[17], (4)( ) ( )τ τ′′ℜ = ℜ
� �

 is a continuous function. Since 4( ) (2 ) ( )w f f w fπ′′ =
� �

 [14], (12) implies that 

| | ( )f w f dfα∞
′′−∞ < ∞� �

. Now, based on the continuity of ( )τ′′ℜ
�

 and the convergence of 

| | ( )f w f dfα∞
′′−∞� �

 for some real 0α >  by hypothesis, Theorem 6.5 in p. 54 of [17] tells us that the 

sample functions of the complex, stationary, lowpass, and zero-mean Gaussian process ( )t′′�  are 

continuous with probability one.2 In other words, ( )t�  is twice AE differentiable. This simply means 

                                                                                                                                                                       
1 In this paper, the autocorrelation function of a stationary real process ( )Z t  is defined as ( ) [ ( ) ( )]Z E Z t Z tτ τℜ = + , 

whereas for a stationary complex process ( )t� , the definition is *1
2( ) [ ( ) ( )]E t tτ τℜ = +

�
� � . 

2 Strictly speaking, there exists a process equivalent to ( )t′′�  which possesses continuous sample functions with 

probability one [17]. 



Page 6 of 19 

that its real and imaginary parts, ( )cI t  and ( )sI t , are twice AE differentiable as well. Notice that based 

on the following relation, derived from (3): 

( ) ( ) ( ) ( )
( )

( )
c c s sI t I t I t I t

R t
R t

′ ′+′ = , (13) 

( )R t′  exists with probability one, as ( )cI t′  and ( )sI t′  exist with probability one. 

To complete the proof, we take the derivative of (13) which yields: 

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
c c s s c sI t I t I t I t I t I t R t

R t
R t

′′ ′′ ′ ′ ′+ + + −′′ = . (14) 

Since we have shown that all the derivatives in (14), i.e., ( )cI t′ , ( )sI t′ , ( )cI t′′ , ( )sI t′′ , and ( )R t′  exist with 

probability one, we conclude that ( )R t′′  exists with probability one as well. In other words, ( )R t  is 

twice AE differentiable. Q.E.D. 

The instantaneous power, defined by 2( ) ( )P t R t= , is a process of interest in some applications 

[18] and inherits several properties of ( )R t .3 According to [18], p. 60, the autocorrelation function of 

( )P t , defined by ( ) [ ( ) ( )]P E P t P tτ τℜ = + , can be written as 

2 2 2
0( ) 4 4[ ( ) ( )]P b g hτ τ τℜ = + + . 

Since we have already assumed that both ( )g τ  and ( )h τ  are differentiable up to order four, the fourth 

derivative of ( )P τℜ  exists at 0=τ , which implies that ( )P t  is twice MS differentiable. Therefore, in 

those applications where ( )P t  can be used in place of ( )R t , one can still employ the notion of MS 

differentiability. 

We end this section with an interesting observation. The derivative of the phase in (3), ( )t′Θ , is 

another process of interest in fading channels, as it represents the random frequency modulation (FM) 

of the fading signal in wireless channels [20]. Similar to ( )R t′′ , it is proved in Theorem 9.3 in p. 73 of 

[17] that ( )t′Θ  exists in the AE sense and not the MS sense. Other examples of such a process can be 

found in p. 537 of [21] and p. 67 of [22]. 

                                                                                                                                                                       
3 For example, every maximum of ( )R t  is a maximum of ( )P t . This fact is used in [19] to calculate the expected number 

of maxima of ( )R t , a problem which is easier to solve for ( )P t . 
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I I I . ( )Rp r′′′′′′′′ ′′′′′′′′  FOR AN ARBITRARY POWER SPECTRUM  

In this section, we concentrate on the PDF of the envelope second derivative, a process that we 

proved to exist in the AE sense, and not the traditional MS sense. For 0t , an arbitrary instant of time, 

the six dimensional random vector [ ]T
c s c s c sI I I I I I′ ′′ ′ ′′=rectV , with 

