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Summary

Estimation of signal strength, a measure of channel
quality, and Doppler spread which is proportional to
the mobile speed, are important for handoff
algorithms and optimal tuning of system parameters
to changing channel conditions in adaptive
transmission systems. This paper provides a survey
of existing techniques for estimating the statistical
parameters of the mobile channel. We discuss the
current state of the art in estimation of the received
signal strength, mobile velocity, and other related
statistical channel parameters, illustrate their
performance, and compare existing techniques. The
sensitivity of these schemes to modeling error owing
to the presence of line of sight, directional
reception, and noise is characterized analytically and
illustrated by simulations. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. Introduction

In mobile communications, the received signal
strength fluctuates as the vehicle travels through the
interference patterns caused by multipath, shadowing
owing to obstructions, and the change in the
mobile station (MS)-—base station (BS) distance.
Statistical characterization of the received signal

variations at the MS and estimation of its parameters
are instrumental in virtually all aspects of mobile
communication system design. For example, handoff
initiation decisions are largely based on the mean
signal strength that is estimated from the received
signal [1-3]. The handoff algorithm parameters such
as hysteresis and averaging window size should
be chosen to balance the conflicting requirements

*Correspondence to: Cihan Tepedelenlioglu, 200 Union St. SE, Department of Electronic and Computer Engineering,

University of Minnesota, Minneapolis, MN 55455, U.S.A.
"E-mail: cihan@ece.umn.edu

Copyright © 2001 John Wiley & Sons, Ltd.



222 C. TEPEDELENLIOGLU ET AL.

of minimizing handoff delay and mean number of
handoffs which depend on the statistical parameters
of the received signal.

In many communication applications such as adap-
tive coding/modulation/antenna diversity/power con-
trol, assessing the channel quality and its rate of
change is of paramount importance in adapting the
system parameters to changing channel conditions [4,
5]. Adaptive transmission systems are designed to
maximize their throughput for a given quality of ser-
vice, usually given in terms of bit error rate (BER).
This is possible by adapting the system parameters
either to multipath fading fluctuations, or by follow-
ing the shadow fading variations after removing the
deleterious effects of the multipath fading through
diversity techniques. In either case, accurate estima-
tion, prediction and tracking of the received signal
strength is necessary, which in turn necessitates the
estimation of the maximum Doppler spread or its pro-
portional surrogate: the mobile, velocity*.

In this paper we give a survey of the existing
techniques for estimating the channel quality, mea-
sured in terms of the received signal strength, and
related parameters such as the maximum Doppler
spread, Ricean factor, shadow variance, and shadow
correlation distance. After providing a detailed dis-
cussion of the signal model and introducing the
key channel parameters in Section 2, we give a
survey of channel quality estimation techniques in
Section 3, with emphasis on local power estimation.
The effects of the Ricean factor and other parameters
on the local mean estimators are analyzed analyti-
cally, and verified via simulation in Section 3.1. After
a brief discussion of estimation of the Ricean fac-
tor, shadow variance, and shadow correlation distance
in Section 3.2, we move on to velocity estimation
in Section 4. Level crossing rate (LCR)-based and
covariance-based techniques in the literature are dis-
cussed in detail, and the effects of noise, modeling
errors, and finite data records on the estimators are
discussed. In Section 5, we conclude the paper.

A few words on notation: We use* for complex
conjugate, R{-} for the real part and Z{-} for the imag-
inary part of a complex number; E[-] denotes math-
ematical expectation with respect to all the random
variables within the brackets; §(¢) represents Dirac’s
delta function; superscript ™ denotes nth derivative,
but if n =1 or 2, we also use ’ or ”, respectively;

#We are interested in estimation of the magnitude of the
velocity vector, which we loosely refer to as ‘velocity’
throughout the manuscript.
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log(-) denotes base-10 logarithm and In(-) is used
for the base e logarithm. For a generic complex,
stationary stochastic process x(¢), we use ry(7) :=
E[x(t)x*(t + 7)] to denote its correlation function, and
reserve ¢,(7) := r,(7) — |[E[x(¢)]|*> for the covariance
function at lag t.

2. Signal Model

A widely accepted model for the received power at
the mobile station is in the following product form$:

p(t) = |h(t)*s(1) (1)

where s(¢) is the power fluctuation due to shadow-
ing, and Ah(¢) is the narrowband channel response
due to multipath in complex baseband form. In this
paper we will only focus on narrowband channels.
Parameter estimation for channels with a nonzero
multipath spread is addressed in [6, 7], and references
cited therein. The multipath component is commonly
assumed to be statistically independent of the shadow
process. When the power is measured through a log-
arithmic amplifier, its decibel (dB) value has the fol-
lowing additive form:

P(t) =H(t) +S() 2)

where P(¢) := 10log(p(¢)), S(t) := 10log(s(¢)), and
H (t) :== 101log(|h(¢)|?). The alternative representa-
tions of the received power in Equations (1 ) and (2)
are both useful because the multipath fading statis-
tics are more easily described in terms of A(f) in
Equation (1), whereas the shadow process is more
conveniently characterized statistically by the loga-
rithmic version S(¢) in Equation (2). In the following
subsections we discuss the statistics of multipath fad-
ing and shadow fading in detail.

2.1. Multipath Fading Statistics

In this subsection we discuss the first and second
order statistics of h(r), |h(f)|?, H(¢t) and the level
crossing rate of |h(¢)| and h(¢), which are crucial
for design and performance analysis of local power
estimators and velocity estimators.

The multipath component A(z) is a result of con-
structive and destructive superposition of many plane

§ All the expressions for the received power are given as
a function of time and can be equivalently represented in
terms of the MS—BS distance d through the MS velocity v
by substituting ¢ = d /v.
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waves (see Figure 1) and a possible line of sight
(LOS) component. Hence, for a mobile traveling
through the interference pattern we adopt the follow-
ing model for the multipath component in baseband:

M
1 1 4
h() = o lim =Y a6/ @0 et
VK + 1 M—=oo /M =
=x(t)
K .
__ > j(wpcos(®)i+eo) 3
Vre 3)

=y(1)

where the maximum Doppler frequency wp := 27v/A
is determined by the mobile velocity v and the wave-
length A; j:=+/—1, and M is the number of inde-
pendent scatterers; the angles between the incoming
waves and the mobile antenna 6,,, m =1, ..., M are
independent and identically distributed (i.i.d.) with an
angle of arrival (AOA) distribution p(6); phases ¢,
are i.i.d., uniformly distributed on (—m, 7]; 6y and
¢o are the angle that the LOS component makes
with the mobile direction and the phase of the LOS
component respectively; K = E|y(t)|?/E|x(t)|* is the
ratio of the LOS component’s power to that of the
diffuse component and is referred to as the Ricean
factor; positive, deterministic constants a, satisfy
limy oo M~ "M a2 =1, so that the power of
the multipath component E|h(t)|*> is normalized to
one. We can make this convenient assumption with-
out loss of generality because the product model in
Equation (1), along with the independence of |A(1)|?
and s(z), facilitate absorbing the mean value of p(¢)
into s(¢) so that E[p(¢)] = E[s(?)].

Note that making M arbitrarily large ensures x(z) to
be a complex Gaussian process by the central limit
theorem, resulting in a Ricean |A(¢)| as the ampli-
tude of a nonzero-mean complex Gaussian process.

Copyright © 2001 John Wiley & Sons, Ltd.

In the absence of a LOS component (K = 0), |A(z)|
has a Rayleigh density, and |h(¢)|> is exponentially
distributed. Because the phases ¢,, are uniformly dis-
tributed on (—, 7], E[x(¢)] = 0 and hence E[h(t)] =
¥(t). Notice that the specular component y(¢) depends
on time if the LOS component is not perpendicular
to the direction of motion (6y # 7/2); hence, simi-
lar to [8] and [9], we allow for a sinusoidally time
varying specular component.

