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Abstract—The heuristic reasoning and experiments based de-
sign approach have been the pillars of studies on artificial neural
networks. The explainable network performance is required
for most applications. We focus on a simple classifier network
for the two-class case of AR(1) data sources. We trace the
input statistics through the network and quantify changes to
explain relationship between accuracy performance, optimized
parameters and activation function types employed for the given
architecture. We present test accuracy results for various network
configurations with different dimension and activation types.
AR(1) source model for a two-class case is utilized to generate
training and test data sets of the experiments due to its ease
of use for analytical study. We quantify the relationships with
well known metrics among signal (class) statistics, network
architecture, activation function type and accuracy for several
correlation coefficient pairs of the two AR(1) sources utilized in
this paper. It is observed from the experiments that the analyses
of data, input-output relationships of hidden and output layer
nodes for the given architecture provide invaluable insights and
guidance to judiciously design a neural network and to explain
its performance based on characteristics of the building blocks.

Index Terms—Explainable neural network, activation function,
pdf shaping, node compression ratio, layer compression ratio,
AR(1) source.

I. INTRODUCTION

Data intensive and computationally driven scientific dis-
covery creates challenges for researchers to explain and to
develop theoretical frameworks with repeatable outcomes. The
recent progress in machine learning (ML) and artificial neural
networks (ANN) is a good example of this paradigm shift. This
study attempts to better understand and explain the interactions
between the basic building blocks and performance of a simple
learning network.

A typical network has its predefined architecture where
input, hidden and output layers are interconnected together
and its weight coefficients (parameters) are optimized based
on an objective function related to the application of concern.
We focus on classification problem in this study. The data
driven numerical optimization of the parameters is performed
during the training of the network model. Then, this set of
optimized parameters is used to test and measure the network
performance [1].

Since the neural network design methodology is heavily
data driven and numerical in nature, the network performance
is calculated for the widely accepted reference data sets. In
this study, we are creating the training and the test data sets

Fig. 1. A single node of neural network. Activation function
g(.) maps input x to output y.

from auto-regressive order one, AR(1), source model that is
commonly used as a coarse approximation to natural signals
like images and speech due to its ease of analytical treatment
[2], [3], [4].

A simple classifier network with one hidden layer for a two
class problem is introduced in Section II. We focus on and
trace signals at various points of such a network and assess
them by using well known metrics in signal processing and
information theory. We highlight the impact of the activation
(transfer) function on input-output relationship of a node
in this section. AR(1) source model and its characteristics
are given in Section III. Accuracy performance of simple
neural network with respect to various architectures, activation
function types, and auto-correlation coefficients, ρ− pair, of
the input signal classes are presented and explained in Section
IV. The remarks on our findings and conclusions are given in
the last section of the paper.

II. A SIMPLE CLASSIFIER NETWORK

A single node of neural network is displayed in Fig. 1
with the input x. The activation function g(.) of the node is
nonlinear and the output is expressed as

y = g(x) (1)

Let us assume that the input and output pdfs of the node
are fx(x) and fy(y), respectively, and g(.) is a monotonic
function. Then, the output pdf is calculated from the input as
[5].

fy(y) =
fx(x)

| ∂y∂x |
(2)

Note that we can calculate the (differential) entropy of a
continuous information source with the pdf fx(x) as [6].

E(x) = −
∫ +∞

−∞
fx(x) ln[fx(x)]dx (3)



(a) Perceptron Model.

(b) 4-4-2 Multilayer Perceptron (MLP).

Fig. 2. a) Perceptron model with inputs {xk}, weight coef-
ficients {wk}, 0 ≤ k ≤ 3 with bias term b and activation
function g(.). b) The single hidden layer, 4-4-2 classifier
network for the two-class case.