0 0 0 0 0 0( ), ( ), ( ), ( ), ( ), ( )c c s s c c s s c c s sI I t I I t I I t I I t I I t I I t′ ′ ′′ ′′ ′ ′ ′′ ′′≡ ≡ ≡ ≡ ≡ ≡ , and T as the transpose 

operator, is a Gaussian vector with zero mean-vector and the following covariance matrix [1]: 

0 1 2

1 2 3

2 3 4

0 1 2

1 2 3

2 3 4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

b b b

b b b

b b b

b b b

b b b

b b b

−� 	

 �−
 �

 �− −

= 
 �− −
 �

 �−

 �

−
 �� 


M . (15) 

The PDF of rectV  can be written as: 

1
3

1 1
( ) exp

8 2
Tp

B
−−� �= � �

� �rectV rect rect rectv v M v
π

, (16) 

where 1−M  is the inverse of M . The adjoint of M , denoted by adj( )M , is given by [1]: 

0 1 2

1 22 3

2 3 4

0 1 2

1 22 3

2 3 4

0 0 0

0 0 0

0 0 0
adj( )

0 0 0

0 0 0

0 0 0

B B B

B B B

B B B

B B B

B B B

B B B

−� 	

 �−
 �

 �− −

= 
 �− −
 �

 �−

 �

−
 �� 


M , (17) 

where: 

3 2 2
0 2 4 1 2 3 2 0 3 1 4

2
0 2 4 3

1 1 4 2 3

2
2 1 3 2

2
22 0 4 2

3 0 3 1 2

2
4 0 2 1

2 det( ),

( ) ,

( ) ,

( ) ,

( ) ,

( ) ,

( ) ,

B b b b bb b b b b b b

B b b b B

B bb b b B

B bb b B

B b b b B

B b b bb B

B b b b B

= + − − − =

= −
= − −

= −

= −
= − −

= −

M

 (18)
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and det( )M  is the determinant of M . Clearly, 1adj( ) det( ) −=M M M . Since the elements of rectV  are 

linearly independent, det( ) 0>M  [14]. Similarly, 0B >  as B is the determinant of the covariance 

matrix of three linearly independent random variables , ,c sI I ′  and cI ′′ . Moreover, using the Schwarz 

inequality [14], it can be easily verified that 0B , 22B , and 4B  are also positive. 

According to (3), it can be easily shown that [1]: 

2

2

cos ,

sin cos ,

cos 2 sin cos sin ,

sin ,

cos sin ,

sin 2 cos sin cos ,

c

s

c

s

c

s

I R

I R R

I R R R R

I R

I R R

I R R R R

= Θ
′ ′ ′= Θ + Θ Θ
′′ ′′ ′ ′ ′ ′′= Θ − Θ Θ − Θ Θ − Θ Θ

= Θ
′ ′ ′= Θ − Θ Θ
′′ ′′ ′ ′ ′ ′′= Θ + Θ Θ − Θ Θ + Θ Θ

 

(19)

 

where we have the six dimensional random vector [ ]TR R R′ ′′ ′ ′′= Θ Θ ΘpolarV , with 

0 0 0 0 0 0( ), ( ), ( ), ( ), ( ), and ( )R R t R R t R R t t t t′ ′ ′′ ′′ ′ ′ ′′ ′′≡ ≡ ≡ Θ ≡ Θ Θ ≡ Θ Θ ≡ Θ . The PDF of 

polarV  can be determined from the PDF of rectV  in (16) as: 

( )
( )

( )

p
p

J
= rect

polar

V polar
V polar

polar

v
v

v
, (20) 

in which (.)J  is the Jacobian [14] of the transformation →rect polarV V  in (19): 

1,...,6, ,
1,...,6

1,...,6, ,
1,...,6

1
( ) det

det
kk

k
k

J =
=

=
=

� �� 	= =� �
 � � �� 	� 
� �
� �
 �
� 
� �

polar polar rect

rect polar

v v v

v v
�

�

��

∂ ∂
∂ ∂

. (21) 

Based on (19), it can be shown that 3( ) 1J r= −polarv . So, by replacing (.)p
rectV  in (20) with (16), and 

after some algebraic manipulations, we obtain: 

3

3 2

1
( ) exp ( )

8 2

r
p Q

B B

−� �= � �
� �polarV polar polarv v

π
, (22) 

where: 

2 2 2 2 2 2 2
0 1 2 22

2 2 3
3

2 2 2 2 2 4 2 2
4

( ) 2 2 ( ) ( )

2 ( 2 )

( 4 2 4 ).