It follows from Equation (3) that the correlation
function of A(t) is given by

(1) == E [h()h*(t + 7))

T

T K+1J).,
K

K+1

by direct substitution and using the assumptions on

P, 0 and a,,. We see from Equation (4) that r,(7)

depends on the probability distribution of the angle of

arrival p(0). It is well known that if p(0) is uniform

and K = 0, then r,(t) = Jo(wpT), where Jo(+) is the

zeroth order Bessel function of the first kind [10].

However, in order to capture the effects of directional

scattering on r;,(7) in a parametric fashion, we use the
von Mises distribution:

p©) =

p(e)efjw[) COS(Q)‘L’dG

4 efjwp cos(6y)t (4)

K cos(f—a)
27TIO(K)e ,0 € (—m, ] 5)
where I, (k) is the nth order modified Bessel function
of the first kind, « determines the beamwidth, and
a denotes the angle between the average scattering
direction and the mobile direction. Figure 2 illustrates
the von Mises distribution for different values of «
and o =0 in polar coordinates (notice that x =0
reduces Equation (5) to a uniform distribution and
that if o ## 0, then the plot rotates by « radians).
The von Mises distribution is widely used in direc-
tional statistics [11], and is justified empirically to be
an accurate model for the AOA distribution for nar-
rowband channels in [12]. In addition, the von Mises
distribution enables us to relate, in closed form, the
effect of ¢ := [K, 0y, k, «] to the Doppler spectrum,
the correlation function, and r,i”) 0) [12].
Substituting Equation (5) into Equation (4) it can
be shown [12, 13] that the correlation function is
given by:

1 Jo (\/—K2 + wht? —2jK cos(a)a)Dr>
K+1 Io(K)

rp(T) =

+ Klj_ 1e—jw,)cos(90)r (6)
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Fig. 2. The von Mises distribution.

Notice that Equation (6) is complex valued in general,
but it is real when K = « = 0, and reduces to r;(t) =
Jo(wpT), yielding the so-called Clarke’s model [10].

The Doppler spectrum S, (w) is the Fourier trans-
form of Equation (4). Using the fact that S,(w) =
[p(cos™ (w/wp)) + p(— cos™(w/wp))][1 — (w/
wp)?]~'/2, we obtain a closed-form expression for
Sy (w) as a function of x and «:

Sn(w)
w w 2
emos(a)wn cosh |ksin(a)4/1 — <—>
wp
1
T K+1  \2
wlo(k)4 /1 — (—)
wp
PRy @) )
X1l w — wp cos(By

where cosh(-) denotes hyperbolic cosine. Notice that
Equation (7) reduces to Clarke’s ‘U-shaped’ spec-
trum [6] when ¢ = 0. In this case we have: S;(w) =
71 = (0/wp)* ]2,

The derivatives of the correlation function of the
diffuse component at zero, r"(0), play an impor-
tant part in estimating the maximum Doppler fre-
quency wp. They can be derived for n = 0, 1, 2 using
Equations (4) and (5) as:

1
re(0) = X1 8)
, . 1 cos(a)l (k)
r(0) = —Jopg < 1000 > )]

Copyright © 2001 John Wiley & Sons, Ltd.

r): ©0) = cos(2a)12(fc)> (10)

)
“PoK + 1) ( Io(k)

Equations (8—10) are instrumental in assessing per-
formance of certain velocity (Doppler) estimators in
Section 4.

Using the results in Reference [9], it is possible
to relate the effects of directional scattering and the
LOS component to the envelope level crossing rate
(LCR). The LCR of a signal at a level R is defined as
the expected number of signal crossings of the level
R with positive slope, and can be shown to be (see
for example, Reference [2]):

LCR(R) = /O Rpjjy. (R, R)dR (11)

where pIhI,IhI(R’R) is the joint probability density
function of the envelope and its time derivative. In
Reference [9], the authors showed that even in the
presence of a specular component and correlated
real and imaginary parts of x(¢) (which is caused
by k # 0 in our model), the LCR of the envelope
is proportional to wp and is entirely determined by
ri")(O), n =0,1,2, given in Equations (8—10):

ZRV2B w2100
72r,(0)

/2 2R 6 .
X / cosh (7'0 cos )[e_(ép sin )
0 :(0)

+ /mEp sin HQ(Ep sin 0)]d6 (12)

where R is the level, p = |y(@®)| = [K/(K + D]'/?
is the amplitude of the specular component in
Equation (3), Q(-) is the error function, B :=
—(1/2)r,(0) — [Z{r,(0)}*/2r(0)], and & := [wp cos
6o — Z{r (0)}/r.(0)]/+/2B. Equation (12) is a gen-
eral expression for the envelope level crossing rate
and subsumes the well-known formula LCR(R,0)=
(B/27)'2(R/r<(0)) exp[—R?/ (2r(0))] = (wp/~/2)
Rexp(—R?) as a special case, commonly used for
Doppler estimation through the envelope level cross-
ing estimates [2].

The zero crossing rate of the in-phase or the
quadrature-phase (I/Q) components of A(¢) (hence-
forth just ZCR) is also of interest in velocity estima-
tion, and is given by [2]:

7CR _ 1 _V;(O) -
W) = ; W e*Iy(n)

»r ¢ —u n
+i ; e "l (é_u) du] (13)
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where ¢ := (a®> +b>)/4, n:=(a*—b>)/4, a:=
V2K, and b := /2K wp cos 6p[—r,(0)/r. (0)]'/2. Us-
ing Equations (8) and (10) it is easy to show that
b does not depend on wp, and hence the ZCR is
proportional to the maximum Doppler spread (and
hence the velocity). Notice also that while the term
inside the brackets in Equation (13) is not defined
for K =0, it approaches to one as K — 0. This
is not surprising since, it is known that ZCR(0) =
7 [—r.(0)/r:(0)]"/2, which is the term before the
brackets in Equation (13).

The model in Equation (3) also enables us to derive
the autocovariance of |h(t)|*> as [13]:

[|E[eja)[) COS(G)‘E] |2

1
C\h\2 (T) = m

+ ZKR{E[efja)D COS(Q)I]eij COS(@U)I}] (14)

which is a generalization of the result derived in
Reference [8] where r(t) was assumed to be real.
Assuming Equation (5) and using Equation (6), the
general expression in Equation (14) becomes:

1

WO K ie

X

Jo (\/—Kz + wit? — 2jK cos(a)a)Dt> /1o(k)

+ ZKR{JO (\/—KZ + wit? - 2jk cos(a)wDr>

% eij cos(bp)t /IO (IC) }

Notice that when K = k = 0, Equation (14) reduces
to cpp () = J3(wpT).

The mean and covariance of H (¢) are useful when
the dB value of the power P(t) is used for velocity
or local mean estimation. We provide expressions for
both, assuming K = 0 (Rayleigh fading). The mean
of H(t) can be shown to be [14, 15],

H:=E[H@®)] =— (15)

In(10)”
where y = 0.577216... is Euler’s constant. The
covariance denoted by cy (7) has been derived in Ref-
erences [16—18], with Reference [16] containing the
simplest form as:

¢* ()
k2

e (0 = [10/In(10)]* S

1

(16)

oo
k=
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where ¢(7) := |E[exp(jwpTcos6)]|> which, with
the K=0 assumption ~ becomes q(t) =
1Jo(/—K2 + 0b 12 — 2 jk cos(@)wpt)/Lo(k)|* if the
AOA is given by Equation (5). The infinite series in
Equation (16) can be approximated well with a poly-
nomial in g(7) for g(t) € (—1, 1). In Reference [14]
this fact is used to approximate Equation (16) in
terms of ¢(tr) and ¢*(r) with high accuracy using
numerical techniques. A simpler approximation that
is valid for small t has been utilized in Ref-
erences [17] and [18] and is given by cy(7) =
[10/1n(10)]* (22/6)q (7).

