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I. Introduction to Orthogonal Block Transforms: 
A Time-Frequency Perspective

Function/Signal
Shape of a function/signal
Function/Signal = Energy Shape
Energy of a function/signal
Duality (Time-Frequency)
Parseval (Time-Frequency)
Function set (Time-Frequency)
Orthogonality (Time-Frequency)
DFT, DCT,WHT
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Functions (Energy Shape) in Time and Frequency Domains: Duality
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Signal Energy in Time-Frequency: Parseval Theorem
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Orthogonality in Time-Frequency: Parseval Theorem

* *
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Correlations in Time-Frequency: Multiuser Communications 
(Transmultiplexer for OFDM/CDMA/TDMA)

* *
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Consider a function set { ( )}; 0,1,... 1
and pairwise cross-correlations defined
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lations result in Inter Carrier Interference (ICI), Inter Symbol Imterference (ISI) 

and MultiUserInterference (MUI) in a Multiuser / Multicarrier Communications System
(Transmultiplexer for OFDM/CDMA/TDMA or T-FMA?)
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Time Frequency Localization of A Discrete Time Function
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Discrete-Time Uncertainty

2

|1 |
2

| ( ) |

1Class I: ( ) 0
2
|1 |Class II: ( ) 0

2

n

j

j
n

j
n

H e
E

H e

H e

ω

π

π
ω

π
ω

μσ σ

μ

σ σ

μσ σ

−
≥

= → ≥

−
≠ → ≥



August 24, 2009 11

Time Frequency Localization of 31-Length 
Spread Spectrum KLT Codes

•Binary valued codes have 
constant spread in time 
where as multiple valued 
KLT codes are more 
spread in time
•Frequency spread for 
Walsh-like, Gold and 
KLT code sets is similar 
where as for Walsh codes 
spread is lower
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Orthonormal Spectral Analyzer as a Filter Bank
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Orthogonality Principle Demonstration



August 24, 2009 14

Transform Encoder / Decoder
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2D Transform Coding
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2D KLT and DCT Bases (8x8)
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KLT Basis [AR(1), rho=0.95] in Time & Frequency (N=8)
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Walsh Basis (N=8)
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Decimation Operation
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Interpolation Operation
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Two-Band Filter Bank
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4-Band / Two-Levels Filter Bank (Subband) Tree
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Regular Subband (Filter Bank) Tree
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Irregular Subband Tree
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A Dyadic (Octave Band) Subband Tree
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Maximally Decimated M-Band Filter Bank (Analysis/Synthesis)
Single Input Single Output (SISO)
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M-Band Transmultiplexer (Synthesis/Analysis FB Configuration)
Multiple Input Multiple Output (MIMO)
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II. Discrete Fourier Transform with Linear Phase
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DFT Amplitude Functions
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DFT Phase Functions (Linear)

π

2Modulo π
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III. Orthogonal Transmultiplexer for Multicarrier 
Communications: OFDMA, TDMA, CDMA
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DFT Amplitude Functions
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Walsh Basis (N=8)
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Non-linear Phase (Walsh-like) Binary Orthogonal Codes: 
Design and Performance

• Walsh codes are linear phase, zero mean with unique 
number of zero crossings in the set. DC code is part 
of the set

• Features are useful for source coding  and not 
necessary for spread spectrum applications. Hence, 
such design restrictions are waived in Walsh-like 
code design.

• For n-length binary code, sample space consists of 
integer numbers up to 2n-1. First basis function is 
selected by representing any integer number in the 
sample space in radix 2 format with [1,-1] elements
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Walsh-like Codes Design

• Select the next basis function by checking the 
orthogonality with the first basis function and 
maximum normalized cross-correlation value 
between the pair is less than 1 for all possible 
delays

• Repeat this process (n -1) times to get n
orthogonal codes

• A number of orthogonal sets are formed with first 
basis function as common basis function for all 
the orthogonal sets
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Walsh-like Codes Design

• By choosing different integer as the first basis 
function, unique orthogonal sets can be formed. 
Number of  n x n orthogonal  sets with multiples 
of 4 as their lengths are obtained  in our 
simulation (8,12,16,20,…)

• Complexity of this algorithm is n.(2n-1) for n-
length code
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Asynchronous BER Performance Comparison of
8-Length Walsh-like Code Sets in AWG Noise(2 Users)

