
Citation: Rashid, R.; Zhang, E.; Abdi,

A. Underwater Acoustic Signal

Acquisition and Sensing Using a Ring

Vector Sensor Communication

Receiver: Theory and Experiments.

Sensors 2023, 23, 6917. https://

doi.org/10.3390/s23156917

Academic Editor: Ping Lu

Received: 3 July 2023

Revised: 24 July 2023

Accepted: 29 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Underwater Acoustic Signal Acquisition and Sensing Using a Ring
Vector Sensor Communication Receiver: Theory and Experiments
Rami Rashid , Erjian Zhang and Ali Abdi *

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
raa62@njit.edu (R.R.); ez7@njit.edu (E.Z.)
* Correspondence: ali.abdi@njit.edu

Abstract: Signal acquisition and sensing in underwater systems and applications is typically a
challenging issue due to the small signal strength within the background noise. Here, we present
a ring vector sensor communication receiver that can significantly improve signal acquisition, by
utilizing the underwater acoustic vector field components, compared to the scalar component. The
vector sensor receiver is a multichannel receiver that measures particle velocities, which are vector
components of the underwater acoustic field, in addition to the scalar field component. According to
the combination of our measured experimental data with our signal acquisition performance analysis,
the introduced ring vector sensor receiver exhibits higher signal acquisition probabilities for the
vector components compared to the scalar component. This can be attributed to certain characteristics
of the vector field components. Another advantage of this multichannel receiver is that combining
all of its channels can further increase the signal acquisition and packet detection probability in
underwater communication systems compared to a single-channel approach.

Keywords: signal acquisition; underwater sensing; underwater sensors; vector sensors

1. Introduction

Accurate signal acquisition is a fundamental step for the success of signal demod-
ulation in a variety of underwater systems. A useful method for signal acquisition is to
append a linearly frequency modulated (LFM) waveform to the beginning of a packet, and
then monitor the output of a receiving filter matched to the LFM signal. A sharp peak
at the matched filter output marks the beginning of the received packet and allows for
successful data demodulation. However, in applications where either noise is strong or
signal is weak, the matched filter output does not exhibit a large peak, which can cause
high demodulation error.

A vector sensor is a multichannel sensor that simultaneously measures the vector
and scalar field components. Given their multichannel nature, vector sensors are used
in a variety of applications. Examples include sonar, source localization, angle of arrival
estimation, beamforming, and communication [1–17]. The advantages of using a vector
sensor for the estimation of the direction of arrival are investigated in [1–3]. Analytical
results of [4], obtained based on maximizing the directivity index, indicate that the acoustic
vector component channels of vector sensors should be utilized for optimal detection.
Furthermore, ref. [5] shows that a single vector sensor directivity gain can be four times
higher than the directivity of a pressure sensor. Additionally, vector–scalar receivers can be
used together with an interferometric method for source detection [6–8] and estimating the
velocity of a noise source [9]. In addition, the processing gain of vector sensors in noise is
addressed in [10], while signal detection using a vertical linear array is investigated in [11].

The papers that utilize a vector sensor as an underwater communication receiver,
e.g., [12–14,16,17], focus on subject matters such as demodulation, bit error rate, capacity,
channel estimation, equalization, etc., rather than signal acquisition performance. More
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specifically, underwater multichannel equalization using the multiple channels of a vector
sensor is proposed in [12]; space–time underwater communication channel parameters are
estimated using a vector sensor in [13,14], using a quadrilinear decomposition method,
and using MUSIC and ESPRIT algorithms for a multicarrier code-division multiple access
systems, respectively; underwater channel capacity bounds are calculated in [16] for a
vector sensor receiver; and multi-hop cooperative underwater communication and its
bit error rate and capacity are studied in [17] for a frequency-selective channel using an
angle-of-arrival model for a vector sensor. However, none of these studies examine the
performance of a communication receiver vector sensor at the signal acquisition phase.

The objectives of this paper are: (a) present a ring vector sensor multichannel receiver
and study its signal acquisition performance both experimentally and analytically, and
(b) compare the multichannel performance with the performance offered by each individ-
ual channel of the ring vector sensor. Our solutions to achieve these objectives consist of
collecting and analyzing experimental data, combined with mathematical analysis. As
demonstrated later, our results allow the examination of the practical feasibility and use-
fulness of the proposed ring vector sensor receiver for underwater signal acquisition and
packet detection.