2.2. Shadow Fading Statistics

The dB value of the shadow fading, S(¢), is commonly
modeled as a Gaussian process with mean ug and
variance oZ. The mean is given by the path loss which
decreases monotonically with the MS—BS distance.
However, for the purposes of local mean and velocity
estimation, pg can be assumed to be constant during
the time that the received signal is processed [2, 14].

A first order autoregressive model for the shad-
owing process suggested in Reference [19] is based
on the measured autocovariance function of S(¢) in
urban and suburban environments (for another set of
empirical results see Reference [20]):

cs(v) = o5 exp(—vlt|/X,) (17)

where X, is the so-called effective correlation dis-
tance. The pair (os, X.) can vary from (4.3 dB, 10 m)
in urban environments to (7.5 dB, 500 m) in suburban
areas [19]. The shadow variance plays an important
role in the selection of the hysteresis in handoff algo-
rithms and, as we will see, the correlation distance X,
affects the optimum window size selection for local
power estimation. A modified expression for cg(7) is
proposed in Reference [21] and has a well-defined
ZCR, unlike Equation (17).

To sum up, the multipath component A(f) in
Equation (3) is a complex Gaussian process with a
correlation function given in Equation (6) and spec-
trum in Equation (7), which reduces to Clarke’s
model when k = 0 corresponding to a uniform AOA.
The level crossing rate of the Ricean process |h(?)|
is given in Equation (12), the zero crossing rate of
R{h(t)} is given in Equation (13), and the covari-
ance function of |A(¢)|? is expressed in Equation (14).
The dB value of the multipath process, H(t), has a
mean given by Equation (15) and covariance func-
tion by Equation (16). The dB value of the shadow
process, S(¢), is Gaussian with mean determined

Wirel. Commun. Mob. Comput. 2001; 1:221-242
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Fig. 3. Simulated received power in an urban environment.

by the pathloss and covariance function given by
Equation (17). These quantities play an important role
in the design and performance of local power and
velocity estimators.

In Figure 3 we illustrate the simulated dB value
of the received power around wg in an urban envi-
ronment with X, =10 m, o3 =4.3dB, and v =
10 km hr~!. The goal of local power estimation is
to filter out the fast fading from the received power
P(t) to obtain an accurate estimate of the shadow
variations S(f). We give an overview of the local
power estimation in the next section, after a brief
overview of the more general topic of channel quality
estimation.

3. Channel Quality Estimation

It is well known that the channel quality, which ulti-
mately determines whether the communication sys-
tem under consideration can meet the specified qual-
ity of service requirements, depends on the value of
the local mean S(¢) (or s(¢)), the Ricean K factor,
and the parameters X. and og which depend on the
propagation environment. Measures of channel qual-
ity which incorporate noise and interference are most
indicative of system performance, but they require

Copyright © 2001 John Wiley & Sons, Ltd.

considerably more signal processing than the simple
local power estimation schemes. We briefly mention
some of the literature on signal to interference plus
noise ratio (SINR) estimation without going into tech-
nical details owing to lack of space, before we start
a detailed discussion of local power estimation.

Unlike the local power estimation schemes, the
SINR estimation techniques exploit the digital mod-
ulation that is employed. In Reference [22] (see also
Reference [2]) the authors use a training sequence, or
decisions made by the detector to estimate the signal
and interference plus noise power which are used to
calculate the SINR. The information that the eigen-
values of the output covariance matrix convey about
the signal and noise powers is exploited in Refer-
ence [23] for SINR estimation. A projection based
approach that generalizes Reference [22] is proposed
in Reference [24] and is shown to have approximately
the same performance as Reference [23] despite its
lower computational complexity. The error metric in
a Viterbi decoder is utilized in Reference [25] for
SINR estimation for both differential and coherent
detection. Recently in Reference [26], four different
signal to noise ratio (SNR) estimators designed for
QPSK modulation are compared.

In the sequel we focus on local power estimation
methods for assessing channel quality, since they are

Wirel. Commun. Mob. Comput. 2001; 1:221-242
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more prevalent in practice because of their simplicity.
Then we briefly outline approaches for the estima-
tion of the Ricean K factor, X, and og which are
important in evaluating the severity of fading and use-
ful in appropriate selection of hysteresis for handoff
algorithms [27, 28].

3.1. Local Power Estimation

We begin this subsection by providing some basic
results on local power estimation [2, 29-31] and the
effects of ¥ on the estimation error. We then discuss
the approach in Reference [14] and explain how it
differs from the existing techniques. We conclude this
subsection by outlining two recent papers about local
power estimation that offer novel ideas but demand
high computational complexity [15, 33].

In estimating the local power, one could work with
Equations (1) or (2) depending on whether the power
amplifier is linear or logarithmic. In either case,
the problem is to average the instantaneous received
power so as to remove the fast multipath fading, but
follow the variations of the slower shadow fading.
This is possible by the appropriate choice of the aver-
aging filter bandwidth or, equivalently, the suitable
averaging window size. We first consider the multi-
plicative model in Equation (1), originally proposed
in Reference [30] and subsequently used in Refer-
ences [2, 29, 31]. The goal in the aforementioned
references is, in part, to find the appropriate aver-
aging distance 2L in terms of the wavelength A. The
necessary averaging duration, then, would be found
through knowledge of the velocity v. So, in what
follows, we temporarily assume that v = A m sec™!
(wp = 27 rad sec™!) in order to be able to express
all quantities as a function of distance, and find the
optimum window length in terms of number of wave-
lengths.

The estimator for s(d) can be expressed asl:

1 d+L s d+L 5
5(d) = — Ddl = — h()|“dl
s(d) 2L/d—L p) L), |h(D)]
(18)

where it is assumed that the shadow fading is approx-
imately constant and equal to s during the averaging
interval, i.e. s(d) ~ s, for d € [d — L,d + L]. Note
that 5(d) is an unbiased estimator. The accuracy of

(][Reference [30] also considers signal strength estimation
from the received envelope /p(¢) and argues that the
results are similar to that obtained from p(¢). Hence, we
do not consider local mean estimation using +/ p(¢) herein.

Copyright © 2001 John Wiley & Sons, Ltd.

the estimator 5(d) in Equation (18) is measured by its
variance which can be shown to be [30]:

2 2L
s S l
o7 = z/0 (1 - 2L> cpp(Ddl (19)

where c,2(I) is given by Equation (14). Recall
that cj;2(!) depends on ¢ = [K, 6, «, a]. However,
for all the values of ¥ that we considered,
Equation (19) monotonically decreases with L. We
illustrate this in Figure 4, where we plot the
lo spread := 10log((s + 03)/(s — 03)), versus the
averaging window size in wavelengths. The lo
spread, defined in Reference [30], is a monotone
increasing function of o3, and is zero when o5 = 0,
therefore it is an alternative measure of the estimation
error. Assuming that the window size 2L is big
enough to make § a Gaussian random variable, the
lo spread has the interpretation that Prob(|Sqg —
sqg| < lospread) > 0.68, where 5qg and sqg are the
dB values of § and s respectively. The appropriate
window length is the minimum value of 2L that
yields a satisfactory a§ over a realistic range of .
We would like to keep L as small as possible, since
the error due to the shadow variations increases with
L and is not accounted for by the error measure in
Equation (19). From Figure 4, 2L = 20X seems to be
the right window size since any further increase in
L does not bring significant improvement on the lo
spread.

