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Abstract
This paper describes a class of orthogonal binomial filters which provide a set of basis func-

tions for a bank of perfect reconstruction Finite Impulse Response Quadrature Mirror Filters
(FIR-QMF). These Binomial QMFs are shown to be the same filters as those derived from a
discrete orthonormal wavelet approach by Daubechies [13]. The proposed filters can be imple-
mented very efficiently with output scaling, but otherwise no multiply operations. The corn-
paction performance of the proposed signal decomposition technique is computed and shown to
be better than that of the DCT for the AR(1) signal models, and also for standard test images.
I. Introduction

Subband coding as an efficient coding technique for signal compression has several consid-
erable attention since its introduction by Crochiere, et.al.[1]. The basic idea is to divide the
signal bandwidth into a number of frequency subbands. Each subband is then subsampled and
encoded with a bit rate matched to the signal statistics in that subband. These subbands are
then reassembled at the receiver. Perfect reconstruction results when the received signal can be
reassembled without error except for that introduced by the encoding itself.

The subband technique was first developed for speech compression [2] [3] ,and then extended
to multidimensional signals [4]. Applications to image compression followed, as described in
references [511 [6].

Perfect reconstruction (PR) Quadrature Mirror Filters (QMF) have been proposed as struc-
tures suitable for subband coding [7] [8] [9] [10}, and also for multiresolution signal decomposition
as might be used in image pyramid coding{11}. More recently, multiresolution signal decomposi-
tion methods are being examined from the standpoint of the discrete wavelet transform [12] [13]
[14] [15]. In this paper, we describe class of orthogonal binomial filters which provide basis
functions for a perfect reconstruction bank of finite impulse response QMFs. The orthonormal
wavelet solutions derived by Daubechies [13] from a discrete wavelet transform approach are
shown to be the same as the solutions inherent in the binomial-based filters.

The compaction performance of the Binomial QMF decomposition is computed and shown
to be better than the DCT for the Markov source models. The proposed binomial structure is
efficient, simple to implement on VLSI, and suitable for multiresolution signal decomposition
and coding applications.
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II. The Binomial Family
The binomial family of orthogonal sequences [16J is generated by successive differencing of

the binomial sequence, which is defined on the finite interval [0, NJ by

xo(k)={
() = (N-k)!k!

' OkN
0, otherwise

The other members of the binomial family are obtained from

(N-r\
Xr(k)V k (2)

where
f() = f(n)

- f(n -1)
is the backward difference operator. Taking successive differences yields

N r k(u)

Xr(k) =
( k ) (_2)u ( )

=
().Hr k0,1,...,N (3)

where k(u) is the forward factorial function, apolynomial in Ic of degree v

k(v)f k(k—1)...(k—v+1) , u�1
(4)1i , 71=1

The polynomials, Hr(k), in ( 4) are the discrete Hermite polynomials, modified versions of which
have been used in transform coding [18]. Hence the discrete binomial family {Xr(k)} are simply

discrete Hermite polynomials windowed by the binomial sequence ( ) . In this respect, the

binomial family is the discrete counterpart to the continuous variable Hermite functions which
are Gaussian-windowed Hermite polynomials in the continuous variable domain [19}.

The salient properties of the binomial sequences are as follows:

1 . These sequences are orthogonal with respect to a weighting function

Xr(k)Xs(k) ( )_1
=

( )1 (2)rs (5)

2. Transform and Recursion Relation: Starting with the zeroth order binomial, ( ) , in

( 1), and the differences in ( 2) one obtains

Xo(z) =
z{( )}

=
to ( ) (1 + z1)N (6)

Xr(Z) =

= (1
— zl)r(1 + Z1)Nr (7)
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This last equation can also be expressed in alternative forms

Xr(Z) = ( :1) Xr1(Z) =
( :iXo(z) (8)

In the time (or spatial) domain, ( 8) implies the recursive difference equation

Xr+i(k) = Xr+i(k _ 1) + Xr(k) _ Xr(k _ 1), 0 < k,r N (9)

with initial values Xr(1) 0, for 0 r N, and initial sequence xo(k) =
( ).

Equations ( 8) and ( 9) suggest the Binomial Network shown in block diagram form in Fig.
1. The implementation of the binomial family is trivially simple. Since all coefficients are
unity, the filter can be realized with just delays and adders — no multipliers are needed.
These filters have been used in efficiently processing speech and image signals [17] [20].

