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ABSTRACT 

Constant amplitude transforms like discrete Fourier 
transform (DFT), Walsh transform, nonlinear phase 
Walsh-like transforms and Gold codes have been 
successfully used in many wire-line and wireless 
communications technologies including code division 
multiple access (CDMA), discrete multi-tone (DMT), and 
orthogonal frequency division multiplexing (OFDM) 
types. In this paper, we present a generalized framework 
for DFT called Generalized DFT (GDFT) with nonlinear 
phase by exploiting the phase space. It is shown that 
GDFT offers sizable performance improvements over 
Walsh, Gold and DFT codes in multi-carrier 
communications scenarios considered. We also highlight 
that known constant modulus code families are special 
solutions of the proposed GDFT framework. Moreover, 
we introduce practical design methods offering 
computationally efficient implementations for GDFT. 
We expect performance improvements in future 
communications systems employing GDFT intelligently. 
 
Index Terms— Discrete Fourier Transform, Generalized 
Discrete Fourier Transform, OFDM, DMT, Walsh 
Codes, Gold Codes. 
 

I.  MATHEMATICAL PRELIMINARIES 
 
An Nth root of unity is a complex number satisfying the 
equation  
 

1 0,1, 2,...Nz N= =                        (1) 
 
If z  holds Eq. (1) but 1 ; 0 1mz m N≠ < < − , then z  is 
defined as a primitive Nth root of unity. The complex number 

0
(2 / )j Nz e π=  is the primitive Nth root of unity with the 

smallest positive argument. The other primitive Nth roots of 
unity are expressed as  
 

(2 / ) 1,2,3,  ... , 1j N kz e k Nk
π= = −                                 (2) 

 

where k and N are co-prime. All primitive Nth roots of unity 
satisfy the unique summation property of a geometric series 
expressed as follows 
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Now, we define a periodic, with the period of N, constant 

modulus, complex discrete-time sequence ( )re n  as 
 

 (2 / )( ) ( )   , 0,1, 2,... ,  -  1  j N rnne n z e r n Nr r
π= =     (4) 

                 
This complex sequence over a finite discrete-time interval in 
a geometric series is expressed according to Eq. (3) as 
follows [1,2] 
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This mathematical property is utilized with the factorization 
into two orthogonal exponential functions where one defines 
the discrete Fourier transform (DFT) set k{e (n)} satisfying 
 

*1 1 (2 / )( )
0 0

1 1( ) ( )

1,
0,

, integer

l
N N j N k l n

kn n
e n e n e

N N
k l r mN
k l r mN
m n

π− − −
= =

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

=

− = =
= − = ≠

=

∑ ∑
                  (6) 

 
The notation (*) represents the complex conjugate function 
of a function. Note that 0 2 / Nω π=  is the nth root of 
unity on the unit circle and also called the fundamental 
frequency defined in the unit of radians per cycle. We are 
going to expand the phase functions in Eq. (6) in order to 
define GDFT in the following section. 
 



II. GENERALIZED DISCRETE FOURIER 
TRANSFORM 

 
Let’s generalize Eq. (5) by introducing a product function in 
the phase defined as  ( ) ( ) ( )k ln n nϕ ϕ ϕ= −  and expressing 
a constant amplitude orthogonal set as follows, 
 

 

*

1 1 ( )
0 0

1

0

1 ( ) ( )]
0

(2 / ) (2 / )

(2 / )[

1 1

1 ( ) ( )

1

1, ( ) ( ) ( )
0, ( ) ( ) ( )

, integer

k l

l

N N n
n n

N
kn

N n n
n

k l

k l

j N rn j N n

j N n

e e
N N

e n e n
N

e
N

n n n r mN
n n n r mN

m n

π π ϕ

π ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

− −

= =

−

=

− −
=

=

=

=

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= − = =
= = − = ≠

=

∑ ∑

∑

∑              (7) 

 
Hence, the basis functions of the new orthogonal set are 
defined as 
 

( 2 / ) ( )
( )  

 &  0 , 1, . . .  , - 1
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j N n nkn

k n N

e e π ϕ

=
                      (8) 

 
We call this new orthogonal function set of Eq. (8) as the 
Generalized Discrete Fourier Transform (GDFT). It is noted 
that there are infinitely many function sets with constant 
power are available. 
 
