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Abstract — There are var ious cases in physics and engineer ing sciences (specially 

communications) where one requires the envelope PDF of the sum of several random sinusoidal 

signals. According to the correspondence between a random sinusoidal signal and a random vector , 

sum of random vectors can be considered as an abstract mathematical model for  the above sum. 

Now it is desired to obtain the PDF of the length of the resulting vector . Consider ing the common 

and reasonable assumption of uniform distr ibutions for  the angles of vectors, many researchers 

have obtained the PDF of the length of the resulting vector  only for  special cases. However  in this 

paper, the PDF is obtained for  the most general case in which the lengths of vectors are arbitrary 

dependent random var iables. This PDF is in the form of a definite integral, which may be 

inappropr iate for  analytic manipulations and numer ical computations. So an appropr iate infinite 

Laguerre expansion is also der ived. Finally, the results are applied to solve a typical example in 

computing the scatter ing cross section of random scatterers. 
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I.  INTRODUCTION 

In various applications we usually encounter a random signal that is composed of the sum of several 

random sinusoidal signals, e.g. multipath fading in communication channels [1]-[5], clutter [6]-[8] and 

target cross section [9] in radars, interference in communication systems [10], [11], wave propagation in 

random media and channels [12]-[17], laser speckle patterns [18], [19], and light scattering [20], [21]. 

Some other examples can be found in [22]. 

Any random sinusoidal signal can be considered as a random vector, i.e. a vector with random 

length and angle. In this way the sum of random sinusoidal signals changes to the sum of random vectors. 

So, irrespective of the type of application, we encounter the following general mathematical problem: 

There are N vectors with lengths Ai 's and angles Φi 's, where N, Ai 's, and Φi 's are random variables. It is 

desired to obtain the probability density function (PDF) of A, length of the resulting vector: 

A j A j X jYi ii

N
exp( ) exp( )Φ Φ= = +

=� 1
, (1) 

In the above formula the ith vector is represented by A ji iexp( )Φ , where j = −1. Note that the PDF of A 

also represents the univariate envelope PDF for the sum of random sinusoidal signals. 

According to a comprehensive literature survey [23], the reported results on the PDF of A, obtained 

under various assumptions and conditions, may be summarized as follows: 

1) N is a random variable: [12], [20], [21], [24]-[30], 

2) Φi 's have nonuniform PDF's on [ , [0 2π : [12], [13], [23], [31]-[34], 

3) N is a deterministic variable and Φi 's have uniform PDF's on [ , [0 2π : [10], [12], [14], [18], [21]-[23], 

[28], [35]-[67], [86], 

4) X and Y in (1) have a joint Gaussian PDF: [12], [13], [55], [68]-[70], 

5) X and Y in (1) have a joint nonGaussian PDF: [12], [50], [53], [71]. 

The pioneering contributions of Rayleigh, Pearson, Kluyver, and Markov to the random vector problem 

have been summarized in [33]. The contribution of Russian researchers, not reported in [23] since in most 

cases they have published their results only in Russian, is summarized in [72]. It is interesting to note that 

almost all of the results obtained by English speaking researchers are derived independently by Russian 

speaking investigators. 
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In most practical cases, the two conditions stated in item 3 are usually satisfied [12]. It is interesting 

to note that there is a close relationship between the uniform distribution of angles and stationarity 

concept [73], [74]. Therefore we focus on item 3. According to [23] and under various presumptions for 

Ai 's, the following methods have been used for obtaining the PDF of A: 

a. Infinite expansion in terms of the Fourier-Bessel series [18], [38], [52], 

b. Infinite expansion in terms of the Laguerre series [23], [39], [40], [45], [46], [52], [67], 

c. Various analytic approximations [12], [14], [21], [50], [54], [55], [59], [61], [63], 

d. Recursive [10], [39], 

e. Miscellaneous [40], [42], [45], [48], [49], [57], [62], [64], [65], [86]. 

In the subsequent sections, we derive an expression for the PDF of A in terms of an infinite series 

containing Laguerre polynomials. Then we discuss methods for computing the coefficients of this infinite 

series. Finally and as an example, we apply our results to a random vector problem describing the 

scattering cross-section of a small number of random scatterers, which has been solved previously via 

Monte-Carlo simulations [39]. 

II.  A GENERAL RANDOM VECTOR PROBLEM AND ITS ASSOCIATED PDF'S 

Consider n random vectors with lengths Ai 's and angles Φi 's, where n is a deterministic variable. 