In Reference [29], the authors studied the effects of
K and 6y on the 1o spread in detail. They observed
that increasing K decreases the 1 o spread as shown
in Figure 4 (left). This is intuitive since increasing
K causes the fading to have less severe fluctuations
which makes estimates of its mean value less prone
to error. The effect of directional scattering on local
power estimates, however, is not considered in Ref-
erence [29]. In Figure 4 (right) we show that a more
directional reception (larger «) increases the error in
the local power estimate. Although not shown, we
observed that for nonzero values of o and K, the
increase in the lo spread with «, although present,
was less pronounced.

In Reference [30], Lee and Yeh considered the
effect of finite M (number of multipath components)
in Equation (3), on O‘§2 and showed that increasing M
increases the error. As for the effect of the LOS direc-
tion, it is shown in Reference [29] that 6y = /2 (a
time invariant LOS component y(¢) in Equation (3)),
yields the smallest 1o spread, which we illustrate in
Figure 5.

Wirel. Commun. Mob. Comput. 2001; 1:221-242
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Fig. 4. 1o spread versus averaging distance 2L in wavelengths for various K and «.
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Fig. 5. Effect of 6, on the 1 o spread.

Instead of analog averaging, implementable with
an integrate-and-dump circuit, often samples of the
received power p(nT,) are employed in estimat-
ing the shadow fading, where 7'y denotes the sam-
pling duration!!. A reasonable unbiased estimator then
would be:

=

-1
p(nTy) (20)

1

§=—
N
n

Il
o

I'We continue to assume that v = A m sec™! so that T,
is also the spatial distance in wavelengths between two
adjacent samples.

Copyright © 2001 John Wiley & Sons, Ltd.

where again the shadowing is assumed to be constant
over NT, seconds. The variance of 5§ can be shown
to be [29, 30]:

N—-1
2 2 C|h|2(0) (N—k)
o} =s 7+2Z ——— ) (KT )
N —~\ N
21

What is an appropriate value for T in terms of A?
If we fix the number of samples N, then choosing
T, large results in approximately uncorrelated sam-
ples, yielding a reduction in o?. This is illustrated
in Figure 6 (left) where it is observed that while
increasing T’y decreases the error, a Ty > A does not

Wirel. Commun. Mob. Comput. 2001; 1:221-242
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Fig. 6. Effect of sampling on 1 o spread.

bring significant reduction in the 1o spread. On the
other hand, we would like 7, to be as small as
possible for a fixed N so as to have a short win-
dow of averaging over which s(#) has not changed
significantly. This prompts us to fix the averaging
window size to a nominal value (20 A in Figure 6
(right)) and ask what value of 7y would be small
enough to get sufficient number of samples N so that
the sum in Equation (20) approximates the integral
in Equation (18). We show in Figure 6 (right) that
T, < 0.5) suffices for both K = 0 and K = 5, as also
shown in Reference [29].

The approaches described so far have assumed
that the shadow process is constant over the dura-
tion of the averaging window, and have utilized p(¢)
in estimating s(¢). In contrast to existing approaches,
Reference [14] proposes estimators for both S(7) and
s(t) depending on whether the signal is measured
through a linear or logarithmic amplifier. This is
important since most handoff algorithms rely on esti-
mates of the dB value of the shadow process. We
illustrate the approach in Reference [14] in Figure 7,
where the received signal passes through a square law
envelope detector, is amplified with a linear or log-
arithmic amplifier, and filtered through an averaging
filter. The impulse response of the averaging filter is
restricted to be an integrate-and-dump (ID), or a first
order RC filter because of practical constraints, and

- P() (1)

inear or or or
w (1)

Log AMP [ (1) 5

Received Envelope
Signal Detector

Fig. 7. Block diagram depicting the approach in
Reference [14].

Copyright © 2001 John Wiley & Sons, Ltd.

is given by:
=k ! Rect ! !
w =k—o —— =
ID Tp T, 2
)=k ! ( ! ) (22)
w =k—oexp| =—
ke Trc P Trc

where Rect(f) =1 for 0 <t <1 and O else, k is
the DC value of the filters’ frequency responses,
and Tip, Tgrc control the averaging duration. It is
argued in Reference [14] that the estimation errors
S (t) — S(t) for the so-called log-power method and
10 log(s(r)/s(z)) for the linear-power method are
both approximately Gaussian, and that the estima-
tion bias could be removed by the proper choice of k
in Equation (22). The appropriate averaging duration,
then, is selected by optimizing the time constants Trc
and Tp so as to minimize the estimation error vari-
ance for both the linear-power and log-power meth-
ods. It is shown that the shape of the filter (ID or RC),
or whether p(¢) or P(t) is averaged, did not influence
the error significantly. However, the proper choice of
the filter time constants is shown to be crucial.

A significant departure from the conventional
approach for local power estimation that Refer-
ence [14] exhibits is incorporation of the shadow
variations in the error criterion by allowing for a vari-
able local mean over the averaging window duration.
Hence, the optimal window size not only depends on
the vehicle velocity, but also on the shadow fading
characteristics og and X,.. In Figure 8, for a carrier
frequency of 1 GHz (corresponding to A = 0.3 m),
we illustrate the effect of the pair (og, X.) on the root
mean squared (RMS) dB error where an integrate-
and-dump filter with T1p = 0.085 s is employed. For
(o5, X.) = (4.3 dB, 251), corresponding to measured
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Fig. 8. Effect of shadow correlation on performance of local power estimators in Reference [14].

values for an urban area [19], the shadow variation
is relatively fast and results in increasing error if
the averaging distance is more than (= 2A). This
means that in an urban environment where the aver-
aging distance is beyond = 2A, the performance of
the local mean estimator deteriorates. This could not
be predicted with the previous approaches where the
error always reduced with averaging distance (c.f.
Figure 4). On the other hand, in suburban environ-
ments where the shadow fading is much more corre-
lated with a correlation distance of X, ~ 1500 [19],
increasing averaging distance still improves the local
power estimator performance for both the linear-
power and log-power methods. Hence, the appro-
priate averaging distance depends on the effective
shadow correlation distance X, and the shadow
variance o2, which are defined by the degree of
urbanization. Even though implied by the findings
in Reference [14], this fact has not been articulated
in the literature. In analyzing user membership, the
authors in Reference [32] have observed a similar
effect, where a certain window size is found to be
optimum in terms of minimizing the probability of
wrong selection.

Reference [14] also discusses the effects of the
unknown parameters v, X ., and oy and suggests how to
make the local power estimators robust to the variabil-
ity of these parameters. Also, the benefits of broadband
reception and/or multiple antennas are briefly delin-
eated in Reference [14], where processing independent
multipath components that are superimposed on the
same shadow component is shown to reduce the esti-
mation error. The practical impact of Reference [14]
is in showing that a fixed filter design can keep the
estimation error within 3 dB over a realistic range of
mobile velocities and shadow fading characteristics.

Copyright © 2001 John Wiley & Sons, Ltd.

We conclude this subsection by outlining two
recent approaches to local power estimation that are
computationally more demanding than linear filter-
ing (averaging) of the received power, on which
the aforementioned methods have relied. Consider
first the simulated received power in Figure 3. A
possible approach to tracking the shadow fading is
to average the received power at samples of the
composite multipath-shadow fading that are near the
shadow fading. In Reference [33] the authors pro-
posed using M9, the midpoints of the local minima
as sampling locations to calculate the local power
s(t) & s, assumed constant over the averaging win-
dow. Hence the proposed estimator in Reference [33]
iS Spig ;= CN~! ZnN;o] p(¢™i9), where the constant C
is determined empirically. The locations of the local
minima were estimated using the modulus maxima
of P(t)’s continuous wavelet transform (CWT). The
authors assumed that K = « = 0. The results suggest
that this wavelet-based scheme outperforms existing
techniques when the velocity changes rapidly. Even
though promising in high variability environments,
this method seems to be highly model-dependent
(the appropriate value of C depends on ¢ which is
not known a priori), and is more computationally
demanding than existing approaches.