Q B r B r B rr r B r r

B r rr r rr

B r r rr r rr r

′ ′′ ′ ′ ′= + − − + +
′ ′ ′′ ′ ′ ′ ′′− − + − −

′′ ′ ′ ′′ ′ ′ ′ ′ ′′ ′′+ + − + + +

polarv θ θ θ
θ θ θ θ

θ θ θ θ θ θ
 

(23)
 

Notice that ( )Q polarv  is independent of θ . Moreover, rearranging the terms in ( )Q polarv  as: 
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2 2 2 2 2 2
0 1 2 22

2 3 2 2 2 4
3 4

2 2 2 2
22 3 4 3 4 4

( ) 2 2 ( )

2 ( ) ( 2 )

( 4 4 ) 2 ( 2 ) ,

Q B r Br B rr r B r

B rr r B r rr r

B B B r rr B B B r

′ ′′ ′ ′= + − − +
′′ ′ ′ ′′ ′′ ′ ′− − + − +

′ ′ ′ ′ ′ ′′ ′′+ + + + + +

polarv θ θ θ
θ θ θ θ

θ θ θ θ θ
 

(24)
 

reveals that as well as θ , integration of ( )p
polarV polarv  with respect to ′′θ  can be done easily according 

to the following result in p. 307 of [23]: 

2
2exp( ) exp , 0

4
z z dz

∞

−∞

� �
− − = >� �

� �
�

π νµ ν µ
µ µ

. (25) 

Note that in our case 2 2
4 (2 )B r B=µ , which is positive. Hence, integration of ( )p

polarV polarv  with 

respect to θ  and ′′θ  gives the following result: 

2

0

2
3 2 2

3 42
4 4

( , , , ) ( )

2 1
2 exp 4 4

2

RR Rp r r r p d d

B B
B B r

r B B B

∞

′ ′′ ′Θ ′′=−∞ =
′ ′′ ′ ′′=

� �� �� �′ ′ ′= × + +� �� �� �� �� �� �

� � polarV polarv
π

θ θ
θ θ θ

ππ θ θ

  

2 2 2 2 2 2
0 1 2 223

2 3 2 2 2 4
3 43 2

2 2
22 3 4

2 2 ( )
1

exp 2 ( ) ( 2 )
8 2

( 4 4 )

B r B r B rr r B r
r

B rr r B r rr r
B B

B B B r

′ ′′ ′ ′� �+ − − +� �
� �− � �′′ ′ ′ ′′ ′′ ′ ′× − − + − +� �� �

� �� �′ ′ ′+ + +� �� �

θ θ θ
θ θ θ θ

π
θ θ

. (26) 

Simplification of the above result yields: 

( , , , ) ( , , ) ( )RR R RR Rp r r r p r r p r′ ′′ ′ ′′ ′ ′Θ Θ′ ′′ ′ ′′ ′ ′=θ θ , (27) 

where: 

2 2 2 2 2 22
0 1 2 22

2 3 2 2 2 42
3 40

2 2 ( )1
( , , ) exp ,

2 ( ) ( 2 )22
RR

B r B r B rr r B rr
p r r

B rr r B r rr rBb B
′′ ′Θ

′ ′′ ′ ′� �+ − − +� �−′′ ′ = � �� �� �′′ ′ ′ ′′ ′′ ′ ′− − + − +� �� �

θ θ θ
θ

θ θ θ θπ
 (28) 

2

22

1
( ) exp

22
R

RR

r
p r′

′′

� ′ �−′ = � �
� �σπσ

, (29) 

and: 

22
4 0 2 1 42

2
0 022 4 3

R

B B b b b B

b b BB B B
′

−= = =
−

σ . (30) 