The rest of this paper is organized as follows. Section 2 provides the definitions for the
vector and scalar signals that the ring vector sensor measures. System formulations and
performance analysis for multichannel signal acquisition are presented in Section 3. These
provide tools and formulas for analyzing the signal acquisition performance of the ring
vector sensor receiver using experimental data in Section 4. Concluding remarks are given
in Section 5.

2. The Ring Vector Sensor Receiver and Its Signals

A vector sensor has been found to be useful for multichannel equalization in a commu-
nication receiver [12]. Among various designs [18], we consider a ring with four segments,
as shown in Figure 1, due to its relative ease of implementation. In response to the transmit-
ted signal s[i], with i being the time index, it measures the two signals given in Equation (1)
that are the acoustic particle velocities, i.e., the vector components of the field in the x–y
horizontal plane[

rx[i] ry[i] rp[i]
]T

=
[
hx[i] hy[i] hp[i]

]T ⊕ s[i] +
[
nx[i] ny[i] np[i]

]T , (1)

where T is the transpose. The signal rp[i] in Equation (1) is the acoustic pressure, represent-
ing the scalar component of the field, and is measured using a scalar sensor encapsulated in
the receiver. The symbol ⊕ in Equation (1) is the convolution; hx[i], hy[i] and hp[i] represent
the x and y acoustic particle velocity and the acoustic pressure channel impulse responses,
respectively; and nx[i], ny[i] and np[i] represent the x and y acoustic particle velocity and
the acoustic pressure noise components, respectively. Note that since the acoustic particle
velocity in a particular direction is the spatial gradient of the acoustic pressure in that
direction [19], we have the following relations for the x and y particle velocity components

rk[i] = ∂rp[i]/∂k, hk[i] = ∂hp[i]/∂k, nk[i] = ∂np[i]/∂k, k = x, y. (2)

In the next section, Section 3, we consider a multichannel signal acquisition method
that can be used to study the signal acquisition performance of the ring vector sensor
receiver. A simpler method that is less complex to implement is also considered and
studied in Section 3. Comparison and analysis using experimentally measured data are
presented in Section 4.
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Figure 1. Schematic representation of the ring vector sensor receiver and the two particle velocity
signals that it measures in the x–y plane.

3. Multichannel Signal Acquisition
3.1. Definitions of Signals, Channels, and Noise

Let s[i], i = 0, 1, . . . , N − 1, be the signal that is transmitted for acquisition and packet
detection at the receiver side. Upon using the three-channel receiver, the received data
vector can be written as

r = Sh + n (3)

In this equation, r is a 3N × 1 complex vector that represents the received signal plus
noise, defined as follows

r = [rT [0]rT [1] · · · rT [N − 1]]
T

, (4)

r[i] = [r1[i] r2[i] r3[i]]
T , i = 0, 1, . . . , N − 1, (5)

where the three channels of the receiver are labeled 1, 2, 3, instead of x, y, p, for notational
convenience. In the above equations, S is a 3N × 3 matrix that is composed of N signal
samples, as follows

S = s⊗ I3, s = [s[0]s[1] · · · s[N − 1]]T , (6)

where ⊗ is the Kronecker product, I3 is the 3× 3 identity matrix, and h represents the
underwater channel responses sensed by the three-channel receiver

h = [h1 h2 h3]
T , (7)

with the following covariance matrix

Σh = E[hh†] = diag(η2
1 , η2

2 , η2
3), (8)

where E is the mathematical expectation, † is the transpose conjugate and diag stands for
the diagonal matrix. Additionally, n in (3) is a 3N × 1 complex vector that represents the
additive noise observed by the three-channel receiver

n = [nT [0]nT [1] · · ·nT [N − 1]]
T

, (9)
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n[i] = [n1[i]n2[i]n3[i]]
T , i = 0, 1, .., N − 1, (10)

with the following covariance matrix

Σn = E[n[i]n†[i]] = diag(σ2
1 , σ2

2 , σ2
3 ). (11)

In Section 3.2 below, we consider and analyze a multichannel signal acquisition
method to understand the signal acquisition performance of the ring vector sensor receiver,
followed by considering and analyzing a simpler method in Section 3.3 that has lower
implementation complexity.