Assuming a constant S(¢) & S during the averaging
window and a large enough T to assure indepen-
dent samples P(nTy), a minimum variance unbiased
estimator for S was derived in Reference [15] to be:

v vl
Suvu =10 |1 THP———n|i_g
MVU 0og ; |p(nTs)| In(10)

(23)
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where H is given in Equation (15) and can be pre-
computed. It is argued in Reference [15] that the sam-
ple mean estimator S’SM =N"! quv;ol P(nT,)—H is
also unbiased and consistent like Syvy, but the vari-
ance of Syyy is approximately 1.6 times smaller
than that of S’SM for N > 15. This gain in perfor-
mance is shown to translate into a reduction of N
by a factor of approximately 2/3 for a fixed 1 o
spread. While the Cramér-Rao bound for this prob-
lem cannot be achieved by any unbiased estimator,
Equation (23) achieves this bound asymptotically, i.e.
Swmvu is asymptotically efficient. The effect of a LOS
component is evaluated in Reference [15] by sim-
ulation and for K > 0.5, the mean-squared error is
shown to increase owing to an increase in the bias of
Swmvu. Hence, the estimator is found appropriate for
environments where an LOS component is weak or
not present. Although Reference [15] is a contribution
of theoretical importance, the conflicting assumptions
of independent samples of P(¢) and constant S(¢),
together with increased computational complexity are
seen to be its shortcomings.

In Reference [34], efficient measurement tech-
niques for local power estimation in indoor envi-
ronments are proposed. It is found experimentally
that using a window of size 10 A provides sufficient
averaging without significantly distorting the shadow
fading.

3.2. Estimating the Ricean Factor, Shadow
Variance, and Shadow Correlation Distance

As we mentioned before, |h(¢)| is a Ricean process
with parameter K. It is well known that the value
of K is a measure of the severity of fading with
K = 0 being the most severe Rayleigh fading, and
K = oo representing no fading. Hence, the knowl-
edge of the K-factor is a good indicator of the chan-
nel quality and is important in link budget calcu-
lations [35]. The presence of the LOS component
also influences velocity estimators and local power
estimators which make the estimation of K an area
of interest. Greenwood and Hanzo in Reference [35]
have proposed techniques for estimating K that fit the
empirical distribution of the envelope |h(z)| to the
Rice distribution, but these techniques are not well
suited for online estimation. More recently, Green-
stein et al. introduced a moment-based method for
estimating K under the assumption that the LOS angle
of arrival |6y| = /2 (i.e. E[h(¢)] is a time-invariant
constant) [36]. Here, we briefly describe the approach
for estimating K from p(¢) that was originally pro-
posed in Reference [36], and show that it is also valid

Copyright © 2001 John Wiley & Sons, Ltd.

when |6y| # /2 (i.e. when the LOS component y(¢)
depends on time).

We make the usual assumption that the shadow
fading is constant during the course of the estimation,
i.e. p(t) ~ s|h(t)|>. This means that the covariance
of p(1) is ¢,(v) = s*cp (7). Setting T = 0 and using
Equation (14) we obtain ¢,(0) = s*(1 +2K)/(K +
1)2. By solving the resulting quadratic equation for
K in terms of s* and ¢,(0) we find:

2 2 _
K= ) cp(0) +54/5 cp(0) 24)

cp(0)

which is the result in Reference [36]. Since s° and
¢,(0) can be estimated from p(z), Equation (24) pro-
vides us with an estimate of K.

As pointed out before, the shadow parameters X,
and og depend on the propagation environment and
have a significant impact on the proper averaging
window size for local power estimation, and selection
of handoff algorithm parameters. Since X, and oy
are defined through the covariance function of S(z),
estimating these parameters entails estimating cs(7)
in Equation (17). Having only access to P(f), one
approach is to estimate S(f), using the previously
described techniques, and then use S'(I) to estimate
the shadow parameters. But it should be kept in mind
that unless the averaging filter is all-pass, the spectral
properties of S(¢) are different from that of S’(t). In
Reference [28] the authors used estimates of S(¢) to
estimate the shadow parameters, taking the effects
of the averaging filter into account. More recently,
the authors in Reference [37] have assumed access
to S(¢) in designing shadow parameter estimators
that exhibit good bias properties, but neglected the
effect of the averaging filter that would need to be
used to obtain S(z). Here, we illustrate that X, and
og can be estimated directly from P(¢) using cy (1)
in Equation (16) and H in Equation (15). Consider
the autocorrelation function of the sampled power
P(nTy):

2

rp(mTs) := E[P(nTs)P(nTs 4+ mT;)] = cy(mTy)
+ (H + ps)* + 0% exp(—umT/X.) (25)

where we used Equation (2), the independence of
H(t) and S(¢), and Equation (17). Assuming that the
vehicle velocity v is already estimated, the first two
terms on the right-hand side of Equation (25) are
precomputable for each lag m and can be subtracted
from rp(mTy). The shadow mean wgs can be estimated
using the sample mean of P(nTy) and knowledge of
H since E[P(t)] = H + 5. This means that, having
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knowledge of v (see Section 4 for estimators of v), an
estimate rp(mTy) can be used to obtain an estimate
of cs(mTy) in Equation (17) for every lag m. Then
one can proceed from ¢g(t) in a number of ways to
obtain X, and Gf. A naive approach is to set T = 0 and
estimate Gf, and then use this estimator and 7 > 0 to
estimate X, but it has been shown in Reference [37]
that an estimate of o3 obtained with such a procedure
has a large bias. A more sophisticated method could
use Equation (25) form =0, ..., T, to obtain ug, og
and X, utilizing regression techniques. Exploration
of other possible estimators exploiting Equation (25)
with good bias and variance properties is still a future
research topic.

All through our discussion of local power estima-
tion and estimation of shadow parameters, we saw
that an accurate knowledge of the velocity v, or its
proportional surrogate wp is essential. We give a
detailed discussion of velocity estimation techniques
in the next section.

4. Velocity Estimation

Doppler-based velocity estimation has a rich his-
tory and a diverse range of applications (see Ref-
erence [38] and references cited therein). In HF
communication applications, Bello [6] was one of the
first to propose techniques for the estimation of a
variance-like RMS measure of the Doppler spectrum
Sy (w) that used h(z) or |h(t)|. A study of the accuracy
of these estimators can be found in Reference [39].
More recently, in mobile communications, estima-
tion of the mobile velocity, or equivalently the maxi-
mum Doppler spread has received considerable atten-
tion. In what follows we briefly summarize the liter-
ature in this area, before going into technical details.
As we saw in the previous section, knowledge of v
is necessary for the appropriate choice of averaging
window length, which was originally brought to light
in the pioneering works of Holtzman—Sampath [18],
and Austin—Stiiber [29], where they proposed veloc-
ity estimators that rely on the covariance or the
LCR of the multipath signal (H (¢) or h(¢)). Lin and
Proakis also proposed a Doppler estimator for adap-
tive channel tracking applications that used the 1/Q
components of the estimated channel in a TDMA
system [40]. Subsequently, eigen-based Doppler esti-
mators for continuous-phase modulation were pro-
posed in Reference [41]. Switching rate of diversity
branches is exploited in Reference [42] for Doppler
estimation, and extensions of this idea are reported

Copyright © 2001 John Wiley & Sons, Ltd.

in Reference [43]. Online change detection tech-
niques are combined with LCR of the envelope
in Reference [44]. Reference [45] uses the so-called
‘higher-order crossings’ (HOC) (zero-crossings of the
derivatives) of the envelope and is the first to use
a parametric AOA distribution for assessing veloc-
ity estimator performance in nonisotropic scattering
propagation environments (i.e. nonuniform AOA dis-
tributions). An approximate average maximum likeli-
hood estimator with an FFT-based digital implemen-
tation can be found in Reference [46]. Fluctuations
of the channel power in closed-loop power control
and constant power scenarios are considered in Refer-
ence [47] for velocity estimation. A thorough analysis
of the model error incurred by a class of covariance-
based estimators due to ¢ # 0 can be found in Ref-
erence [48]. A wavelet-based scheme that estimates
the velocity by locating the minima of the received
envelope is reported in Reference [49]. The curva-
ture of the estimated autocorrelation function at zero
is used in References [13] and [50] for estimation of
wp, and promises to be useful especially for adaptive
modulation, coding, and interleaving applications.