As an example, one might define the discrete time rational 
phase function ( )k nϕ  in Eq. (8) as the ratio of two 
polynomials, 
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Let’s assume that the denominator polynomial ( )D n is 
equal to one and the order N numerator polynomial in n is 
defined as follows 
 

1 2 3
1 2 31

( ) ...j Nb bb b b
j N

N

jk n a n a n a n a na nϕ
=

= = + + + +∑
          (10) 
In general, the coefficients }{ ja  are complex and }{ jb  are 
real numbers. Now, we would like to make several remarks 
that link the proposed GDFT to other known transforms and 
its potential impact on a multicarrier communications 
system. 

Remark 1: DFT is a special solution of GDFT 
where 1 2 3 ... 0( )   and  Nk n a k a a aϕ = = = = == , and 

1 2 ... 0Nb b b= = = =  in Eq. (9) and Eq. (10) for all k . Note 
that having constant valued { ( )}k nϕ  phase functions makes 
DFT a linear-phase transform. 
 
Remark 2: In general, k  and l  parameters do not have to 
be integer numbers as long as they satisfy the orthogonality 
conditions of Eq. (7). Since there are N  orthogonal 
functions in the set, one needs to have N  distinct and real 
k  values. In that case, the real k  values are mapped into k  
integer numbers from 0 to N-1 and used as the indices of the 
basis functions in a set. 
 
Remark 3: There are infinitely many possible GDFT sets 
available in the phase space with constant power where one 
can design the optimal basis for the desired figure of merit. 
If the application considered requires a function set with 
minimized auto- and cross-correlation properties and does 
not mind about the non-linear phase, naturally, DFT is not 
the optimal solution for this scenario. Therefore, one can 
exploit this fact to design various GDFT’s where CDMA 
and OFDM performances in a multicarrier communications 
system might be improved over the existing solutions where 
DFT is used as the transform of choice. 
 
Remark 4: Since DFT is a restricted solution of GDFT, it 
offers a very limited number of sets to be used in a 
multicarrier communications system. Therefore, the carrier 
level security is quite vulnerable for a potential intrusion to 
the system. In contrast, the proposed GDFT provides many 
possible carrier sets of various lengths with comparable or 
better performance than DFT. The availability of rich library 
of orthogonal constant amplitude transforms with good 
performance allows us to design adaptive systems where 
user code allocations are made dynamically to exploit the 
current channel conditions in order to deliver better 
performance. 
 

III. GDFT DESIGN METHODS 
 
Let’s define the DFT matrix of size NxN  as 
 

        
(2 / )[ ( , )] [ ]

, 0,1, 2, ..., -1
DFT DFT

j N knA A k n e

k n N

π
==

=
                           (11) 

 
We will design GDFT as the generalization to DFT based on 
the performance metrics required by the application under 
consideration. Hence, we can express the GDFT matrix as a 
product of two matrices as follows 
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where the notation (* )T  indicates that conjugate and 
transpose operations applied to the matrix. 
 
Note that G  is the complex orthogonal generalization 
matrix yielding GDFTA  matrix in Eq. (12) with the desired 
time and frequency domain features. We are going to 
introduce several G  matrix families that are useful to design 

GDFTA  out of DFTA  matrix. 

A.  Diagonal G  Matrix:  
The diagonal G  matrix must be constant amplitude for 
orthonormality of Eq. (12) and one might define it in the 
following two forms. 
 
A.1 Constant Valued Diagonal Elements:  
 
The elements of this diagonal matrix are the same constant 
amplitude complex number as expressed in 
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This type of G  matrix used in Eq. (13) generates θ  radians 
per cycle phase shifted version of DFTA  matrix as GDFTA . 

Moreover, the linear phase property of DFTA  is still 
preserved in this case. 
 
A.2 Non-Constant Diagonal Elements: 
 
The non-zero and non-constant diagonal elements of G  
matrix are defined as 
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The rows (basis functions) of GDFTA  in Eq. (12) are 

obtained as the element by element products of DFTA  rows 
with the diagonal non-zero complex sequence of G  matrix 
in this scenario. It is observed that each sample of a given 

basis function in DFTA  is phase shifted independently of the 
other samples. Therefore, the resulting basis function set is 
entirely different than DFT function set. 
 