3. Time and Frequency Responses of the Binomial Family: The frequency response of the
r' member of the binomial family is

Xr(e° = (10)

where

Ar(O) = (2N)(sin O/2y(cos 0/2)N—r

b(O) = (11)

4. Quadrature Mirror Filter Properties: The binomial filters are linear phase quadrature
mirror filters. From ( 11) , the complementary filters X(Z) , and XN_,. (z) have magnitude
responses which are mirror images about 0 = ir/2.

Xr(e'° (12)

In time domain, the mirror relation corresponds to

XN_r(fl) = (1)Thx(n) (13)

Additionally, we note that
Xr(N — n) = (_lyXr(fl) (14)

III. Two Channel QMF Bank
We can obtain theconditions for peifect reconstruction from an analysis of the prototype two

channel QMF bank shown in Fig. 2. Tracing the signals through the top and bottom branches
gives

(z) = [Hi(z)K1(z) + H2(z)K2(z)]X(z)

+[Hi(-z)K1(z) + H2(-z)K2(z)]X(-z)
= T(z)X(z) + S(z)X(—z) (15)
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Perfect reconstruction requires:

(i) 8(z) = O,for all z (16)

(ii) T(z) = cz°,c a constant (17)

If one chooses

Ki(z) = —H2(—z)

K2(z) = H1(—z) (18)

the first requirement is met, S(z) = 0, and aliasing is eliminated, leaving us with

T(z) = [H1(-z)H2(z)
- H1(z)H2(-z)]

next, with N odd, one selects
H2(z) = z_NH1(_z_l) (19)

This choice forces
H2(—z) = —Ki(z)

so that
T(z) = z[H1(z)H1(z_1) + Hi(—z)Hi(—z')] (20)

Therefore, the perfect reconstruction requirement reduces to finding an H(z) = H1 (z) such
that

Q(z) = H(z)H(z1) + H(—z)H(—z1) = constant
= R(z) + R(—z) (21)

This selection implies that all four filters are causal whenever H1 (z) is causal.
The PR requirement can be recast in time domain form by noting that R(z) is a spectral

density function, whose inverse is the autocorrelation sequence

N

p(n) = i: h(k)h(k + n) = p(—n) (22)

h(n)®h(n)

where 0 indicates a correlation operation. It can be shown that [22] Eq. (21) is satisfied when

N

p(2n) = h(k)h(k + 2n) =0, (23)
k=O

IV. The Binomial QMF
It is now a straight forward matter to impose PR condition of ( ??)on the binomial family.

First, we take as the half-band low-pass filter
N-i

h(ri) = OrXr(fl)
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or N-i

H(z) = Or(1 + 1)Nr(l _ Zl)r (24)

The corresponding autocorrelation sequence for h(n) is found to be

N—i N—3 N—i 21

p(n) = Oprr() + 2 oo+2ip,+2i(n) (25)

N

prs(fl) = :Xr(k)Xs(fl + k) Rrs(Z) (26)
k=O

where pr3(n) is the cross correlation of xr(n) and x3(n), Finally, the PR requirement is

p(n) = 0, (27)

This condition gives a set of nonlinear algebraic equations, in the unknowns O, °2 • • • ,

The values of °r for N = 3, 5, 7, (corresponding to 4,6,8 tap filters respectively) are given
in Table 1 (where 0o = 1). As seen, there are more than one filter solutions for a given N. For
example, with N =3, one obtains O = v", and also O = —v1. The positive O corresponds
to a minimum phase solution, while the negative O provides a non-minimum phase filter. The
magnitude responses of both filters are identical, although in our derivation, no linear phase
constraint on h(n) was imposed; it is noteworthy, that the phase responses are almost linear,
the non-minimum phase filters even more so.

Table 2 provides the normalized 4,6,8 tap filter coefficients, h(n) for both minimum and non-
minimum phase cases. The implementation of these half-band filters is trivially simple. The r
weight is applied to the corresponding rt tap point in the Binomial Network for r = 1, . . . ,

These are the only multiplications needed when using the Binomial Network as the half-band
QMF structure rather than the h(n) weights directly. This binomial structure can lead to even
simpler filter algorithms wherein the 0,. weights can be absorbed in the quantizers. For N = 3,
there is a multiplier-free structure.
Remarks: These Binomial QMFs satisfy all the conditions of an orthonormal wavelet basis with
regularity. It is noteworthy that the solutions for all even-tapped filters are exactly the same as
those derived in [13] from a wavelet approach.
V. Performance of Binomial QMF-Wavelet Transform

The performance of the new signal decomposition scheme is compared with the industry
standard, the Discrete Cosine Transform (DCT) in this section.