In this section we discuss some of the schemes
mentioned earlier in detail. We categorize Doppler-
based velocity estimators as LCR-based estimators
and those that rely on the covariances of H(t) or
h(t). Figure 9 illustrates the taxonomy of the velocity
estimators that we discuss further in this section. We
should note that throughout the literature, the esti-
mated velocity and the shadow variation is assumed
to be constant during the estimation process, even
though robustness of estimators to the variability of
the velocity and the shadow fading has been consid-
ered. Hence, in this survey we will assume that the
velocity and the shadowing are approximately con-
stant during the estimation process. It should also
be noted that since the estimation of the parame-
ters ¥ = [K, 0y, k, o] is not always feasible, all the
velocity estimators in Figure 9 are designed assum-
ing ¥ = 0 (uniform AOA distribution with no LOS

DOPPLER BASED
VELOCITY ESTIMATORS

LCR]
HOC ENV 1/Q [40] [18] [13]
N 1291 [29]

[45] [49]

Fig. 9. Taxonomy of velocity estimators discussed in this
paper.
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Fig. 10. Choice of level R for LCR estimators robust to variations in K.

component) and absence of noise; we will attempt,
whenever tractable, to express the effects of the mod-
eling error incurred by ¢ # 0 and the error caused
by noise on these estimators. In the absence of noise,
¥ £ 0 causes the estimator to be scaled. This scale
factor A(y) will be derived for each estimator. The
estimation error due to finite number of samples is
also characterized at the end of this section. We begin
by discussing the LCR-based estimators in the next
subsection, and then move on to covariance-based
estimators.

4.1. LCR-based Velocity Estimators

It is well known that the LCR of the envelope, or
the ZCR of the I/Q components are proportional to
wp and offer a low complexity approach to velocity
estimation [2]. We begin by discussing the envelope
LCR estimator.

As mentioned in Section 2.1, we can use
Equation (12) to obtain LCR(R,0) = (8/2m)!/?
(R/r:(0)) x exp[~R2/(2r,(0))] = (wp/~/20)R
exp(—R?), which is a multiple of wp that depends
on the known level R. In Reference [29], the authors
investigated what value of R would make the enve-
lope LCR estimator robust to variations of K. They
found that if the level is chosen as the RMS value of

Copyright © 2001 John Wiley & Sons, Ltd.

the received power, which without loss of generality
we assume to be [E|h(1)[*]"/> =1, then K has lit-
tle influence on the envelope LCR. This is illus-
trated in Figure 10, where we see that the curves
corresponding to different K’s cluster together around
R = 1. In general, a ¢ # 0 scales the estimator where
the scale factor is independent of wp, given by
ALcr(R, ¥) := LCR(R, ¥)/LCR(R, 0), which can be
calculated using Equation (12) and numerical inte-
gration. Using this approach, we illustrate the joint
effect of K and « on the scale factor Arcgr(l1, ¥)
for ) = @ = 0 and 6y = o = /2 in Figure 11. Espe-
cially for ) = o = 0, the envelope LCR estimator is
seen to be robust to variations in K and «. The effect
of additive Gaussian noise™ n(t), which is assumed
to be independent of A(t), can also be characterized
through B, &, and p by replacing r®(0) with r®(0) +
r®(0), k = 0, 1, 2 (c.f. Equation (12)) [29, 45]. Note
the interesting fact that LCR(R, ¢)/LCR(R, 0) does
depend on wp whenever additive noise is present.
We follow a similar approach for the ZCR
of the I/Q components given by Equation (13)
which reduces to ZCR(0) = 7~ '[—r,(0)/r(0)]'/? =
wp/ (\/zn). Like the envelope LCR, the I/Q

**Note that the additive noise corrupts /(¢) and not |A(?)|.
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ZCR is proportional to wp and therefore can be
used as a velocity estimator. The ZCR estimator
designed for ¢ = 0 scales by a factor Azcr(¥) :=
ZCR(¥)/ZCR(0), which is independent of wp in the
absence of noise. In Figure 12, we illustrate Azcr(¥)
as a function of K and « for 6y = a =0 and 6y =
o = /2. We notice that the scale function is not
as robust to variations in K and « as the envelope
LCR estimator. The effect of additive noise can be
calculated the same way as outlined for the envelope
LCR method. Again we see that the presence of noise
renders the scale factor dependent on wp.

The rate of maxima (ROM) of the envelope,
which is the ZCR of the envelope derivative, is uti-
lized in Reference [45] for velocity estimation. The
authors use an accurate approximation of the ROM

Copyright © 2001 John Wiley & Sons, Ltd.

in designing an estimator for wp. This approach
circumvents the necessity for a reliable local power
estimator, which is required for both the envelope
LCR and ZCR methods previously mentioned. Also
in Reference [45], the effect of nonisotropic scatter-
ing on velocity estimators is formulated analytically
by using the von Mises distribution in Equation (5).
It is shown that the ROM estimator is more robust to
nonisotropic scattering and noise than the I/Q ZCR
estimator. The effect of shadowing is also consid-
ered in Reference [45], while the impact of a LOS
component is addressed in Reference [51].

Similar to the method used in Reference [45], the
authors in Reference [49] use the rate of envelope
minima for velocity estimation. The locations of the
local minima are estimated using the modulus maxima
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of P(t)’s CWT (much like Reference [33]), with the
assumption that the logarithmic quantity P(f) has
discontinuous derivatives at its local minima. This
assumption is necessary since the CWT is used to
detect the singularities of P(#) which are characterized
by its discontinuous derivatives. By relating the zero
crossings of the envelope derivative to wp, the authors
propose a rate of minima estimator similar to Refer-
ence [45], wherein they also provide a wavelet-based
approach for obtaining the locations of the minima.
The authors prove that the rate of minima is inde-
pendent of the received power, which shows that the
estimator does not suffer from inaccurate local power
estimation. However, neither the presence of noise nor
the effect of ¥ # 0 is considered in Reference [49].

4.2. Covariance/Correlation-based Velocity
Estimators

Lin and Proakis were among the first to tackle the
estimation of wp using correlations of channel esti-
mates [40]. Assuming ¢ = 0, they proposed the fol-
lowing nonlinear correlation matching approach to
Doppler estimation:

N-1
o = argmin Z [Jo(wpkTs) — 7 (kTs)]2 (26)
D k=0

where 7, (kTy) is the normalized sample correlation
estimator so that 7,(0) = 1. To make the nonlinear
least squares problem in Equation (26) tractable, the
authors, upon taking the derivative with respect to
wp to perform the optimization in Equation (26),
approximate Jo(x) with the first few terms (6 to 8 in
Reference [40]) of its power series expansion which
turns the problem into one of polynomial root finding.
The coefficients of the polynomial depend on 7, (kT,),
and the roots are found using Newton’s method. The
final estimate is obtained as an average over 10 to 20
TDMA frames. The effect of the SNR and the number
of frames is illustrated by simulation, but ¢ # 0 is not
considered.