•BER performance of  8-
length Walsh-like codes is 
marginally better than 7-
length Gold codes and far 
exceeds that of Walsh codes
•Number of orthogonal code 
sets are available with similar 
performance 
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Asynchronous BER Performance Comparison of
32-Length Walsh-like Code Sets in AWG Noise(2 Users)

•BER performance of 
Walsh-like codes exceeds 
Walsh codes and closely 
matches with Gold codes 
performance at all lengths 
of the code
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Async. BER Performance of 16,20,24,28,32 Length 
Walsh-like Codes in AWG Noise (2 Users)

• Number of Walsh-like 
code sets are available for 
all lengths that are 
multiples of 4
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Rayleigh Flat - Slow Fading Channel Description

• Multipath reflections of the symbol occur in 
the same symbol interval. This implies 
coherent bandwidth of the channel is greater 
than the symbol bandwidth (Flat fading)

• Channel conditions are assumed to remain 
same during symbol interval (Slow fading)



August 24, 2009 41

Rayleigh Flat - Slow Fading Channel Description

• Amplitude of the received signal modeled as 
y(t) =h(t)*s(t) + n(t),

s(t) transmitted signal, n(t) AWG noise, h(t)
channel impulse response and y(t) received 
signal
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Rayleigh Flat - Slow Fading Channel Description

• For flat fading  channel,  h(t) – single tap filter 
with zero delay

• h(t) WSS complex Gaussian waveform with 
zero mean and unity variance whose amplitude 
varies as Rayleigh PDF variable

• Fading channel modeled separately for each 
user in uplink
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Sync / Async BER Performance Comparison for 
Length-32 Walsh-like Codes (2 Users)-Rayleigh Channel

•Performance of orthogonal 
Walsh and Walsh-like 
codes is similar in all 
Rayleigh flat fading 
conditions
•Performance of non-
orthogonal Gold codes is 
poor in synchronous 
conditions
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Multiple Level Code : Design and Performance

• For p level coding, sample space is pn for an n-length code. 
Represent numbers in sample space using radix p elements. 
Map radix elements into corresponding PAM level chip 
amplitudes

• 4 level representation requires radix 4 elements (0,1,2,3) and 
PAM chip levels {-3, -1, 1, 3}. Weights of the individual 
elements for  8-length code are  { 47, 46,…., 41, 40 }
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Multiple Level Code : Design and Performance

• As an example, number 125 in radix 4 is represented as 
{0,0,0,0,1,3,3,1}. After PAM mapping, code becomes {-3, -
3, -3, -3, -1, 3, 3, -1} 

• Number of unique orthogonal code sets are obtained by brute 
force search method in the sample space with code features 
similar to Walsh-like code sets

• In the search algorithm, additional constraint of same norm 
for all basis functions within the set is also imposed
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Asynchronous BER performance Comparison of
4-Level , 4-Length Codes  in AWG Noise(2 Users)

•BER performance of 2- level, 4-
length orthogonal codes (Walsh) 
is poor where as 4-level codes 
give good performance
•Sample 4-level, 4-length code

3 1   1   3

1   3 3   1

1   3  3 1

  3   1  1   3

− −

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦



August 24, 2009 47

Asynchronous BER Performance Comparison of 
Multiple Level, 8-Length Codes in AWG Noise (2 Users)

•BER performance 
improves  as the number of 
coding levels increase
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Multiple Level, 6-Length Codes

3-Level 
Codes 
Basis 
Elements 
{ 1,0,1}−  
Norm2-4 
 

5-Level 
Codes 
Basis 
Elements 
{ 2, 1,0,1,2}− −  
Norm2-10 
 

7-Level 
Codes 
Basis 
Elements 
{ 3, 2, 1,0,1,2,3}− − −

Norm2-20 
 

9-Level 
Codes 
Basis 
Elements 

4, 3, 2, 1,
0,1, 2,3, 4}
{− − − −  
Norm2-26 
 

11-Level 
Codes 
Basis 
Elements 

5, 4, 3, 2, 1,
0,1, 2,3, 4,5}
{− − − − −

Norm2-50 

13-Level 
Codes 
Basis 
Elements

4,
3, 2, 1,0,

1, 2,3, 4,5,6}

{ 6, 5,−
− − −
− −

 

Norm2-50 
22    182         2858        9832       17968       95570      
396    8378         51974        163032       143082       2433484     
404    8476        60218        218158       847144       2469152     
524    10660        73438        272578       847218       2779564     
528    10714        77530       310372       885134       3144890     
670 12932 103798 372786 885216 3356242 
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Asynchronous BER Performance of Multiple Level, 6-
Length Codes in AWG Noise (2 Users)