For i n= 1,..., , Φi 's are independent random variables with uniform PDF's on [ , [0 2π , Ai 's are arbitrary 

dependent positive random variables, and Ai 's are independent of Φi 's. Summation of these n random 

vectors results in a random vector with length A and angle Φ , as defined in (1).  

According to (1) we have: 

X A A Y A Ai ii

n

i ii

n
= = = =

= =� �cos cos sin sinΦ Φ Φ Φ
1 1

, (2) 

The joint characteristic function of X and Y is defined as ΨXY XYE j X j Y( , ) [exp( )]η ζ η ζ= + , in which E is 

the mathematical expectation. It can also be written in terms of Ai 's and Φi 's, say: 

Ψ Φ Φ Φ ΦXY A A A A nE j X j Y E E j X j Y A A
n n n n

( , ) [exp( )] [ [exp( )| ... ]]... ... ... ...η ζ η ζ η ζ= + = +
1 1 1 1 1 . (3) 

Since Ai 's are independent of Φi 's, the condition in (3) can be omitted. Thus (3) changes to: 

Ψ Φ ΦXY A AE E j X j Y
n n

( , ) [ [exp( )]]... ...η ζ η ζ= +
1 1

. (4) 

Substitution of X and Y from (2) yields: 
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Ψ Φ ΦΦ ΦXY A A i i i ii

n
E E j A j A

n n
( , ) [ [ exp( cos sin )]]... ...η ζ η ζ= +

=∏1 1 1
. (5) 

Due to the independence of Φi 's, (5) simplifies to: 

Ψ Φ ΦΦXY A A i i i ii

n
E E j A j A

n i
( , ) [ [exp( cos sin )]]...η ζ η ζ= +

=∏1 1
. (6) 

By introducing new variables ρ  and θ  in terms of η and ζ  as: 

η ρ θ ζ ρ θ= =cos sin , (7) 

and using the trigonometric identity η ζ ρ θcos sin cos( )Φ Φ Φi i i+ = − , (6) can be written as: 

])())cos(exp([),(
1

2

0...1 ii

n

i iiAAXY dfjAE
in

φφθφρζη
π

Φ=∏ � −=Ψ , (8) 

where f
i iΦ ( )φ  is the PDF of Φi . Uniform PDF of each Φi  on [ , [0 2π  means f

i iΦ ( )φ π= 1 2 . Using this 

fact, and also the integral form of the zero order Bessel function, i.e. ξξπ
π

djzzJ )cosexp()21()(
2

00 �= , 

(8) reduces to the following form: 

Ψ Λ ΛXY A A ii

n
E J A

n
( , ) [ ( )] ( ) ( )...η ζ ρ ρ η ζ= = = +

=∏1 01

2 2 . (9) 

Based on the definition of jointly spherically symmetric random variables in [75], the functional 

form of ΨXY ( , )η ζ  in terms of η ζ2 2+  implies that X and Y are jointly spherically symmetric random 

variables. Thus it can be deduced from theorem 1 in [75] that A and Φ , defined in (2), are independent; Φ  

has a uniform PDF on [ , [0 2π , and A has the following PDF: 

)}({)()()( 00 0 ρρρρρ Λ=Λ= �
∞

aA aHdaJaaf , (10) 

where H Gz0 { ( )}ξ  is the zero order Hankel transform of G(.)  defined as [76]: 

�
∞

=
0 00 )()()}({ ξξξξξ dGzJGH z . 

Some authors also call it Fourier-Bessel transform [77], [78]. Using the tables of [79], it is possible to 

obtain the Hankel transform of various functions. 

III.  EXPANDING f aA( )  IN TERMS OF LAGUERRE POLYNOMIALS 

Laguerre polynomials are a set of orthogonal polynomials on the positive real axis. Thus they make 

a useful basis for expanding the PDF of positive random variables [55], [80], [81]. In this section we use 
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this approach to expand f aA( ) for the case which is more general than those discussed in [39], [40], [45], 

and [52]. 

Based on the properties of the Hankel transform, it can be shown that: 

)]([)()(}
)(

{)( 00 00 ρρρ ρ AJEdaafaJ
a

af
H AA

A ===Λ �
∞

. (11) 

The following generating function for the Laguerre polynomials is given in [82]: 

exp( ) ( )
( )

!
σ τσ τ σ

J
L

m
m

m

m0 0
2 =

=

∞
� , (12) 

where Lm(.) is the Laguerre polynomial of order m. Assuming τ β= A2 and σ ρ β= 2 4 , (12) gives the 

following parametric expansion for J A0( )ρ : 

0;)
4

exp()(
)4(!