In Reference [18], Holtzman and Sampath pro-
posed a covariance-based Doppler estimator using the
formula:

s C vy
“o =7\ %0 @7)

where:
N—1

1
V(T = 5 Y la((n+ DT)) = 2 TP
=0

| Nl | V- 2
&(0) == Y 2T = (ﬁ Zz(nm)

n=0 n=0
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and C is a constant depending on T, and whether
z2(t) = R{h(t)}, |h(t)|?, or H(t). We should briefly
mention that Anim-Appiah has analyzed «4% in a
recent paper [48], where he considered the cases
z(t) = |h(@®)|" and z(t) = R{h()}" + Z{h(?)}", where
n is a positive integer.

In order to justify the term ‘covariance-based’ for
Equation (27), we should mention that E[V(Ty)] =
2[c;(0) — ¢,(Ty)] depends on the covariance of z(¢).
Austin and Stiiber have shown that Reference [29]:

L [Eva) \W 08)
T,—0 TS CZ(O) Cz(o)

which, under the assumption of isotropic scattering
and no LOS component, can be shown to be ﬁa)D
when z(t) = R{h(t)}, or wp when z(t) = |h(t)|>. The
limit in Equation (28) can be derived by substitut-
ing 2[c;(0) — ¢, (Ty)] for E[V(Ty)], moving the 1/T
inside the square root, and applying L’Hospital’s
rule twice. The expression in Equation (28) is useful
because it facilitates analysis of the covariance-based
estimators for small 7 and large N when ¥ # 0, with
the same techniques used for the LCR and the ZCR
estimators because all of these estimators ultimately
depend on [—c,(0)/c,(0)]"/2.

An interesting fact that has not been pointed out in
the literature is that the limit in Equation (28) does
not exist when z(t) = H(¢) and K = 0 because c/,; 0)
is not finite, as can be verified from Equation (16).
Having the envelope-squared process |i(t)|> with a
finite c;/h‘Z(O), which after a logarithmic transforma-

tion 10log(-) yields a process H(¢) for which c/,; 0)
does not exist, seems counter-intuitive, but could
actually have been predicted from Bello’s work [52].
It was shown in Reference [52] that the RMS Doppler
spread of a Gaussian process h(t) (which is pro-
portional to c;l(O)) and the RMS Doppler spread of
K(h(@))?) are related by a scale constant that does
not depend on the Doppler spectrum of h(f), but
only on the memoryless nonlinearity /C(-). It turns out
that when () = 10log(-), the integral expression for
the scale factor in Reference [52] does not converge,
which is in agreement with our finding that the limit
in Equation (28) does not exist when z(¢) = H(¢).
The practical impact of this result is that whenever
z(t) = H(¢) is used in Equation (27), as was done in
Reference [18], the dependence of C on T is going
to be very strong for small T, which might cause
problems in the accuracy of the estimator. Moreover,
when z(#) = H(t), the effect of ¥ = 0 is not as con-
veniently characterized through cg (0) and ¢;(0) by
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assuming a small Ty, as it is when z(¢) = R{h(t)} or
2(t) = |h(r)|?, which we pursue next.

Using the expressions for ri")(O), n=20,1,2 in
Equations (8)—(10), we show that when T’ is small
and N is large, Equation (27) is scaled as a function
of K, k, & and 6, and derive the corresponding scale
function A, (). Consider first the case z(t) = R{h(t)}.
Using Equations (2), (8) and (10) we obtain:

\/—2c;(0)_ \/—2r}£(0)
c(0) r(0)
cos(2a)12(/<)>

1
v {(KJrl) ( To()

1

K ) 2
+K—+1(1 ~+ cos( 00)):|
= wpArny (¥) (29)

The first equality in Equation (29) is obtained by
using the fact that cjpy,(0) = ri”(0)/2, n =0,2,
whenever R{h(t)} has zero mean, which holds if we
assume that ¢y in Equation (3) is a uniformly dis-
tributed random variable. Notice that Az, (0) = 1 as
expected. Examining Equation (29) more closely, we
realize that for large values of K, the scale factor is
not influenced by « and «, and depends solely on the
LOS direction ;. An extreme case would be 6y =
/2 for large K, which would yield a Doppler esti-
mate of wp = 0. This is because /() in Equation (3)
would not be time-dependent, a situation where the
received signal contains no information about wp.
To derive the effect of ¢ on covariance-based
estimators that use |A(¢)|?, we recall Equation (28).

6,=0=0
1.4
1.3+ ~'. .,' ,.:.
= ,z.;,;:,wm;.
T=1.21 ' 'l, ',","l"': "'
Qi 'l,'l:,',','u’,’,’,’ '
" yl ,',"'l'm'
[ Uiy
A 2 Ui
o O
K K

Using Equation (14) to calculate the right-hand side
of Equation (28), we see that the estimator gets scaled
by a factor of A,z (¥), where:

App(¥)
I (1 N Cos(2a)12(/c)> , <Cos(a)11(/c)>2 13
Io(k) Io(k)
Y (2 4 8@ | 00
= Io(k)
4coshy cos(a)l (K))
Iy(x)
L 142K |
(30)

Observe that the scale factor Ap;p(0) =1. Note
also that for « = o =0, Equation (30) reduces
to App(K, 6, 0,0) = [1+ K cos(26))/(1 + 2K)]'/?,
which is a result derived in Reference [18] for
uniform AOA, later generalized to Equation (30) in
Reference [13].

In Figures 13 and 14, we plotted Ay (¥) and
App(¥) versus K and « for p =a =0 and 6 =
a =m/2. We observe that in Figure 13, Agyy(¥)
behaves very similarly to Azcgr(¥) in Figure 12,
which is not surprising since the ZCR estimator and
the covariance-based estimator when z(t) = R{h(t)}
both converge to the same value for large N and
K = 0. In Figure 14, we observe that x has a strong
influence on A,z (¢), especially when 6y = o = 0.

The effect of additive, zero-mean Gaussian noise
n(t) with a two-sided spectral density and a finite
spectral support on Equation (27) has been character-
ized in Reference [18], where z(¢) = |h(z) + n(t)|>.

90=(x=7t/2

Fig. 13. Az () in Equation (29) versus « and K.

Copyright © 2001 John Wiley & Sons, Ltd.
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Fig. 14. A2 (¢) in Equation (29) versus « and K.

It was shown that the noise introduces a bias that
increases with the noise bandwidth until it saturates
at a certain value. This saturation value, in turn,
increases with decreasing 7. In fact, it is argued in
Reference [18] that for a fixed SNR, as the noise gets
more and more uncorrelated (with increasing noise
bandwidth), with smaller and smaller T, the bias
grows without bound.

In what follows, we discuss the effect of addi-
tive white noise that is assumed to be indepen-
dent of A(t), on Equation (27) when z(t) = R{h(t) +
n(t)}. The assumption of uncorrelated noise samples
holds where &5 in Equation (27) is calculated using
noisy channel samples obtained with pilot sequences.
With the cascade of the transmit and receive filters
designed to have Nyquist properties to avoid inter-
symbol interference, the channel estimates are cor-
rupted by uncorrelated noise in discrete time.

For large N, Equation (27) is given by,

~HS £ 2[61(0) - Cz(Ts)]
®p- N a0 (D)

which, using the independence of h(kT';) and n (kT),
and the fact that c%'{)h}(O) = r}(,")(O)/Z, n=0,2, as
was mentioned right after Equation (29), can be writ-
ten as:

~HS R{rh(o)_rh(Ts)}
“r C¢ T2[14(0) + r, (0)]

2r,(0)
T3rn(0) + 1, (0)]
(32)

where we used the fact that r,(kT;) = 0 for n # 0.
But we know that since T, is small, we can use

Copyright © 2001 John Wiley & Sons, Ltd.