To check the validity of (27)-(30), we consider some known results. Integration of (28) with respect to 

r ′′  and ′θ  yields 2
0 0( ) exp( 2 )Rp r r r b b= −  [1], while after integrating (28) with respect to r and r ′′  
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we obtain 2 2 3 2
0 2 1 0 1 2 0( ) ( )( 2 ) (2 )p b b b b b b b−

′Θ ′ ′ ′= − − +θ θ θ  [9]. It is easy to verify 2
0[ ] 2E R b=  using 

the expression given for ( )Rp r , which is equal to (0)Rℜ , calculated according to (4) and (9). Also 

notice that the identity (0) (0)R R′ℜ = −ℜ��  [14], in conjunction with (10), results in 2 2
0 2 1 0( )R b b b b′ = −σ , 

in complete agreement with (30). 

As can be deduced from (27) and (29), R′  is a Gaussian random variable, independent of R and 

R′′ . The Gaussianity of R′  and also its independence of R have been reported in [2] [4] [5] [6] for an 

arbitrary ( )Iw f , while for a symmetric ( )Iw f  about mf , these properties are given in [7] and p. 75 of 

[24]. It may be worth mentioning that although the random variable R′  is independent of R  and R′′ , it 

does not necessarily mean that the random process ( )R t′  is independent of ( )R t and ( )R t′′ . For 

example, as suggested by one of the referees, it can be easily shown that ( )R t′  and ( )R t  are dependent 

random processes. In fact, the crosscorrelation function between ( )R t  and ( )R t′ , defined by 

( ) [ ( ) ( )]RR E R t R tτ τ′ ′ℜ = + , is given by ( ) ( )RR Rτ τ′ℜ = ℜ�  [14], with ( )R τℜ  given in (4). Clearly, 

[ ( ) ( )]E R t R t τ′ +  is not identically zero, whereas [ ( )] 0E R t τ′ + =  for all t and τ , according to (29). 

Therefore, [ ( ) ( )] [ ( )] [ ( )]E R t R t E R t E R tτ τ′ ′+ ≠ + , which implies that ( )R t  and ( )R t′  are dependent 

random processes. Another example of this sort can be found in p. 170 of [15]. 

To obtain ( )Rp r′′ ′′ , first we need to derive a closed-form expression for either ( , )RRp r r′′ ′′  or 

( , )Rp r′′ ′Θ ′′ ′θ . The bivariate PDF ( , )RRp r r′′ ′′  can be written in terms of ( , , )RRp r r′′ ′Θ ′′ ′θ  in (28) as: 

42 2 2
0 2 4

2 2
10

2 1
( , ) exp exp

2 22
i

RR i
i

r B r B rr B r
p r r d

B Bb B

∞

′′ ′=−∞
=

′′ ′′− + −� �� �′′ ′ ′= � � � �−� � � �
��θ δ θ θ

π
, (31) 

where: 

1 1 3

2 22 2 4

2
3 3

2
4 4

2( ) ,

[( 2 ) 2 ] ,

2 ,

.

B r B r r

B B r B r r

B r

B r

′′= −
′′= + −

=
=

δ
δ
δ
δ

 

(32)

 

The integral in (31) has not been addressed in [23] and seems that cannot be written in terms of known 

mathematical functions. However, in Appendix A we derive a closed-from expression for ( , )RRp r r′′ ′′ , 

assuming an even-symmetric power spectrum. On the other hand, the bivariate PDF ( , )Rp r′′ ′Θ ′′ ′θ  can 

be expressed in terms of ( , , )RRp r r′′ ′Θ ′′ ′θ  in (28) as: 
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22
4 2

2 20
10

1 1
( , ) exp exp

2 22
i

R ir
i

B r
p r r r dr

B Bb B

∞

′′ ′Θ =
=

′′ −� �� �′′ ′ = � � � �−� � � �
��θ λ

π
, (33) 

in which: 

2
1 2 3 4

2 3 4
2 0 1 2 22 3 4

2( ) ,

2 (2 ) 2 .