A.3 Non-Constant Two Diagonal Matrices 1G  and 2G  
 
We redefine GDFTA  matrix in such a way that phase shaping 
of basis functions will be even more flexible as shown in the 
matrix equation 
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where  
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and 
 

2

,
( , ) 0,

, 0,1,...

nnje n k
G k n n k

k n N

γ⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

=
= ≠

=
   (16.b) 

 
Note that the kernel generating GDFTA  matrix for this case 
is expresses as follows 
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This design method allows us to uniquely modify the phase 
of the ( , )k n th element of the DFTA matrix as  the ( , )k n th 
element of the GDFTA matrix. 

B. Full G  Matrix:  

 
The elements of the orthogonal G  matrix in Eq. (12) are not 
constant amplitude in this case. We design a complex G  
matrix providing an optimized constant amplitude matrix 

GDFTA  based on a predefined figure of merit related to the 
application specifications. Now, we define a G  matrix 
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Where ,k ng  and ,k nθ  are the amplitude and phase values, 

respectively, for the ( , )k n th element of the matrix. It is 
noted that 1 *T

GDFT GDFTA A− ≠  in Eq. (12) for this case. Hence, 
it is not orthonormal. 
 
The overall computational cost is the combined 
implementation of DFTA  and G  matrices in this version of 
GDFT design. Since DFT has its efficient fast algorithms, 
FFT, the complexity of G  matrix dictates the required 
additional computational resources to implement GDFT. 
Therefore, this point needs to be considered in applications 
when one generalizes DFT into GDFT. 
 
Remark 5: By inspection, it is observed that popular 
orthogonal Walsh transforms are special solutions of GDFT.  
 

WALSH GDFT DFTA A A G= =  
 
Similarly, non-linear phase Walsh-like orthogonal 
transforms [3], Gold codes [4] and other known binary 
spreading codes can also be expresses within the GDFT 
framework. 
 
Remark 6: Oppermann proposed a new family of constant 
modulus orthogonal spreading codes and also showed in [7] 
that the well-known Frank-Zadoff and Chu Sequences [9, 
10, 11] are the special cases of his family. It is interesting to 
show below that the Orthogonal Oppermann codes are also 
special solutions to the GDFT framework. 
 
The Oppermann codes in an NxN square matrix notation are 
defined as [7, 8] 
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In [8], it was proven that Oppermann codes are orthogonal 
only for the case of p=1 and m is any positive nonzero 
integer. Note that if one defines the parameters of Eq. (10) 
for this case as 0  3, 4,.....,j j Na = =  and 
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then we obtain the equality GDFT OPPA A= . 
 
Remark 7: The term “Generalized DFT” was also used by 
other authors for their methods reported in [12-17] where 
their focus is of only on linear phase sets. Therefore, the 
non-linear phase GDFT is the superset of those techniques. 
Note that linear phase extensions of DFT yield the same 
auto- and cross correlation performance as the DFT. 
  

IV. GDFT DESIGN EXAMPLE 
 
A. Performance Metrics: 
 
In order to compare performance of spreading code families, 
we define several objective metrics. All the metrics used in 
this study depend on Aperiodic Correlation Functions 
(ACF) of spreading code sets. In Eq. (21), the metric , ( )k id m  
is defined as the ACF between two complex sequences, 
namely ( )ke n  and  ( )le n  [18], 
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In this paper, four different correlation metrics are used to 
compare various code families. Namely, a. Maximum Value 
of Out of Phase Auto-correlation ( amd ), b. Maximum Value 
of Cross-correlation ( cmd ), c. Mean Square Value of Auto-
correlation ( ACR ), and d. Mean Square Value of Cross-
correlation ( CCR ). The definitions of these metrics are as 
follows [18, 19] 
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{ }max max ,am cmd d d=                                                         (24) 
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where M  is the set size, and N  is the length of each 
spreading code. 
 
B. Brute Force Search Based Optimal GDFT Codes: 
 
In Eq. (14), G  is a complex diagonal matrix with constant 
modulus elements and we searched the entire phase space 
with various resolutions using brute force search algorithm 
in order to find the optimum G matrices. Possible phase 
values are chosen from the interval [0,2 ]π  with a linear 
resolution θΔ  defined as 
 

2
2b
π

θΔ =                                                                            (27) 

 
where b  is the number of bits to represent quantized phase 
values. Although we have chosen the value of 5 for b  in 
this study, one may increase the phase resolution by 
choosing larger values of b . The brute force search 
algorithm is run for 8-length code families based on the 
performance metrics defined.  Their values for optimum 
code sets along with DFT are tabulated in Table 1.  
 