•BER performance improves 
as the number of levels 
increase upto a certain level
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Normalized Cross Correlation Metrics for 
Multiple Level 6-Length Codes

 

Parameter 3  
Level

5  
Level 
 

7 
 Level 
 

9 
Level

11 
Level 

13 
Level 

Max Even Correlation    .75 .7 0.8 .73 .64 .72 
Max Odd  Correlation    .75 .8 .65 .73 .64 .70 
Max Aperiodic 
Correlation 

  .75 .7 0.7 .73 .64 .70 

Sum of Square of Even 
Correlations 

11 13.1 10 13 14 13 

Sum of Square of Odd 
Correlations 

12 13.5 13 13 13 14 

Sum of Square of 
Aperiodic Correlations  

12 13.3 11 13 14 13 
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Comparison of Multiple Level and Binary Level Codes

•Shorter length codes 
with higher chip levels 
perform as good as 
longer length codes with 
binary spreading levels
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Spread Spectrum KLT Codes

• Integer binary and multiple level spread spectrum 
codes are obtained by brute force search method

• Karhunen-Loeve Transform (KLT) based 
analytical method is used to generate multiple 
value spread spectrum codes for a given 
covariance or power spectral density (PSD) 
function

• PSD function can be modeled using AR, ARMA
methods, giving many solutions with variable 
code lengths
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Example: Power Spectral Density and 8-Length 
Auto Correlation sequence

•Power spectral density is 
first modeled as AR 
sequence
•Eigen vectors generated 
from covariance matrix are 
used as spread spectrum 
codes
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Asynchronous 2 User BER Performance of 
8-Length Spread spectrum KLT Codes in AWG Noise

•BER performance of 
multiple valued 8-length  
KLT codes is better than 
binary valued codes.
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Typical 31-Length Gold Code and its 
Auto Correlation Sequence

  -1     1     1    -1    -1     1     1     1 
   -1    -1    -1    -1     1    -1    -1   -1
  -1    -1     1    -1     1    -1     1    -1 
    1    -1    -1     1     1    -1    -1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1.0000   -0.0645   -0.0323   -0.1935    0.2258    0.0645    0.2258   -0.0645 
-0.0323   -0.1290    0.0968    0.0000   -0.0323    0.0645   -0.0968   0.1290
 0.0968    0.0645   -0.0968    0.0000   -0.0323    0.1290    0.0968         0
-0.2258         0       0.1613         0        -0.0968    0. 0000    0.0323

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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31-Length Spread Spectrum KLT Auto Correlation 
Sequence and Power Spectrum

•Normalized auto- and 
cross-correlation sequences 
of Gold  codes or Walsh-
like sequences are  used to 
generate eigen vectors
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Asynchronous 2 User BER Performance of 
31-Length, Spread Spectrum KLT Codes in AWG Noise

•BER performance of spread 
spectrum KLT codes matches 
with Gold codes performance
•Number of unique orthogonal 
sets can be generated by taking 
different auto- and cross-
correlation sequences of Gold / 
Walsh-like codes
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IV. Correlation Performance Metrics

Aperiodic Correlation Function (ACF)
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Max of Auto- and Cross-Correlation Sequences
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MS of Auto- and Cross-Correlation Sequences
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Merit Factor (Fk)
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MS of Auto- and Cross-Correlation Sequences
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Peak-to-Average Power Ratio (PAPR)

2

2

max ( )

( )

x n
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E x n
=
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V. GDFT with Nonlinear Phase for Auto- and 
Cross-Correlation Improvements

• Motivation
• GDFT
• Design Metrics and Efficient 

Implementation 
• Performance Improvements in BER, 

PAPR
• Dynamic Code Basis Hopping
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Motivation

• Constant modulus transforms are valuable for several 
applications including communications

• DFT is very popular since everyone uses it
• Can I have my DFT-like transforms? 
• Emerging radio applications particularly SW based ones

for sensing and P2P communications might benefit from flexible 
code/carrier libraries

• Introducing dynamic code/basis assignments offers additional 
improvements for system security (scrambler)
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Generalized DFT: Mathematical Preliminaries

An Nth root of unity is a complex number
satisfying the equation

1        N 1, 2,3 ,  ......  N
z = =

1      m =1,2,3,..., N-1
m

pz ≠

If Z hold this equation but

then Zp is defined as a primitive Nth root of unity where m and 
N are coprime integers
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Generalized DFT: Mathematical Preliminaries

is the primitive Nth root of unity with the smallest 
positive argument.