The energy compaction power of ny unitary transform is a commonly used performance
criterion. The gain of transform coding over PCM is defined as [21]

1 M-1
2

M k
GTC =

M-1 1/M (28)

flo
k=O
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where are transform coefficient variances. This measure assumes that all coefficients have
the same probability density function.

Similarly the gain of subband coding over PCM is defined as

1 M—1 2
M ' cr1

GSBC =
M-1 1/M (29)

[Ha?]1=0

Here a? is the variance of the signal in the 1th subband. This formula holds for a two-band split
in a regular tree structure.

We assume a Markov 1 source model with autocorrelation

R(k)=pt"1, k=O,±1,... (30)

and calculate GTC and GSBC for different cases. These results are displayed in Table 3. Equa-
tions ( 28) and ( 29) are easily extended to the 2D case for separable transforms and separable
QMFs.

The results demonstrate that the 6-tap Binomial QMF outperforms the comparable sized
DCT in both theoretical performance as well as for standard test images. We conclude therefore
that the 6-tap Binomial QMF provides a better alternative to the DCT for image coding.
VI. Conclusions

An efficient perfect reconstruction binomial QMF-Wavelet signal decomposition structure is
proposed. The new technique utilizes the binomial network which has only addition operations.
This technique provides a set of filter solutions with very good amplitude responses and band
split. The phase responses of these filters are linear-like. Non minimum phase solutions provide
even better linear-like phase characteristics. These filters are the same as the orthonormal
Wavelet solutions proposed by Daubechies [13].

The Binomial QMF-Wavelet signal decomposition structures have better compaction than
the industry standard DCT for Markov sources and real images. The new structure is a very
powerful technique. The 6-tap filters provide better performance than the DCT (8 x 8) for
image decomposition. These QMF-filters have a very simple algorithm to implement on VLSI
and are a good competitor to the DCT for signal decomposition and coding applications.
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Figure 1 : Binomial Network

N=3
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r:E i set I set2ii 1—

:---
set 3 seiF

ID '—1
ri;-r; 4.9892 -4.9892

8.9461 8.9461
5.9160 -5.9160

1.0290 -1.O2O]
-2.9705 -2.Ofl
-5.9160 5.91J

Table 1 : O values for N = 3 , 5, 7
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- h(n)
Mini Phase Non-Minimum Phase

4tap 4tap

0 0.48296291314453

0.83651630373780

0.22414386804201

-0.12940952255126

-0.1294095225512

0.2241438680420

0.8365163037378

0.4829629131445

6tap 6tap

0.33267055439701

0.80689151040469

0.45987749838630

-0.13501102329922

-0.08544127212359

0.03522629355424

0.0352262935542

-0.0854412721235

-0.1350110232992

0.4598774983863

0.8068915104046

0.3326705543970

8tap
•

8tap 8tap 8tap

0.23037781098452

0.71484656725691

0.63088077185926

-0.02798376387108

-0.18703481339693

0.03084138344957

0.03288301895913

-0.01059739842942

-0.0105973984294

0.0328830189591

0.0308413834495

-0.1870348133969

-0.0279837638710

0.6308807718592

0.7148465672569

0.2303778109845

-0.0757657137833

-0.0296355292117

0.4976186593836

0.8037387521124

0.2978578127957

-0.0992195317257

-0.0126039690937

0.0322230981272

0.0322230981272

-0.0126039690937

-0.0992195317257

0.2978578127957

0.8037387521124

0.4976186593836

-0.0296355292117

-0.0757657137833

Table 2: Binomial QMF-Wavelet filters, h(n), for N = 3, 5, 7

E E
4 x 4 Trans. 0.95 5.71 6.43 6.77 6.91 7.08

or 0.85 2.59 2.82 2.95 3.01 3.07

0.75 1.84 1.95 2.02 2.05 2.09

4-band QMF 0.65 1.49 1.56 1.60 1.62 1.64

(2 levels) 0.5 1.23 1.26 1.28 1.29 1.30

S x 8 Trans. 0.95 7.63 8.01 8.53 8.74 8.99

or 0.85 3.03 3.11 3.27 3.34 3.42

0.75 2.03 2.06 2.14 2.17 2.22

8-band QMF 0.65 1.59 1.60 1.65 1.67 1.69

(3 level) 0.5 1.27 1.28 1.30 1.31 1.32

Table 3: Compaction Comparison; DCT vs Binomial-QMF for several AR(1) sources.
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