Table 1: Performance metrics for optimum codes and DFT, N=8. 
 

Corresponding Correlation Metrics Optimization 
Metric 

amd  cmd  maxd  ACR  CCR  

cmd  0.666 0.288 0.666 3.041 0.566 

maxd  0.366 0.375 0.375 0.818 0.883 

ACR  0.125 0.617 0.616 0.088 0.987 

CCR  0.875 0.327 0.875 4.375 0.375 

DFT 
N=8 0.875 0.327 0.875 4.375 0.375 

 
C. A Closed Form Phase Shaping Function for GDFT: 
 
The phase function ( )nkϕ  can be decomposed into two 

functions in the time variable “n” as follows 
 

  ( ) ( )
k

n kn nϕ ψ= +                                                  (28) 

 
Now, we would like to define a closed form expression for 
the phase shaping function (PSF) ( )nψ  in Eq. (28) that is 
approximating to the brute force based optimal solutions 
obtained in the previous section via curve fitting. We used 
the signal processing software tool Table Curve 2D, and 
fitted PSF to the phase of optimal complex set obtained 
based on the performance metric cmd  as expressed in  
 

2 21 2( ) exp exp1 2
1 2

( ) ( )
n b n b

n a a
c c

ψ
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟= − + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

          (29)    

                  
This is a second degree Gaussian function with six different 
parameters 1 1 1 2 2 2{ , , , , , }a b c a b c . Our simulation studies 
showed that the phase function in Eq. (29) provides the 
minimum value for the performance metric “Maximum 
value of Cross-correlation, cmd ” as well as the minimum 

value for “Mean Square Value of Auto-correlation, ACR ”. In 
Eq. (29), the values of the parameter set, 1 1 1 2 2 2{ , , , , , }a b c a b c  
corresponding to the optimal solutions are calculated in 
order to be able to define closed form PSFs. The PSF of Eq. 
(29) provides GDFT solutions of various sizes with good 
correlation properties. One may obtain infinitely many 
orthogonal complex spreading code families by changing 
the set of 6 parameters in Eq. (29) according to the system 
design specs.  
 
In this paper, we limited our presentation to the optimal 

search results based on two metrics, namely cmd  and ACR . 
It is observed and shown that the BER performance on 
AWGN channel with smaller number of users in the system 
is closely coupled to the cmd  parameter. In contrast, the 
BER performance for multipath fading channel is related to 

ACR . Our goal is to define the parameters in Eq. (29) 
generating orthonormal GDFT yielding BER performance 
improvements for both AWGN and multipath channel 
models. We employed Genetic Search Algorithm [20] to 
find optimum PSFs for different sizes and design types. The 
number of initial population, the number of population, the 
probability of crossover, and the probability of mutation for 
the search algorithm were chosen as 1000, 100, 0.9 and 0.1, 
respectively. The phase function given in Eq. (29) is used 
with different values of its parameters 1 1 1 2 2 2{ , , , , , }a b c a b c  
where each one is chosen from the interval of (0, N] with the 
resolution of 0.25. The algorithm is run for the three 
different code lengths, N=8, 16, 32. The results are 
displayed in Tables 2 and 3.  
 
The advantages of the proposed method is its ability of 
designing a wide selection of orthogonal spreading codes 
based on the desired performance metrics mimicing the 
variations of a real world communications channel. 
Moreover, the proposed technique is an enhancement to the 
DFT based implementations for performance improvements. 
Note that the code set with low ACR metric can be used in 
communication systems where multipath fading is the main 
concern whereas the set with low cmd values can be used in 
the systems where multiuser interference is dominant. 
 
Table 2: Various performance metrics when optimal design is 
based on the metric cmd  for code lengths of N = 8, 16, and 32. 



Corresponding correlation metrics  

optimized  based on cmd  along with DFT 

Size (N) 

amd  cmd  maxd  ACR  CCR  

8 GDFT 
8 DFT 

0.703 
0.875 

0.288 
0.327 

0.703 
0.875 

3.261 
4.375 

0.534 
0.375 

16 GDFT 
16 DFT 

0.744 
0.938 

0.248 
0.321 

0.744 
0.938 

6.653 
9.688 

0.557 
0.354 

32 GDFT 
32 DFT 

0.794 
0.969 

0.233 
0.319 

0.794 
0.969 

13.68 
20.34 

0.559 
0.344 

 
Table 3: Various performance metrics when optimal design is 
based on the metric ACR  for code lengths of N = 8, 16, and 32. 
 