The information entropy of a discrete source with N distinct
symbols {xi} and symbol probabilities {pi} is calculated in
bits as [6]

Ex = −
N∑
i=1

pilog2pi (4)

We are interested in the lossless entropy compression
properties of activation functions (with one-to-one invertible
mapping properties) used in the hidden and output layers of the
network with respect to input data statistics, architecture and
the nature of classification problem as a set of unique features.
Therefore, the pdf fx(x) of node input is calculated from the
pdfs {fxi(xi)} of feeding node outputs of the previous layer
weighted with coefficients {wi} and bias parameter b. The
Central Limit Theorem (CLT) states that when statistically

independent random variables {Xi, i = 1, 2, ..., N} of any
pdf type are added together, the resulting X tends to become a
Gaussian random variable [5]. Note that the weight coefficients
{wi} of a node input are real numbers, in general, with positive
or negative signs. The pdf of node input is tracked, its input
and output entropies are measured and traced tomographically
for all hidden and output nodes of a neural network. This
analysis sheds additional light to explain the relationship
between network accuracy and its building blocks. This point
is revisited in Section IV.

Fig. 2a displays the perceptron model with four inputs,
{xi, i = 0, 1, 2, 3}, weights coefficients {wi, i = 0, 1, 2, 3}
and bias coefficient b where the input of the activation function
g(.) is calculated as x =

∑3
i=0 wixi+b. A single hidden layer

neural network with four input, four hidden layer and two
output nodes, 4-4-2 classifier network, is displayed in Fig. 2b.
The sets of weight coefficients {wi,j , i, j = 0, 1, 2, 3} and
{ok,l, k = 0, 1, 2, 3 l = 0, 1} for the hidden and output layers
(with the preselected two sets of activation functions) of this
4-4-2 classifier network, respectively, are optimized based on
stochastic gradient descent algorithm through the training step
to build the model. Then, its accuracy is tested for various
two-class data types.

A. Activation Functions
One needs to know the joint and marginal probabilities of

variables in a random vector process for its proper statistical
representation [5]. It is a cumbersome if not an impossible task
even for relatively low dimensional data types. On the other
hand, there have been a plethora of research activities with
mostly heuristic and data driven methods yielding promising
performance to extract higher order statistical characteristics
of different signal (data) types in various application domains.
One of the commonly agreed weaknesses of the state-of-the-
art learning networks is their inability “to extract and orga-
nize the discriminating information from the data” [7]. The
nonlinear activation function (one-to-one invertible mapping)
of a network node has been hypothesized to exploit higher
order statistics to extract some latent information among the
signal classes under study. The activation function is very
similar to the companding operator used in the early years
of telephony. Indeed, it may be considered as the special
version of pdf-optimized non-uniform quantizer (a lossless
compression method when the number of bins goes to infinity
and the output range is reduced to 0 to 1 or -1 to +1). It is a
mature subject in information theory [2], [4], [6], [8], [9]. The
design and selection of optimal activation (transfer) function
and its merit in a neural network is an active research topic
and beyond the scope of this paper [10], [11].

We use Sigmoid, Hyperbolic Tangent (Tanh) and ReLU
functions in the paper for performance analysis of a simple
classifier network. These functions are defined in Table I.
Note that the first two provide one-to-one unique (lossless)
mappings between the input and output while ReLU does
not have that feature. We quantify the impact of activation
functions in nodes of the network with entropy and correlation
measurements and to relate them with accuracy presented in
Section IV.



Table I: Sigmoid, Tanh, and ReLU activation functions.

Sigmoid Tanh ReLU

1
1+e−x

ex−e−x

ex+e−x max(0, x)

III. AUTO-REGRESSIVE ORDER ONE SOURCE MODEL

Auto-regressive discrete process with order one, AR(1),
provides coarse approximation to natural signals like images
and widely used in signal processing research. AR(1) signal
source is modeled as [4]

x (n) = ρx (n− 1) + ξ (n) (5)

ξ(n) is Gaussian with zero-mean and variance σ2
ξ ,

E {ξ(n)ξ(n+ k)} = σ2
ξδn−k where −1 < ρ < 1. The

correlation coefficient is defined as

ρ = Rxx (1) /Rxx (0)

=
E {x (n)x (n+ 1)}
E {x (n)x (n)}

(6)

The signal variance is expressed as σ2
x =

σ2
ξ

(1−ρ2) . The auto-
correlation sequence of AR(1) process is written as

Rxx(k) = E {x(n)x(n+ k)} = σ2
xρ

|k|; k = 0,±1,±2, . . .
(7)

Note that AR(1) signal becomes Gaussian white noise when
ρ = 0.