3.2. Multichannel Combining

Matched filtering is a useful approach for acquisition and packet detection in com-
munication receivers. By appending a known signal s[i], such as an LFM signal, to the
beginning of the packet and then monitoring the output of a receiving filter matched to
the signal, acquisition can be accomplished. To analyze the signal acquisition performance
of the multichannel ring vector sensor receiver, we consider a multichannel combining
approach where each channel of the vector sensor is fed into a matched filter, matched to
s[i], and then the outputs of the three matched filters are combined. If zk denotes the output
of the kth matched filter sampled at i = N − 1, then the signal acquisition decision statistic
Λ of the ring vector sensor receiver can be written as

Λ = ∑3
k=1 Λk , Λk =|zk|2, zk = ∑N−1

i=0 s∗[i]rk[i], (12)

where ∗ represents the conjugate. A flowchart of this method is presented in Figure 2a.
Following the Neyman-Pearson theorem [20], the signal is successfully acquired with prob-
ability PA, if Λ > γ, where γ is the decision threshold determined by the probability of false
acquisition PFA. Since N is usually large, zk in (12) can be considered to follow a complex nor-
mal distribution, based on the central limit theorem. Let H1 and H0 represent the signal-in-
noise and noise-only scenarios, respectively. Additionally, ρk = E[

∣∣zk
∣∣2∣∣H1] = (dk + 1)σ2

k E
and ξk = E[

∣∣zk
∣∣2∣∣H0] = σ2

k E, where dk = (η2
k /σ2

k )E and E is energy of the signal s[i]. The
characteristic function (CF) of Λk in (12), ΘΛk (ω) = E[exp(jωΛk)] with j2 = −1, can be
shown to be (1− jρkω)−1 and (1− jξkω)−1 under H1 and H0, respectively. Upon applying
partial fraction expansion to the CF of Λ, ΘΛ(ω) = ∏3

k=1 ΘΛk (ω), followed by inverse
Fourier transform to obtain probability density function (PDF) from CF [20], PDF of Λ can
be obtained and integrated, which result in the following performance probabilities

PA = Pr(Λ > γ|H1) = ∑3
k=1 Uk exp(−γ/ρk), (13)

PFA = Pr(Λ > γ|H0) = ∑3
k=1 Vk exp(−γ/ξk). (14)

In the above equations, we have Uk = ∏3
k′=1,k′ 6=k (1− ρk′ρ

−1
k )−1 and

Vk = ∏3
k′=1,k′ 6=k (1− ξk′ξ

−1
k )−1 as the partial fraction expansion coefficients of ΘΛ(ω)

under H1 and H0, respectively.
To implement this multichannel signal acquisition method for the ring vector sensor

receiver, three matched filters are needed. In the next subsection, we consider a sim-
pler method that requires only one matched filter to implement, and then compare its
performance with the implementation that needs three matched filters.
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3.3. Maximum Power Selection

Let Ωk = E[
∣∣rk[i]

∣∣2] , k = 1, 2, 3, be the power of rk[i]. In addition, let rm[i] denote the
one that has the maximum power, i.e., Ωm = E[

∣∣rm[i]
∣∣2] = max{Ω1, Ω2, Ω3} . The signal

acquisition decision statistic Λm in response to this selected signal rm[i] is given by

Λm = |zm|2, zm = ∑N−1
i=0 s∗[i]rm[i], (15)

where zm is the output of the matched filter for the strongest receiver channel, sampled
at i = N − 1. A flowchart of this method is presented in Figure 2b. Following the
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same approach as the previous subsection, the following performance probabilities can be
obtained for this detector

PA,m = Pr(Λm > γ|H1) = exp(−γ/ρm), (16)

PFA,m = Pr(Λm > γ|H0) = exp(−γ/ξm), (17)

where ρm = E[
∣∣zm
∣∣2∣∣H1] = (dm + 1)σ2

mE, dm = (η2
m/σ2

m)E and ξm = E[
∣∣zm
∣∣2∣∣H0] = σ2

mE.
To theoretically compare the performance of the maximum power selection signal ac-

quisition method with the multichannel combining method, first we consider the case where
the noise powers are equal, i.e., σ2

1 = σ2
2 = σ2

3 = σ2 and consequently ξ1 = ξ2 = ξ3 = ξ
(this assumption is dropped in the next section). Then, we obtain this CF for Λ under
H0, ΘΛ(ω) = (1− jξω)−3, which, upon inverse Fourier transform and integration of the
resulting PDF, a chi-squared PDF [20] with six degrees of freedom, provides the following
probability