1
)(

2
22

00 ≠−=�
∞

=
β

β
ρρβ

β
ρ m

mm m
AL

m
AJ , (13) 

where β  is an arbitrary non-zero real number, introduced on purpose. The role of β  will be discussed 

later. 

Now by inserting (13) into (11), one obtains: 

Λ( )
!( )

[ ( )] exp( );ρ
β

β ρ ρ
β

β= − ≠
=

∞
�

1
4 4

0
0

2 2
2

m
E L A

mm A m
m . (14) 

Substitution of Λ( )ρ  in (10) by its expansion, presented in (14), gives: 

0;)
4

exp()()]([
)4(!

1
)(

0

2

0
122

0
≠−= ��

∞ +∞

=
βρ

β
ρρρβ

β
daJALE

m
aaf m

mAm mA . (15) 

Clearly, the integral in (15) converges only for 0 < < ∞β . For this range of β , and after some 

manipulations [83], the following result can be obtained: 

∞<<−=−
+∞ +

� ββββρ
β

ρρρ 0;)()exp(
2

)4(!
)

4
exp()( 22

1

0

2

0
12 aLa

m
daJ m

m
m . (16) 

Inserting (16) into (15) gives: 

f a a a C L aA m mm
( ) exp( ) ( );= − < < ∞

=

∞
�2 02 2

0
β β β β , (17) 

where by definition: 
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C E L Am A m= [ ( )]β 2 . (18) 

It should be mentioned that the infinite series for f aA( ) in (17) is obtained just by employing the fact that 

f aA( ) and Λ( )ρ  constitute a Hankel transform pair (see (10)), along with the use of Laguerre generating 

function in (12). In fact, not only the PDF of A but also the PDF of an arbitrary positive random variable P 

can be expressed similar to (17) [55]. The functional form of Λ( )ρ  in (9) only affects the value of 

coefficients Cm's in (17), which is the topic of the next section. However, this subject is not discussed in 

[55]. 

The advantage of a variable β , instead of a predetermined value, lies in the fact that β  can be 

selected in such a way to minimize the truncation error of (17). This approach is used in [23], [35], [37] 

for a similar random vector problem. However, determination of the β  which minimizes the truncation 

error of (17) is under study. 

IV.  A CLOSED-FORM FORMULA FOR Cm 

Definition of the mth order Laguerre polynomial implies that: 

L z
m

m k k
zm

k

k

m k( )
( ) !

( )!( !)
= −

−=�
1

20
. (19) 

So Cm in (18) can be written as: 

C
m

m k km

k

k

m

n
k= −

−=�
( ) !

( )!( !)
( )β µ

20

2 , (20) 

where µn
k( )2  is the 2k th moment of A, resulted from the sum of n random vectors: 

µn
k

A
kE A( ) [ ]2 2= . (21) 

Inspection of (20) shows that Cm is a linear combination of µn
k( )2 's. Hence for computing Cm, it is useful 

to obtain a closed-form formula for µn
k( )2 . 

For β → ±∞ , the expansion in (13) reduces to the Maclaurin series of J A0( )ρ ; and Λ( )ρ  simplifies 

to: 

Λ( )
( )

( !)
( )ρ µ ρ= −

=

∞
�

1
420

2 2
k

kk n
k k

k
. (22) 

Comparison of (22) with the Maclaurin series of Λ( )ρ  reveals that: 
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µ ∂ ρ ∂ρ
ρn

k k k kk

k
( ) ( )

( !)
( )!

( )2
2

2 2

0
4

2
= −

=
Λ . (23) 

When calculation of EA An1... [.]  in (9) is possible in a closed form, µn
k( )2 's and consequently Cm's, can be 

computed via (23) and (20) respectively. It should be mentioned that (23) holds not only for A but also for 

an arbitrary positive random variable P, where Λ( ) [ ( )]ρ ρ= E J PP 0 . However, the corresponding Λ( )ρ  for 

A is presented in (9). 

In (23) we must compute multiple derivatives of a function. In some cases, application of Bell 

polynomials can simplify this task [84]. For the case in which Ai 's are independent, there is a recursive 

relation for µn
k( )2 . In fact, the following useful formula is derived in [85]: 

��

�
�

�

==
−

==
= −

−=� ,...1,0,...,2;)
)!(!