The are N distinct Nth roots of unity and 
expressed as

1
( 2 / )j Nz e π=

)(   1,2,3,  ... ,    k
pkz z k N p= = ∀
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Generalized DFT: Mathematical Preliminaries

As an example, for N=4 there are two primitive Nth roots of 
unity expressed as

2
4

1

j
z e

π

=
3
2

2

j
z e

π

=
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Generalized DFT: Mathematical Preliminaries

All primitive Nth roots of unity satisfy the unique 
summation property of a geometric series expressed 
as follows

1
0 ( )

1 1, 1
    

0, 1
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1
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Generalized DFT: Mathematical Preliminaries

We now define a periodic, with the period of N, 
constant modulus, complex sequence as the rth power
of the first primitive Nth roots of unity raised to the 
nth power as

1
(2 / )( ) ( )   

0,1, 2,... ,  -  1  and  0,1, 2,... ,  -  1

r j r N nne n z er
n N r N

π=

= =
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Generalized DFT: Mathematical Preliminaries
This complex sequence over a finite discrete-time 
interval in a geometric series is expressed

1 )1 1 1 (2 / )1 1 1( ) (0 0 0
1,
0,

integer

nr j r N nN N Ne n z en n nrN N N
r mN
r mN

m

π

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

− − −= =∑ ∑ ∑= = =
=

= ≠
=

1
0jez ω

= 0 2 /  Nω π=
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Generalized DFT: Mathematical Preliminaries

One defines the discrete Fourier transform (DFT) set 
with the factorization into two orthogonal exponential 
functions where

*1 1 (2 / ) (2 / )*
0 0
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Generalized DFT

Let’s generalize by introducing a product function in 
the phase defined as

( ) ( ) ( )k ln n nϕ ϕ ϕ= −

and expressing a constant amplitude orthogonal set as 
follows,
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Generalized DFT
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Generalized DFT

Hence, the basis functions of Generalized DFT 
(GDFT) are defined as

( 2 / ) ( )
( )  

, 0 , 1, .. .  , - 1
k

j N n nkn

k n N

e e π ϕ

=
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Generalized DFT
As an example, one might define

( ) 1kD n =

1
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Remarks on Generalized DFT

1) DFT is a special solution of GDFT with

Having constant valued functions { ( )}k nϕ

makes DFT a linear-phase transform

1 2 3 ... 0( )   and  k k k k kNn a k a a aϕ = = = = ==

1 2 ... 0k k kNb b b= = = =

(2 / ){ ( )}     , 0,1,..., 1j N kne n ek k n Nπ = −
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Remarks on Generalized DFT

2) Popular Walsh and Nonlinear Phase Walsh-like
orthogonal binary transforms are special solutions
of GDFT. As an example,

WALSH GDFT DFT WALSHA A A G= =

0.25 0.25

0.25 0.25

1 0 0 0
0 0 0.71 0.71
0 1 0 0
0 0 0.71 0.71

j j
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j j
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e e

π π

π π
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⎡ ⎤
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Remarks on Generalized DFT
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Remarks on Generalized DFT

3) There are infinitely many possible GDFT sets
available in the phase space with constant power
where one can design the optimal basis for the desired 
figure of merit.

The availability of rich library of orthogonal constant 
amplitude transforms with good performance allows us 
to design adaptive systems where basis assignments as 
well as code allocations are made dynamically and 
intelligently to exploit the current channel conditions 
in order to deliver better communications performance 
and improved physical layer security.
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Remarks on Generalized DFT

4) Oppermann, Frank-Zadoff and Chu Sequences
are the special cases of his code family.

( )( , ) ( 1) exp
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Remarks on Generalized DFT
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Variations of Auto-correlation Metric for Parametric GDFT Solutions (N=8)
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Variations of Cross-correlation Metric for Parametric GDFT Solutions (N=8)
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Matrix Representation

1 2
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* *
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1
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  ]

 ,    0,  1,  . . . ,   -  1

(2 / )   
{ ( )}
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GDFT Kernel (Diagonal G1 & G2)



August 24, 2009 88

DESIGN METRICS

Aperiodic Correlation Function (ACF)
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Max of Auto- and Cross-Correlation Sequences
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{ }max ( )
0
1

kamd d m
k M
m M

=
≤ <
≤ <

{ },m ax ( )
0 ,
0

k lcmd d m
k l M k l
m M

=
≤ < ≠
≤ <



August 24, 2009 90

MS of Auto- and Cross-Correlation Sequences
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Merit Factor (Fk)
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MS of Auto- and Cross-Correlation Sequences