PFA = exp(−γ/ξ)(1 + (γ/ξ) + 0.5(γ/ξ)2). (18)

For any given value of PFA, Equation (18) can be solved and the resulting γ needs to be
substituted in (13) to compute PA for the multichannel combining method. For the maxi-
mum power selection method and by combining (16) and (17), we obtain, PA,m = P1/(dm+1)

FA,m .
Using these results, the signal acquisition probabilities of these two methods are graphed
and compared in Figure 3, where, without loss of generality, it is assumed that receiver
channel 1 has the maximum power.
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Figure 3 shows PA and PA,m plotted as functions of d1, signal-to-noise ratio (SNR) of
the receiver channel 1, with (d2, d3) = (0.01, 0.02) in the top panel and (d2, d3) = (1, 2)
in the bottom panel, PFA = 0.01, and unit energy signal. We note that when channels 2
and 3 are not strong (top panel), the maximum power selection method that picks channel
1 outperforms the multichannel combining method, which is a reasonable result. When
channels 2 and 3 become stronger (bottom panel), the selection method converges to the
combining method, as d1 increases.
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4. Analysis Using Experimental Data
4.1. The Setup for Measurements and Experiments

To study the signal acquisition performance of the ring vector sensor receiver em-
ploying the selection method or the combining method, underwater experiments were
conducted. More specifically, one hundred LFM signals were transmitted in a large pool.
Experiments were conducted along the length of the pool, which was about 23 × 13 m in
size, and 1–3 m in depth. The transmitter and receiver were submerged in water and were
separated by 20 m. They were 0.6 m below the water surface. During the experiments,
there were some swimming activities in some other lanes. The LFM signal was generated
in complex baseband, that is, s[i] = exp[j2πB0(2T0)

−1(i/ fs)
2], where B0 represents the

bandwidth, T0 represents the signal duration, and fs is the sampling rate. Then it was con-
verted to a real passband waveform before the transmission. The duration and bandwidth
of each transmitted LFM signal were T0 = 0.2 s and 8 kHz, centered at 20 kHz. The spacing
between each two consecutive LFM signals was also T0. An omnidirectional transducer
was used as the transmitter. On the receiver side, the ring vector sensor receiver that was
used simultaneously measured the x and y components of the acoustic vector field, i.e.,
the acoustic particle velocity, and the p scalar component of the acoustic field, i.e., the
acoustic pressure.

The data measured by all the channels of the ring vector receiver were analog real
passband waveforms that were fed into an analog-to-digital converter (ADC) with the
sampling rate of fs = 100,000 samples per second. The ADC was connected to a laptop in
which the collected data were stored. To prepare the data for the analysis conducted in the
next subsection and using the methods and equations presented in Section 3, the data were
converted to the complex baseband format.

4.2. Data Analysis

To evaluate the acquisition performance of the multichannel combining ring vector
sensor receiver using experimental data, SNRs and noise powers for various channels are
first calculated from one hundred trials and are all shown in Figures 4 and 5, respectively.
For the kth receiver channel, the averages of the hundred measured SNRs and noise powers
are used to determine dk and σ2

k , respectively, which in turn specify numerical values for ρk
and ξk, respectively. By substituting these in (13) and (14), PA versus PFA receiver operating
characteristic curve for the ring vector sensor receiver using the multichannel combining
method is obtained and graphed in Figure 6, together with the PA versus PFA curve for
each individual channel of the ring vector sensor receiver (results of the maximum power
selection method are discussed at the end of this subsection).

We observe that the multichannel combining method for the ring vector sensor receiver
offers the highest signal acquisition probability compared to each of its individual channels.
Additionally, the x and y channels appear to exhibit higher signal acquisition probabilities
than the p channel. To understand why the x and y channels outperform the p channel, we
look at the measured SNRs. Figure 4 shows one hundred experimental data points for the
SNR of each of the x and y vector components and the p scalar component measurements
of the ring vector sensor receiver. We note that the SNRs of the vector components are
higher than those of the scalar components. This can be attributed to the smaller noise
powers of the vector components, according to the hundred noise measurements shown in
Figure 5 for each component. A theoretical explanation for the lower noise powers of the
vector components is that they do not receive noise from all directions, whereas the scalar
component collects noise from various directions [12].
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For the maximum power selection method, the PA versus PFA curve is shown in
Figure 6, obtained using (16) and (17) and the experimental data. We notice that the
selection method and the combining method exhibit a nearly similar performance. This is
because there is at least one strong channel that individually provides high PA, and adding
more channels slightly increases PA.

