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Density evolution for low-density parity-
check codes under Max-Log-MAP decoding

X. Wei and A.N. Akansu

A density evolution procedure for low-density parity-check
(LDPC) codes under Max-Log-MAP decoding is presented. Using
this technique, the precise convergence threshold for LDPC code
could be easily derived.

Introduction: Much progress has been made recently on estimating
the convergence threshold of turbo codes and low-density parity-
check (LDPC) codes [1], assuming the underlying graphical model
to be cycle-free. However, these works have been in the context of
Log-MAP decoding. A Max-Log-MAP algorithm, with reduced
complexity and no requirement on channel SNR estimation, has
not been considered. In this Letter, a density evolution procedure
under Max-Log-MAP decoding is developed. Using this proce-
dure, convergence thresholds at a rate of half regular LDPC codes
for binary-input AWGN channels are derived.

Max-Log-MAP decoding for LDPC codes: Gallager invented the
LDPC code as well as an efficient probability decoding scheme [2],
which was later elaborated in [3] and termed a sum-product algo-
rithm. It is equivalent to Log-MAP decoding except that the
former works on probabilities while the latter works on log proba-
bility ratios. Max-Log-MAP decoding approximates the optimal
Log-MAP algorithm by substituting each ‘log-exponential’-opera-
tion with ‘max’-operation,

In(e” + e¥) = max(z,y) + ln(l + e‘lz““) ~ max(z,y)
(1)

Let x = [x,] and H = [H,,,] be the codeword and the parity-
check matrix, respectively, of an LDPC code, so that Hx = 0.
Denote the set of bits # that participate in check m by Mm) = {n:
H,,, = 1}. Similarly, the set of checks in which bit n participates is
denoted as M(n) = {m: H,,, = 1}. We denote a set N(m) with bit n
excluded by N(m)\n, and a set M(n) with parity check m excluded
by M(n)\m. §,,, is defined as extrinsic information extracted from
check node m and to be passed to variable node n. ,,, is the mes-
sage from variable node m to check node n. The Max-Log-MAP
decoding algorithm is described as follows:

Initialisation: ,,,» = L,.
Horizontal pass:

¢l I sen(¢Sn?) @

() = min
mn ’
EN (m)\n neN(m\n
Vertical pass:
Gh=Lo+ Y &) (3)
m'€M(n)\m
Make decisions:
D) = Lo+ Y. &, (4)
meM(n)

The decision so far is given by X = [X,] such that x, = 0 if

DU(x,) > 0; otherwise ¥, = 0. If X is a valid codeword so that
Hx = 0, then the algorithm halts; otherwise, repeat the horizontal
and vertical pass until some maximal number of iterations is
reached without a valid decoding.

In Log-MAP decoding, the horizontal pass is set as

€0 =2tann | ] tanh(gf,f;,”/z) (5)

n'EN(m)\n

Max-Log-MAP decoding not only reduces the computation bur-
den in the horizontal pass, but also eliminates the requirement of
SNR estimation. In Log-MAP decoding, L, is set to L,,y,, which
means both channel value and channel parameter are required. In
Max-Log-MAP decoding, L, is simply set to channel value y,.

Density evolution procedure: Given the PDF of initial values {© as
PO, and the specific decoding algorithm, theoretically we should
be able to compute the PDF of €9 and {% for any i > 1, which are
denoted as Q¥ and PO, respectively. Through observing the evolu-
tion of P® and O, we would be able to ascertain whether the
fraction of an incorrect message approaches zero or not as the
number of iterations increases. Assuming the underlying graphical
model to be cycle-free, 0% and P® are numerically computable.
For vertical pass, the PDF of { is obtained by convolutions, for
the random variables on the right side of eqn. 3 are pair-wise
independent,

PU = f, © (QW)eht (6)

where £, is the PDF of channel values and 4, is the degree of vari-
able node. For horizontal pass, we take the conventional
approach. View the random variable & as a function of random
variable vector X: & = min{c]|X;| 1<) sgn(X,), the cumulative
distribution function (CDF) of & is found by integrating the joint
PDF of vector X over the region R corresponding to the event
{minfe [x T sgn(x) < &},

de—1 el
Fe() = Pr[ggr; || [ sen(ae) <€
k=

= [ /Rpm)-~~P<xdp,_1>d:r1-~dardr1 (7)

where d, is the degree of check node. The PDF of § is found by

taking the derivative of F(€). It is convenient to define ¢ (x;) =

éﬁ; 11;<f>(x)arx and 09 (x) = [ PO(x)dx. Then, for & < 0, the
is .