B B B r

B B B B B B

′ ′ ′′= − + +
′ ′ ′ ′= + + + + +

λ θ θ
λ θ θ θ θ

 
(34)

 

Since the covariance matrix M  in (15) is positive definite, its adjoint, given in (17) is positive definite 

as well. This implies that for any nonzero vector x , we have adj( ) 0T >x M x . The particular vector 

2[ 1 0 0 0]T′ ′= − −x θ θ  yields 2adj( ) 0T = >x M x λ , which holds for any ′θ . On the other 

hand, we have the following result given in p. 338 of [23]: 

2 2
2 2

2 50

2
exp( 2 ) exp erfc , 0

2 4
z z z dz

∞ � �� �− +− − = + >� �� � � �� � � �
�

ν π ν µ ν νµ ν µ
µ µ µ µ

, (35) 

where: 

2

0

2
erfc( ) 1 exp( )

z
z s ds= − −�π

.  

Notice that the convergence condition 0µ >  in (35) corresponds to 2 0λ >  in (33). Therefore, based 

on (35), the bivariate PDF ( , )Rp r′′ ′Θ ′′ ′θ  can be obtained by simplifying (33) to: 

3 2 2 5 2 2 2 2
1 4 1 1

1 2 1 2 3 22 2 1 2 1 2 2 2 2
0 2 0 2 2 2 2

( , ) exp 1 erfc exp
4 2 8 4 8 2R

B B r B r
p r

b B b B B B
′′ ′Θ

� �′′ � � � ′′ �− � �′′ ′ = + + � �� � � �� � � �− −� � � � � �� �

λ λ λ λθ
π λ π λ λ λ λ

, (36) 

where: 

2 2 2
0 4 2 1 4 2 3 22 4 32( ) ( )B B B B B B B B B B′ ′= − + − + −λ θ θ . 

Note that the discriminant of the quadratic equation ( ) 0λ θ ′ ≡  can be shown to be 

44 det(adj( )) 0B− <M , which along with 2 3
22 4 3 0 0B B B b B− = > , proves that 0>λ  for any ′θ . We 

have already shown the same property for 2λ . The two properties 0>λ  and 2 0>λ  assure that the 

second exponential function in (36) does not blow up as | |r ′′  increases. In Fig. 1 we have plotted 

( , )Rp r′′ ′Θ ′′ ′θ  for two different power spectra: the exponential non-symmetric spectrum 

( ) exp( ), 2 2I m mw f f f f f= − − < − < , and the Gaussian symmetric spectrum 

2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . Apparently, it is not possible to derive a closed-form 
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solution for ( )Rp r′′ ′′  by integrating ( , )Rp r′′ ′Θ ′′ ′θ  in (36), assuming an arbitrary power spectrum. Hence 

we leave it as 

( ) ( , )R Rp r p r d
θ

θ θ
∞

′′ ′′ ′Θ′=−∞
′′ ′′ ′ ′= � . (37) 

In Fig. 2 we have plotted ( )Rp r′′ ′′  for the above exponential and Gaussian spectra. 

It may be argued that based on the following representations for R′′ , a closed-form expression 

may be obtained for ( )Rp r′′ ′′ : 

0 0

20

( ) 2 ( )
lim
h

R t h R R t h
R

h→

− − + +′′ = , (38) 

0

0

( )
lim
h

R t h R
R

h→

′ ′+ −′′ = . (39) 

The multivariate joint PDF of ( )R t  is given in [25] and [26], in two different complicated forms (see 

also Theorem 6 in p. 37 of [27]). For the trivariate PDF, which we need in (38), the reader may refer to 

p. 92 of [17], p. 67 of [28], or [29] (see also [30]). However, deriving an expression for ( )Rp r′′ ′′ , based 

on the representation given in (38), seems to be very hard. On the other hand, a quick look at [31] 

immediately reveals that even for a symmetric power spectrum, the bivariate PDF of ( )R t′  is so 

complicated that makes (39) useless for our purpose. So, neither (38) nor (39) help us in finding a 

compact form for ( )Rp r′′ ′′  in terms of tabulated functions. 