1 2

,
1 1

0

1 ( )
M N

AC k k
k m N

m

R d m
M

−

= = −
≠

= ∑ ∑

1 2

,
1 1 1

1 ( )
( 1)

M M N

CC k l
k l m N

l k

R d m
M M

−

= = = −
≠

=
− ∑∑ ∑



August 24, 2009 93

Peak-to-Average Power Ratio (PAPR)
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Optimal Design of Phase Shaping Function
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Optimal Design of Phase Shaping Function

(( ) ) ( )k kn n n kn nϕ ϕ ψ= = +
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Optimal Design of Phase Shaping Function

CCRACR

( )nψ

( )nψ

The first two functions of optimal GDFT sets with N=8 along with their DFT counterparts

0.85364.375DFT

{ 1.673 -0.87 -0.51 2.02 1.51 -0.86 
1.70 2.46 }

{ -1.38  -2.56  -2.24 3.42  0.07  -
4.27 -3.27 -0.80 }

0.42050.086GDFT 
(MATLAB,fminsearch)

{ 1.637 -0.79 -0.54 2.01 1.59 -0.83 
1.73 2.44}

{ -1.37  -2.53  -2.21 3.39  0.0  -4.21 
-3.19 -0.83 }

0.42190.0877GDFT (Mathematica, 
FindMin)

OPTIMIZATION METRIC (N=8)
Numerical Search Tool and 
Optimal Phase Shaping 
Function
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Closed Form Phase Shaping Function
( )nψ
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Closed Form Phase Shaping Function
( )nψ
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Closed Form Phase Shaping Function for GDFT Design

2 21.75 6( ) exp 1.75exp
3.75 0.50
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Phase Functions: DFT (Linear) vs GDFT (Nonlinear)
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DFT Phase Functions (Linear)

π

2Modulo π
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GDFT Phase Functions (Nonlinear)
2Modulo π
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DFT Amplitude Functions
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GDFT Amplitude Functions
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Correlation metrics: DFT vs GDFT

0.5343.2610.7030.2880.703GDFT

0.3754.3750.8750.3270.875DFT

N=8
amd

cmd
maxd ACR CCR
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Performance of Various Codes

0.9120.8431.0950.3870.3870.376GDFT
(opt dmax)

0.7830.7871.2780.4650.4190.425
Opperrman
(opt dmax)
(m=1, p=1, n=2.98, N=7)

1.1670.8780.8570.7140.7140.7147/8 Gold

0.2200.3754.3750.8750.3270.875DFT [8x8]

1.1430.8750.8750.6250.6250.625Walsh-like [8x8]

0.4210.6612.3750.8750.8750.875Walsh [8x8]

FRCCRACdmaxdcmdamCode

{ }max ,maxd d dam cm=
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Magnitude of Auto-correlation Functions 
for GDFT (solid line) and DFT (dashed line) (N=16)
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Magnitude of Cross-correlation Functions 
for GDFT (solid line) and DFT (dashed line) (N=16)
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DS-CDMA BER Performance 
(2 Users, AWGN)
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DS-CDMA BER Performance 
(2 Users, AWGN)
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AM/AM Characteristics of RF PA
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GDFT-SLM BASED PAPR REDUCTION
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PAPR Reduction Comparisons for N=256, -1P(PAPR>γ)=10
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Average efficiency vs. PAPR [dB] for a 
Class-A Type Power Amplifier
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Average PA Efficiency with PAPR Reduction 
N=256
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BER with PA Nonlinearities for N=256
(a) QPSK, (b) 16-QAM
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BER with PA Nonlinearities for N=256 (QPSK)
(a) OPT-GDFT (b) EFF-GDFT
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BER with PA Nonlinearities for N=256 (16-QAM)
(a) OPT-GDFT (b) EFF-GDFT
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Potential GDFT Applications

• PAPR Reduction
• PAPR-ISI-ICI-Spectrum and Power 

Efficiency Trade-offs
• OFDM Variations SC-OFDM/MC-

OFDM/DS-CDMA-OFDM and LTE 
Types

• Scrambling & Cryptography
• Basis Hopping
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VI. BER Performance of DFT and GDFT CDMA for Rayleigh channel and 2 users
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

In DS/CDMA, each user assigned a spreading code. The transmitted signal
uses the entire frequency band. Spreading is performed in time-domain. 
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

Multiple user interference in DS/CDMA system depends on
the even and odd correlations between the user spreading
codes.
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• With the advances in Digital Signal Processing and success of 
Multicarrier Modulation in early broadcast applications 
motivated researchers to investigate the suitability of 
multicarrier modulation in mobile wireless communications.