FE(HI)(O _

@-n|[ P dz (@) (@) e

+ /+OO PO (z) di2<¢$>(z))dc_2_k(¢(f) (z))kdx (8)
3 b=0

odd

For £ > 0, the CDF is
Fi(g) =

1| [ PO Z @) (0) @

+ [T Z @) (0w) @] @

even

Take the derivative of F(§) with respect to § and the PDF Q1) is

finally found as
QI =

s {(Pm(o +PO0) (60 +60(9)

+ (PO - POC0) @0 - 000) ] 0
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Table 1: Thresholds for binary-input AWGN channel under Max-
Log-MAP and Log-MAP decoding

. Thresholds, dB
Jop k| Rt T ToeMAP | Log-MAP
3| 6 | 05 17 111
4 0.5 25 1.62
5 | 10 ] 05 3.1 2.04

Numerical results and conclusions: Convergence thresholds at a
rate of one half regular. LDPC codes under Max-Log-MAP decod-
ing are given in Table 1, and contrasted with those under Log-
MAP decoding derived in [1]. For (3, 6) regular LDPC code, the
Max-Log-MAP algorithm yields a threshold 0.6dB higher than
the Log-MAP decoding. This means a performance loss of 0.6dB
due to the lack of channel parameters. With some minor modifica-
tions, the above density evolution procedure could easily be
applied to irregular LDPC codes.
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One-pass training of optimal architecture
auto-associative neural network for
detecting ectopic beats

G. Clifford, L. Tarassenko and N. Townsend

The authors have previously described a method for ectopic beat
detection in the electrocardiogram using an auto-associative
neural network. Here they present a method that utilises principal
component analysis to optimise the complexity of the neural
network and uses singular value decomposition to detérmine the
initial values for the weights.

Introduction: Effective cardiology requires the identification of sig-
nificant morphology variations in a patient’s electrocardiogram
(ECG), a record of the mV fluctuations of the heart’s electro-
potential. Abnormal beat identification is required for heart rate
variability calculations and warnings of the onset of potentially
fatal arrhythmias. In an earlier paper [1] we described a method
for training an auto-associative multilayer perceptron (AAMLP)
to perform QRS detection of normal beats and rejection of ectopic
beats [1]. It is trained to reconstruct a normal waveform in the
ECG (with the main features labelled P-QRS-T as in Fig. 2), cen-
tred on the R-peak as accurately as possible for that particular
subject.

Once the AAMLP has been trained, new ECG data is passed,
sample by sample, across the input nodes. The trained weights of
the AAMLP then perform the auto-associative mapping of this
data and produce an output pattern. When the input data is cen-
tred on the R-peak, the AAMLP will reconstruct the QRS com-
plex accurately. Otherwise the reconstruction will be poor since
the mapping was learned for R-peak centred waveforms only.

Since the QRS complexes are easily located by their R-peaks [2],
which occur approximately half way between the start of the P-
wave and the end of the T-wave, a 0.5s window centred on the R-
peak effectively segments each heart beat. To reduce the input/out-
put dimensionality for the auto-associative network and avoid
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learning fine (and potentially irrelevant) detail while still preserv-
ing the main features, the P-QRS-T waveform is down-sampled
from 256 to 64Hz. A 0.5s window then corresponds to 32 input
and output nodes.

However, neural network training can be time consuming and
the association for the advancement of medical instrumentation
(AAMI) requires that any on-line ECG algorithm must be trained
within the first five minutes [3]. There is therefore a trade-off
between the number of training patterns that can be collected and
the time required for training the AAMLP: the smaller the
number of training vectors, the greater the number of iterations
through the training set required. Even using a powerful modern
PC it is difficult to collect data and train within five minutes. We
therefore use singular value decomposition (SVD) to calculate the
weights in one pass.
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Fig. 1 Size-ranked set of eigenvectors from SVD decomposition of
training set composed of approximately 200 P-QRS-T waveforms
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Fig. 2 Reconstruction of set of approximately 200 32D training vectors
using the eigenvectors with eight largest eigenvalues derived from SVD

P, O, R, S, and T refer to clinical labels [1]
a Training vectors
b Reconstruction
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Method: A typical P-QRS-T segment is composed of approxi-
mately 10 major turning points. Individual nodes in an AAMLP
do not encode individual features, but this number can be used for
order of magnitude calculations [4]. The AAMLP encodes the var-
iance in the training set in the same manner as principal compo-
nent analysis (PCA), projecting the variance onto the same
number of orthogonal axes as there are hidden units [4]. A more
rigorous method for determining the number of hidden units is to
perform PCA on the training set, rank the components in order of
magnitude and identify the knee of the curve [5]. Fig. 1 shows a
knee at two components, with significant eigenvectors up to eight
components. Beyond this any further components contribute very
little further information, as they encode noise. In tests on the
MIT-BIH database [6] and data collected from a local hospital we
found that there was a high degree of inter-patient similarity
between singular spectra of training sets, with eight eigen-compo-
nents being the upper limit of the boundary between signal and
noise. The number of hidden units was therefore set to a value of
eight. Fig. 2 shows how a typical training set (Fig. 24) is recon-
structed (Fig. 2b) by the first eight principal components.

For a two layer AAMLP with linear hidden units and a sum-of-
squares error function, the weights can be calculated from the
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