We used AR(1) model to generate the training and test data
of various signal classes for several classification problem
scenarios as explained in Section IV. We prefer to use this
simple model due to its ease of use in analytical formulations
and modeling. We generated two sets of training and test data
in one-byte per sample resolution from AR(1) source model
for two different classes defined by their first order correlation
coefficients ρ0 and ρ1, respectively. Labels for each class were
created and the data sets and labels were randomly shuffled.
Each dataset is normalized to zero mean and unit variance per
dimension.

IV. PERFORMANCE

A. Input-Output Relationship of a Node

The mathematical relationship between the input and output
of a node displayed in Fig. 1 is expressed in Eqs. (1) and (2)
with respect to their pdfs and the activation function g(.). The
input and output information entropies of a node, Ein and
Eout, respectively, with Sigmoid, Tanh and ReLU activation
functions for discrete AR(1) inputs of various ρ values are
tabulated in Table II.

The output histograms of a node with the three activation
functions and information entropies for discrete AR(1) input
with ρ = 0.9 are displayed in Fig. 3.

Similarly, input and output information entropies of four
hidden layer nodes with Sigmoid activations in the 4-4-2

Table II: Input and output information entropies (Ein, Eout)
of a node with different activation functions for discrete AR(1)
inputs of various correlation coefficients ρ.

ρ Sigmoid Tanh ReLU

0 Ein 7.18 7.18 7.18

Eout 7.14 6.92 4.02

0.5 Ein 7.04 7.04 7.04

Eout 7.01 6.82 4.02

0.9 Ein 7.2 7.2 7.2

Eout 7.16 6.93 4.1

(a) Sigmoid

(b) Tanh

(c) ReLU

Fig. 3. The output histograms of a node with the three
activation functions and information entropies for discrete
AR(1) input with ρ = 0.9.

network shown in Fig. 2b are tabulated in Table III for discrete
AR(1) inputs of various ρ0 − ρ1 pairs. The input and output
histograms of the two hidden layer nodes (NH

0 and NH
3 ) and



two output layer nodes (NO
0 and NO

1 ) in the same network
with Sigmoid activation for AR(1) input data classes of ρ0 = 0
and ρ1 = 0.99 are displayed in Figs. 4 and 5, respectively.

Table III: Input and output entropies (Ein, Eout) of four
hidden layer nodes in the 4-4-2 trained network with Sigmoid
activations for ρ0−ρ1 pair correlation coefficients in the two-
class case.

ρ0 ρ1 NH
0 NH

1 NH
2 NH

3

0 0.99 Ein 5.93 6.06 6.06 6.11

Eout 5.42 5.76 5.71 5.99

0.4 0.99 Ein 6.08 6.05 7.04 7.04

Eout 5.43 5.31 2.93 5.4

0.7 0.99 Ein 6.33 6.54 6.32 6.44

Eout 6.02 6.08 6.19 6.09

0.85 0.95 Ein 6.82 6.8 7.1 6.67

Eout 6.27 5.98 5.26 6.27

0.75 0.85 Ein 6.92 6.96 6.92 6.95

Eout 5.67 5.8 5.91 6.27

(a) NH
0 Input (b) NH

0 Output

(c) NH
3 Input (d) NH

3 Output

Fig. 4. Input and output histograms of NH
0 and NH

3 in the 4-
4-2 trained classifier network with Sigmoid activations for the
two-class experiment with correlation coefficients of ρ0 = 0
and ρ1 = 0.99.