5. Conclusions

In this paper, a new receiver for packet detection and signal acquisition in underwater
communication and sensing applications is proposed. The proposed receiver is a ring
vector sensor receiver that benefits from the multiple signals that it collects from the field.
These signals are particle velocities that are vector components of the field, in addition to
the scalar field component. Our experimental measurements, along with mathematical
analysis, demonstrate that the signal acquisition probabilities of the vector components
are higher compared to the scalar component. According to the experimental data, this
could be related to the higher SNRs and lower noise powers of the vector field components.
Additionally, the multichannel combining method that uses all of the channels of the ring
vector sensor receiver offers the highest signal acquisition probability compared to each
of its individual channels. Moreover, it is demonstrated that if the receiver channels are
strong, using the strongest channel can provide nearly the same acquisition performance as
the multichannel combining method, while being less complex to implement.

To theoretically investigate how the angular behavior of the vector sensor receiver
may affect its signal acquisition performance, the interested reader can refer to the analysis
presented in Appendix A.

Given the recent advances in distributed underwater acoustic sensor networks and
their applications, a future research topic could be investigating signal acquisition in such
networks using multichannel vector sensors.
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Appendix A. Analysis of the Angular Dependence of the Signal Acquisition Performance

Given the angular selectivity of a vector sensor, the transmitter position (transmitter
angle) changes the power distribution among the channels of the vector sensor receiver [4].
To understand how the transmitter position affects the signal acquisition performance
studied in this paper, suppose the transmitter is located at the angle ϕ in the x− y plane.
Using the angular von Mises PDF [21] for the signal angle-of-arrival ϕ around the mean ϕ

f (ϕ) =
exp(ν cos(ϕ− ϕ))

2π I0(ν)
, ν ≥ 0, −π < ϕ < π, (A1)

we can obtain the closed-form expressions for the x and y channel powers that we need
in this study. In the above PDF, ν controls the width of the PDF and I`(.) is the `-th
order modified Bessel function of the first kind. An example of this PDF for ϕ = 30

◦
and

ν = 20 is shown in Figure A1. The von Mises PDF is widely used for the characterization
and analysis of angular variables, and includes or approximates several other angular
PDFs [22]; moreover, given its mathematical form, it can result in useful closed-form
formulas for channel correlation functions and channel powers of the vector sensor, as
demonstrated below.
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Let hp(x0, y0) represent the acoustic pressure at a point (x0, y0). By definition, the spa-
tial correlation function of hp is given by chp(∆x, ∆y) = E[hp(x0, y0)h∗p(x0 + ∆x, y0 + ∆y)].
Upon writing hp(x0, y0) and hp(x0 +∆x, y0 +∆y) as superpositions of plane waves received
at the points (x0, y0) and (x0 + ∆x, y0 + ∆y) in the two-dimensional plane, respectively, it

can be shown that chp(∆x, ∆y) = η2
pEϕ[exp{jκ

√
(∆x)2 + (∆y)2 cos(ϕ− ϕ0)}] [23], where

η2
p = E[|hp|2] is the power of hp, ϕ0 = tan−1(∆y/∆x), κ = 2π/λ and λ is the wavelength.

By substituting f (ϕ) of (A1) and computing the mathematical expectation with respect to
ϕ using [24], we obtain the following spatial correlation function

chp(∆x, ∆y) = η2
p

J0

(
j
√

ν2 − κ2((∆x)2 + (∆y)2) + j2νκ(∆x cos ϕ + ∆y sin ϕ)

)
J0(jν)

(A2)

where J`(0) is the `-th order Bessel function of the first kind and I`(ζ) = j−` J`(jζ). Since
the acoustic particle velocity x and y components are the spatial gradients of the acoustic
pressure along the x and y axes, that is, hx = ∂hp/∂x and hy = ∂hp/∂y, taking certain
derivatives of chp(∆x, ∆y) in (A2), according to the formulas presented in [23], provides the
following results for the vector sensor channel powers and correlations

η2
x = E[|hx|2] = −κ−2∂2chp(∆x, ∆y = 0)/∂(∆x)2|∆x=0 ,

= η2
p

{
1
2

J0(jν)−J2(jν)
J0(jν) cos2 ϕ + j(cos2 ϕ−1)