!
(

,...1,01;
)22()2(

1
2

0

)2(
1

)2(

knl
iki

k
kl

ik
l

i
l

k

i

k

k
l νµ

ν
µ  (24) 

in which νl
k( )2  is defined as: 

νl
k

A l
kE A l n k

l

( ) [ ]; ,..., , ,...2 2 1 0 1= = =  (25) 

V.  APPLICATION OF THE RESULTS TO A TYPICAL EXAMPLE 

In [39], a random vector model is employed to investigate the statistical behavior of the scattering 

cross-section, when the number of scatterers is small. Specifically, they have considered the sum of n 

random vectors with lengths Ai 's and angles Φi 's. In their work, n is a deterministic variable, 

A A An1 0= = =...  where A0  is a positive deterministic variable, and Φi 's are independent random variables 

with uniform PDF's on [ , [0 2π . Based on the above assumptions, an orthonormal Laguerre polynomial 

representation is presented for the PDF of S A jn i ii

n=
=�| exp( )|Φ

1

2 in [39]. 

By noting that S An = 2 and using (17) and (18) assuming β = 1 0
2nA , the PDF of Sn  can be written 

as [39, (17)]: 

f s
nA

s

nA
c L

s

nAS n
n

m m
n

mn
( ) exp( ) ( )= −

=

∞
�

1

0
2

0
2

0
20

, (26) 

where cm is defined as [39, (21)]: 

c E L
S

nAm S m
n

n
= [ ( )]

0
2 . (27) 
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Note that there is the following relationship between the cmin [39] and the Cm defined here: 

c Cm m nA
=

=β 1 0
2 . (28) 

Thus, cm can be calculated via (20), assuming β = 1 0
2nA  and using exactly the same µn

k( )2 's. By the use of 

either (23) or (24), µn
k( )2 's can also be computed efficiently. It should be mentioned that for the case 

considered in [39], i. e. A A An1 0= = =... , Λ( )ρ  in (9) simplifies to: 

Λ( ) ( )ρ ρ= J An
0 0  (29) 

A maximum likelihood estimator mĉ  is presented in [39, (22)] for estimating cm, using Monte-Carlo 

simulations. However, based on the above discussion and formulas, it is clear that such a procedure is not 

necessary for computing cm. In Table I of [39], for A0 1=  and several m's and n's, the estimated values of 

cm's are presented; while in Table I of this paper and under the same conditions, exact values of cm's are 

reported. Comparison of these two tables indicates that there is no need for time-consuming Monte-Carlo 

simulations, to obtain the coefficients cm's. 

VI.  CONCLUSION 

Envelope PDF of the sum of random sinusoids is of importance in various applications. Considering 

the most general case for the amplitudes of random sinusoids, a closed-form expression was obtained in 

(10) for this PDF. Since (10) is in the form of a definite integral, which may be inappropriate specially for 

analytic studies, an infinite Laguerre series was also derived in (17). The coefficient of this series can be 

obtained through the application of closed-from formulas (20) and (23). Based on these results, time-

consuming Monte-Carlo simulations for determining the envelope PDF can be completely avoided. 

Moreover, our approach expresses the envelope PDF just in terms of polynomials, while the Fourier-

Bessel series mentioned in Section I expands the envelope PDF in terms of Bessel functions, definitely 

more complicated than polynomials from both numerical and analytic point of views. Thus based on these 

results and either numerically or analytically, performance of various modulation and coding schemes in 

general multipath fading channels can be assessed, efficient detection procedures may be developed in 

radars assuming various clutter PDFs and for different target cross sections PDFs, error probability in the 

presence of several interferer can be determined, suitable speckle reduction techniques can be developed 

against different scattering conditions, etc. 
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TABLE I 
EXACT VALUES OF THE COEFFICIENTS cm IN (27), OBTAINED VIA (28) AND (20), 

ALONG WITH THE USE OF EITHER (23) OR (24) 
 

 No. Scatterers n 
m 4 5 6 7 8 
1 0 0 0 0 0 
2 -1.2500E-01 -1.0000E-01 -8.3333E-02 -7.1429E-02  
3 -4.1667E-02 -2.6667E-02 -1.8519E-02   
4 2.5391E-02 1.9000E-02    
5 3.7240E-02 2.0587E-02    
6 1.5516E-02 4.4067E-03    
7 -1.1375E-02 -8.4549E-03    
8 -2.6038E-02     
9 -2.3673E-02     
10 -7.9373E-03     
11 1.3938E-02     
12 3.4800E-02     
13 4.9586E-02     
14 5.5953E-02     
15 5.3988E-02     
16 4.5475E-02     
17 3.3042E-02     