Corresponding correlation metrics 

optimized based on ACR  along with DFT Size (N) 

amd  cmd  maxd  ACR  CCR  

8 GDFT 
8 DFT 

0.125 
0.875 

0.679 
0.327 

0.679 
0.875 

0.089 
4.375 

0.987 
0.375 

16 GDFT 
16 DFT 

0.242 
0.938 

 

0.700 
0.321 

0.700 
0.938 

0.234 
9.688 

0.984 
0.354 

32 GDFT 
32 DFT 

0.604 
0.969 

0.746 
0.319 

0.746 
0.969 

1.165 
20.34 

0.962 
0.344 

 
It is observed that the magnitude of auto-correlation 
functions of the individual codes in any GDFT set generated 
from the closed form PSF defined in Eq. (29) are exactly the 
same. In Fig. 1, auto-correlation function (AC) of a code in 
size 16 GDFT set optimized based on the metric ACR  is 
displayed along with the AC of size 16 DFT set.      
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Figure 1: Magnitude of Auto-correlation Functions for low- ACR  
based GDFT design (solid line) and DFT (dashed line) sets for size 
N=16. 
 
Similarly, cross-correlation Functions (CC) between the first 
and second codes of low- cmd  based GDFT set and the DFT 
set are displayed in Fig. 2. These figures highlight the merit 
of the proposed GDFT framework with non-linear phase. 
 
  D. BER on AWGN and Multipath Fading Channels: 
 

In Figure 3, we display BER performance of various GDFT 
sets designed based on low- cmd  for 2 users in an 
asynchronous AWGN channel along with DFT of size 8. 
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Figure 2: Magnitude of Cross-correlation Functions for low- cmd  
based GDFT design (solid line) and DFT (dashed line) sets for size 
N=16. 
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Figure 3: BER Performance of various length GDFTs along with 
size 8 DFT for 2-users asynchronous AWGN channel. 
 
Fig. 4 displays BER performance of several binary and 
complex code sets along with GDFT set optimized based on 

cmd  parameter for N=8. Note that in CDMA 
communications, the multiuser interference (MUI) becomes 
the dominant factor defining the BER performance as the 
number of users in the system increases.  
 
We assume a two-ray “multipath channel” with the impulse 
response of  
 

0 1( ) ( ) ( )h t t tβ δ β δ τ= + −                                              (30) 
 
In our simulations, the parameters { }0 1,β β  are the Rayleigh 
distributed random variables defining power of the desired 
and interfering paths, respectively, and the sum of  2

0E β⎡ ⎤⎣ ⎦  

and 2
1E β⎡ ⎤⎣ ⎦  is set to be equal to 1. Fig. 5 displays BER 



performance of size 8 DFT and AGDFT sets on Rayleigh 
multipath channel when the power of interfering path is 3dB 

( 3D dB
I
= ) and 5 dB ( 5D dB

I
= ) less than the power of the 

desired path and the delay,τ , is set to be equal to T/8. In 
this example, we used GDFT set generated by PSF of Eq. 
(29) optimized based on minimization of ACR  and the 
resulting ACR  values are 4.375 and 0.089 for DFT and 
GDFT, respectively. 
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Figure 4: BER performance of various code sets for 2-users and 
asynchronous AWGN channel with N=8 (N=7 for Gold and 
Oppermann). 
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Figure 5: BER Performances of DFT and GDFT spreading code 
sets over Rayleigh fading channel for 2 users with / 5D I dB=  
and / 3D I dB= . 
 
From the figure, it is concluded that GDFT set significantly 
outperforms DFT set on Rayleigh multipath channel due to 
its low ACR  value. 
 

V. CONCLUSIONS 
 
In this paper, we introduced a theoretical framework to 
design constant modulus transforms efficiently. The 
proposed GDFT is compared with the industry standard 

DFT. It is shown that improved correlations of the proposed 
GDFT technique yield superior BER performance over the 
known code families in CDMA communications. It is 
concluded that DFT based engineering solutions including 
wireless CDMA and OFDM communications might benefit 
from the proposed GDFT framework. 
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