ν
J1(jν)
J0(jν)

}
,

(A3)

η2
y = E[|hy|2] = −κ−2∂2chp(∆x = 0, ∆y)/∂(∆y)2∣∣∆y=0 ,

= η2
p

{
1
2

J0(jν)−J2(jν)
J0(jν) sin2 ϕ + j(sin2 ϕ−1)

ν
J1(jν)
J0(jν)

}
,

(A4)

E[hxh∗y ] = −κ−2∂2chp(∆x, ∆y)/∂∆x∂∆y
∣∣∆x=∆y=0 ,

= η2
p

{
1
2

J0(jν)−J2(jν)
J0(jν) sin ϕ cos ϕ + j sin ϕ cos ϕ

ν
J1(jν)
J0(jν)

}
,

(A5)

E[hph∗x] = (jκ)−1∂chp(∆x, ∆y = 0)/∂∆x|∆x=0 ,

= −jη2
p

J1(jν)
J0(jν) cos ϕ,

(A6)
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E[hph∗y ] = (jκ)−1∂chp(∆x = 0, ∆y)/∂∆y
∣∣∆y=0 ,

= −jη2
p

J1(jν)
J0(jν) sin ϕ.

(A7)

Using Equations (A3) and (A4) and this property of Bessel functions
ζ J2(ζ) = 2J1(ζ)− ζ J0(ζ) [24], it can be shown that η2

x + η2
y = η2

p. Since the sum of the x
and y particle velocity channel powers is constant, it means that as ϕ, which specifies the
transmitter position, increases counterclockwise with respect to the positive x axis, the
x-channel power η2

x decreases, whereas the y-channel power η2
y increases. To see how this

affects the signal acquisition performance of the ring vector sensor receiver, we produce PA
versus PFA performance curves via simulations, as explained below.

Numerical Simulations: We consider an isotropic noise field [4,12] that renders the
noise covariance matrix of Σn = diag(σ2

x , σ2
y , σ2

p) for the three-channel vector sensor receiver,
where σ2

x = σ2
y = σ2

p/2. Then, we generate 1000 complex normal realizations of the 3N × 1
complex noise vector n in (9) that includes N samples of the noise for each of the three
channels of the vector sensor receiver. Then, using (12), we simulate 1000 values for the
decision statistic Λ that, for a given PFA, allows the computation of the corresponding
decision threshold γ such that PFA = Pr(Λ > γ|H0) and H0 represents the noise-only
scenario. To compute PA for this γ according to PA = Pr(Λ > γ|H1) , where H1 represents
the signal-in-noise scenario, we need to simulate 1000 values for the decision statistic Λ
under H1 and using (12) as well. Therefore, 1000 realizations of the 3N × 1 complex vector
r = Sh + n of signal plus noise in (3) are also generated, where r includes N samples
of the received LFM signal plus noise for each of the three channels of the vector sensor
receiver. Here, we note that based on (6), the 3N × 3 complex matrix S is composed of
N LFM signal samples, where the LFM signal and its parameters are given in Section 4.1.
Moreover, to generate the realizations of r, we generate 1000 complex normal realizations of
the three channels of the vector sensor receiver h = [hxhy hp]

T with the covariance matrix
of Σh = E[hh†], for which the elements are given by Equations (A3)–(A7). By repeating the
above simulation steps for the PFA values shown in Figures A2 and A3, the associated PA
values are computed and used to graph the performance curves presented in these two
figures. The considered numerical values for the parameters in the simulations are σ2

p = 0.1,
N = 1000, ν = 20, and ϕ = 10o or 80o, which indicates that the transmitter is close to the x
axis or the y axis, respectively.

The simulated PA versus PFA curve for each individual channel of the ring vector
sensor receiver is shown in Figure A2, when the transmitter is close to the x axis. We
observe that the acquisition performance of the x channel is better than that of the y channel.
This can be attributed to the higher SNR of the x channel, 10 log10(η

2
x/σ2

x) = 12.7 dB,
compared to the SNR of the y channel, 10 log10(η

2
y/σ2

y ) = 2 dB. The situation is reversed
and the y channel performance becomes better than the x channel, as seen in Figure A3,
when the transmitter is close to the y axis. This is because in this case, SNRs of the x and y
channels are changed to 2 and 12.7 dB, respectively, due to the change in the transmitter
position. Additionally, we observe that in both figures, the multichannel combining method
performs better than each individual channel.
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