Equation (28) to obtain:

2r, (0)
T3rn(0) + 1, (0)]
(33)

N 1, 0)

“p C\/[rh(O) + 7, (0]

We see that if the SNR :=#,(0)/r,(0) is moder-
ate/low, with T; being very small, the second term
in Equation (33) causes wp to deviate from wp in a
pronounced manner owing to the presence of noise
(r,(0) # 0). So, similar to the case z(t) = |h(z) +
n(t)|?, investigated in Reference [18], when z(t) =
R{h(t) + n(r)}, uncorrelated noise samples n(kT)
cause the estimator bias to grow without bound as
the sampling duration goes to zero.

One way to overcome this limitation is to avoid

r,(0) by adopting the following variation on ®5 in
Equation (27):
N 1 2[V(T,) - V(2Ty)]
wp = —1|—% -
Iy\ 3 r-(0)
o [L2RIDQT) —n@)
3 T3r(0) + 1, (0)]

for large N. When T is small, Equation (34) yields
[—27,(0)/(ri(0) + r,(0))]"/2, which like Equation
(33) is also influenced by r,(0), but not nearly as
much because for moderate SNRs, the denominator
r7(0) 4+ r,(0) &~ r,(0), so &p does not deviate from
wp significantly. A similar ‘denoising’ approach was
suggested in Reference [29] for robustness against
cochannel interference.
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Another approach recently proposed in Refer-
ences [13] and [50] motivated by Equation (28) has
sought to estimate cg (0) and ¢, (0) separately. Estima-
tion of cg (0) and ¢, (0) is done by fitting a parabola to
the L points of the sample covariances {¢,(! Ts)}leo,
and assuming that the sampling rate 1/7 is suffi-
ciently high to insure LT, <« 1. This condition is
satisfied, for example, if channel samples used to
estimate ¢,(0) and c;(O) are provided by channel
estimators of narrowband TDMA systems, similar to
Reference [40]. The steps for the approach in Refer-
ence [13] are as follows:

Step 1: Find the covariance estimates {c. (! TS)}ZL=0 by
sample averaging;

Step 2: Find a, = argmin,_ 21L=0 |c,(ITy) — Zﬁzo
a, ">, n=0,2;

Step 3: Obtain & (0) = nla,/T",n =0,2;

Step 4: Substitute ¢{(0), n = 0, 2, in Equation (28),
and use the corresponding C depending on
whether z(r) = R{h(1)} or z(t) = |h(t)|>.

Note that the mapping from the covariance esti-
mates to the derivative estimates that solves the
least squares problem in Step 2 ({&,(IT\)}, —
{¢!(0)}2_,) is a linear transformation (a 3 x (L + 1)
matrix multiplication) which can be precomputed
once T, is known. Unlike Reference [40], the method
described in Steps 1-4 only uses a second-order
polynomial to estimate wp, which obviates unnec-
essary approximations and the need for finding the
roots of a higher than second-order polynomial.

The approach in Reference [13] facilitates a natu-
ral obviation of the effect of uncorrelated noise when
z(t) = R{h(t)}. To circumvent the effect of uncor-
related noise in this case, Reference [13] performs
the minimization in Step 2 by not using the zeroth
lag ¢,(0), which is most affected by the presence of
white noise. When the data record is large enough,
this approach is unaffected by the SNR, and as we
show later, it even outperforms the ‘denoised’ esti-
mator in Equation (34).

We should note that the analysis that led to
Equations (29) and (30) also holds for the estima-
tor in Reference [13], since, like Reference [18], it
approximates Equation (28) when T is small and N
is large. An issue that remained unaddressed so far,
which has not received much attention in the litera-
ture is the performance of velocity estimators when
the data record is finite. An expression for the vari-
ance of the number of zero crossings of a narrowband
Gaussian process (corresponding to K = 0) can be

Copyright © 2001 John Wiley & Sons, Ltd.

found in Reference [53] (p. 212). A simpler formula
that is a special case of this result for processes
with symmetric spectra (corresponding to ¢ = 0) is
reported in References [54] and [55] (p. 85). How-
ever, not many results are available for the variance
of envelope LCR estimators for finite data records.
Also, even though the mean squared consistency of a
class of covariance-based estimators is proved in Ref-
erence [13], variance expressions for when the data
record is finite is not available in the literature. Hence,
we resort to simulations in the next section to com-
pare the velocity estimators’ performance when the
data record is finite.

4.3. Effect of Finite Data Record

Since the effect of ¢ # 0 was characterized analyt-
ically, we assume ¥ = 0 in this subsection. In our
simulations, we generated 100 different realizations
of h(t) using the simulator in Reference [56] which
approximates Clarke’s spectrum, and for the given
method, plotted the histogram for the 100 veloc-
ity estimates normalized by the true velocity, cor-
responding to each realization. The performance of
each estimator can be judged by how closely its
histogram is clustered around 1. In all experiments
v=100km h™!, and T, =4.12 x 1073, which is
the symbol period for the IS-54 TDMA standard
adopted in North America. The carrier frequency is
fe =900 MHz implying wp/2m ~ 83.3 Hz. For the
method in Reference [13] we chose L = 15 correla-
tion lags.

In Figure 15 we observe that for a time duration of
20 ms (N = 485 samples) the sample variances of the
covariance-based estimators (a)gs in Equation (27)
and the one proposed in Reference [13]) are an order
of magnitude smaller than their LCR-based counter-
part, and that the estimator in Reference [13] has
a slightly smaller sample variance than ®2%. This
illustrates that as far as convergence of estimators to
their ensemble values is concerned, at high sampling
rates and small estimation windows, covariance-based
estimators are more reliable than their LCR-based
counterparts. This is because, for such small data
lengths, the signal does not experience many level
crossings as can also be seen from the top-left plot in
Figure 15. This large gap in the maximum Doppler
spread estimator variance for small window lengths
between the LCR-based schemes and those that rely
on the covariances, have recently been reported in
Reference [13], and is important to know in contexts
where quick estimates of wp are needed, such as
adaptive modulation/coding.
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Fig. 15. Histogram of velocity estimates for N = 485 (NT; = 0.02 s).
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Fig. 16. Histogram of velocity estimates for N = 485, SNR = 20 dB.

In Figure 16 we look at the effect of white noise
at SNR =20 dB. We observe that &5 performs
very poorly as explained by Equation (33). The esti-
mator in Reference [13] obtained by avoiding the
zeroth covariance lag ¢gy;(0) has an order of magni-
tude less variance than the one obtained by ‘denois-
ing” @45, given in Equation (34), in the presence of
noise.

Copyright © 2001 John Wiley & Sons, Ltd.

In conclusion, we see that as far as the convergence
of sample estimates and sensitivity to white noise
is concerned, the estimator in Reference [13] is
always the best alternative, when Ty < 1. The intu-
itive explanation for this is that the estimator in
Reference [13] involves more correlation lags and
hence it is more reliable as compared to ®25. Nat-
urally, utilizing more correlation lags to improve
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performance comes at the expense of more computa-
tional complexity.

5. Conclusion

In this paper, we summarized the current state of the
art in signal strength estimation, velocity estimation,
and estimation of related channel parameters which
are influential in system performance. In our discus-
sion of signal strength estimation, we gave emphasis
to the pioneering works in References [14, 29-31]
and illustrated the effects of LOS, nonisotropic scat-
tering and sampling rate as well as shadow correlation
distance and shadow variance on the estimator per-
formance. Then we discussed Doppler-based velocity
estimation under the umbrella of LCR-based estima-
tors and covariance-based estimators. We character-
ized the effects of model imperfections owing to the
presence of LOS, nonisotropic scattering and additive
noise on many of the velocity estimators, utilizing a
unifying framework and illustrated the effect of finite
data length via simulation.
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