• Multicarrier CDMA and MC-DS/CDMA are introduced 
emerging spreading spectrum techniques with multicarrier 
modulation to serve multiple users even on frequency selective 
channels.

• In MC-CDMA, the spreading is performed in frequency 
domain whereas in MC-DS/CDMA, the spreading is in time-
domain. In both methods, all users shared the same available 
bandwidth simultaneously

VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

MC-DS-CDMA offers better performance on Rayleigh channel due to the use of
orthogonal sub-carriers each having equally spaced bandwidth in the frequency.
MC-DS-CDMA may be considered as N-channel DS-CDMA system.

MC-DS-CDMA 
Transmitter
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

MC-DS-CDMA 
Receiver
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

MC-CDMA 
Transmitter
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VII. Variations of CDMA Communications: 
From DS-CDMA to MC-DS-CDMA

MC-CDMA 
Receiver
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• 4G Technologies aim to increase cell capacity, 
cell radius, scalability of bandwidth and data 
rates deploying a completely new technology or 
emerging existing 3G networks.

• Two parallel standardization efforts are IEEE 
802.16 (Wimax) and 3GPP LTE.

VIII. Emerging 3GPP LTE Mobile Phone Standard
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• Both standards use OFDMA for downlink. 
Wimax uses OFDM for uplink whereas  3GPP 
LTE suggest using SC-FDMA for uplink. SC-
FDMA is preferred due to its advantage of low 
PAPR over OFDM systems. Both employ MIMO 
with multiple antennas for UL and DL.

VIII. Emerging 3GPP LTE Mobile Phone Standard



August 24, 2009 132

VIII. Emerging 3GPP LTE Mobile Phone Standard

* H. G. Myung and D. J. Goodman,  Single Carrier FDMA: A New Air Interface 
for Long-Term Evolution. John Wiley & Sons, Nov. 2008. 

*
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• Roaming framework for Mobile Wimax is 
completely new whereas 3GPP LTE is based on 
existing GSM/UMTS communications systems.

• Legacies for Wimax is IEEE 802.16a through 
IEEE 802.16d, the legacies for 3GPP LTE GSM, 
GPRS, UMTS, EGPRS, HSPA.

VIII. Emerging 3GPP LTE Mobile Phone Standard
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• Nokia Siemens Network, Motorola, Ericson, 
Freescale Semiconductor and  NTT DoCoMo
demonstrated successful implementations of LTE 
networks.

• AT&T, T-Mobile, Verizon Wireless, Vodafone, 
France Telecom are among those companies 
which announced their intension to upgrade their 
current networks to LTE. 

VIII. Emerging 3GPP LTE Mobile Phone Standard
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VIII. Emerging 3GPP LTE Mobile Phone Standard
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VIII. Emerging 3GPP LTE Mobile Phone Standard

CCDF of PAPR for Mobile Wimax System with GDFT
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VIII. Emerging 3GPP LTE Mobile Phone Standard

BER Performance of Mobile Wimax System with GDFT 
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IX. Discussions and Future Research Directions

• GDFT is a continuation of early work on 
Nonlinear Phase Walsh-like transforms 
(binary phase grid)

• We introduced Generalized DFT (GDFT) 
framework with Nonlinear Phase and 
Efficient Design Methods (any phase grid) 
for design of constant modulus sets

• Marked departure from block-circulant
correlation and eigen-structures of DFT
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IX. Discussions and Future Research Directions

• Methodically interconnects constellation, DFT 
and OFDM frame of interest

• Graceful departure from OFDM to CDMA or 
any TF-MA 

• Basis hopping for better fit to channel (loading) 
and/or code level security (built-in scrambler) is 
inherent
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IX. Discussions and Future Research Directions

• Design flexibilities for possible improvements 
(e.g. BER, PAPR) over DFT with efficient add 
on to FFT

• Next Generation Multicarrier Communications 
Systems (SW based) might benefit from 
GDFT family

• Currently looking into radar applications 
including MIMO Radar employing GDFT 
concepts
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IX. Discussions and Future Research Directions

• Extensions to filters banks being studied for 
complex MUX

• Hilbert pair interpretation of a GDFT subset 
being formalized 
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