IV. CONCLUSION 

In this paper and for a bandpass Gaussian process with any power spectrum, we have shown that 

the envelope second derivative does not exist in the mean square sense. However, we have proved that 

the envelope is twice differentiable almost everywhere (with probability one), provided that the power 

spectrum of the Gaussian process meets a certain condition. We have also derived an integral-form for 

the probability density function of the envelope second derivative. One immediate application of the 

results of this paper is the characterization of the dynamic behavior of multipath fading channels [32] 

[33], where the derivatives of the envelope and the associated probability density functions are of 

concern. 
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APPENDIX A 

( , )RRp r r′′′′′′′′ ′′′′′′′′  FOR AN EVEN-SYMMETRIC POWER SPECTRUM [34] 

When ( )Iw f  has even symmetry about mf , we obtain 1 3 0b b= =  and then 1 3 0B B= = . For this 

particular case, the integral in (31) can be expressed in terms of the parabolic cylinder function, 

available in standard mathematical softwares such as Mathematica©. 

For a symmetric ( )Iw f  we have 1 3 0= =δ δ  in (32). According to the following relation in p. 

337 of [23]: 

2
1 2 2

0
exp( ) (2 ) ( )exp , 0, 0

8 2
z z z dz D

∞
− −

−

� �� �
− − = Γ > >� �� � � �� � � �

� κ κ
κ

τ τρ τ ρ κ ρ κ
ρ ρ

, (A.1) 

and after the simple change of variable 2z = ζ  we obtain: 

2
2 1 4 2 2

0

1
exp( ) (2 ) ( )exp , 0, 0

2 8 2
d D

∞
− −

−

� �� �
− − = Γ > >� �� � � �� � � �

� κ κ
κ

τ τζ ρζ τζ ζ ρ κ ρ κ
ρ ρ

, (A.2) 

where (.)Γ  is the gamma function and (.)D−κ  is the parabolic cylinder function of order −κ . For 

1 2κ = , the above integral reduces to Eq. (15) of [10], if we express 1 2 (.)D−  in terms of the modified 

Bessel functions of the first and the second kind. However, application of the parabolic cylinder 

function results in a more compact expression. Using (A.2), integration with respect to ′θ  in (31) can 

be easily carried out: 

1
2

23 2 2 2
0 2 4 2 2

1 4 2 2
40 4 4

2
( , ) exp exp

2 162 2
RR

r B r B rr B r
p r r D

B Bb B B
′′ −

� �� �′′ ′′− +� �′′ = � �� �� � � �−� � � � � �

δ δ
δπ δ

. 

After replacing 0 2 22, , ,B B B B , and 4B  with nb ’s according to (18) and also replacing 2δ  and 4δ  

by their definitions in (32), we finally obtain: 

1
2

23 2 2
0 0 4 22 2

23 4 1 21 2 1 4
00 2

2 0

0

1 2
( , ) exp (2 )

2 2 22

,

RR

r b b b b b
p r r r b b rr r

c bb b c

bb b
D r r

cb c

′′

−

� �� �− −� �′′ ′′ ′′= + − +� �� �� �� �� �� �

� �− ′′× −� �� �
� �

π
 

(A.3)

 

where: 
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0 4
2

2

2
0 4 2

1
(3 ),

2

.

b b
b

b

c b b b

= −

= −
 

(A.4) 

Note that according to the Schwarz inequality 1b <  and 0c > . In Fig. 3 we have plotted ( , )RRp r r′′ ′′  for 

the Gaussian symmetric spectrum 2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 
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Fig. 1. The joint probability density function of R′′  and ′Θ  for two different power spectra: 

Upper: Exponential non-symmetric spectrum ( ) exp( ), 2 2I m mw f f f f f= − − < − < , 

Lower: Gaussian symmetric spectrum 2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 
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Fig. 2. The probability density function of R′′  for two different power spectra: 

Upper: Exponential non-symmetric spectrum ( ) exp( ), 2 2I m mw f f f f f= − − < − < , 

Lower: Gaussian symmetric spectrum 2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 
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Fig. 3. The joint probability density function of R and R′′  for the Gaussian symmetric spectrum 
2( ) exp[ ( ) ], 1 1I m mw f f f f f= − − − < − < . 
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