It is observed from Table III that the nonlinear and invertible
mapping of the Sigmoid function results in lossless entropy
compression. Figs. 4 and 5 clearly show the impact of acti-
vation functions on the pdf shapes at the node outputs. The
bimodal nature of the node output pdfs might be highly related
to accuracy of the classifier. This point requires further study.

We define the metrics called the node compression ratio
(NCR),

ηEi = Ei
in/E

i
out (8)

for node i, and the layer compression ratio (LCR)

(a) NO
0 Input (b) NO

0 Output

(c) NO
1 Input (d) NO

1 Output

Fig. 5. Input and output histograms of NO
0 and NO

1 in the 4-
4-2 trained classifier network with Sigmoid activations for the
two-class experiment with correlation coefficients of ρ0 = 0
and ρ1 = 0.99.

ηE =
1

N

N−1∑
i=0

ηEi
(9)

for the given hidden (ηHE ) or output (ηOE ) layer. We repeated
the same experiment for 16-16-2 and 64-64-2 classifier net-
works for various ρ0−ρ1 pairs with Sigmoid and Tanh activa-
tions. The layer compression ratios of the hidden and output
layers along with the accuracy measurements are tabulated in
Tables IV and V. It is seen from the tables that the output
layer compression ratio ηOE gets larger as the number of input
and hidden nodes (N,K) of the network increases. It is also
observed that ηOE and accuracy are correlated. In contrast, the
hidden layer compression ratio ηHE and accuracy are inversely
correlated. The results show that the accuracy is related to
the level of class correlations as well as their differences as
explained below.

B. Accuracy of Simple Classifier Network

We calculate the accuracy of the 4-4-2 neural network
depicted in Fig. 2b for a two-class AR(1) data classification
problem with Sigmoid activation functions in the hidden
nodes. Note that we also used Sigmoid in the output nodes
for all test scenarios presented in the paper. The classes are
defined by two different correlation coefficients ρ1 and ρ2 of
AR(1) source model. We used the same ρ1 and ρ2 to generate
the training and test data sets of an experiment. Each class has
10,000 training and 2,000 test data vectors. Each data vector
is N -dimensional.

The accuracy results of the 4-4-2, 16-16-2 and 64-64-2
topologies with Sigmoid activation function for the training
and test data sets are tabulated in Table VI.



Table IV: Compression ratios of Sigmoid function in the
hidden and output layers (ηHE , ηOE ) and test accuracies for
AR(1) data sets of various ρ1−ρ2 pairs in the 4-4-2, 16-16-2,
and 64-64-2 networks. N and K are the number of nodes in
the input and hidden layers, respectively.

(a) The results of the 4-4-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 4 4 1.07 1.71 97.55

0.3 0.99 4 4 1.05 1.47 96.75

0.6 0.99 4 4 1.06 1.28 95

0.9 0.99 4 4 1.13 0.96 84.22

0.85 0.95 4 4 1.18 0.88 69.78

0.75 0.85 4 4 1.17 0.92 60.38

0.65 0.75 4 4 1.26 0.96 57.38

(b) The results of the 16-16-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 16 16 1.05 3.25 99.5

0.3 0.99 16 16 1.07 3.35 99.88

0.6 0.99 16 16 1.12 3.32 99.85

0.9 0.99 16 16 1.38 2.62 98.65

0.85 0.95 16 16 1.63 1.06 86.42

0.75 0.85 16 16 1.71 0.88 68.4

0.65 0.75 16 16 1.66 0.89 63.3

(c) The results of the 64-64-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 64 64 1.25 4.13 99.9

0.3 0.99 64 64 1.23 4.24 99.98

0.6 0.99 64 64 1.29 3.97 99.9

0.9 0.99 64 64 1.26 3.56 99.7

0.85 0.95 64 64 1.57 2.65 92.95

0.75 0.85 64 64 2.08 1.79 71.68

0.65 0.75 64 64 2.27 1.55 57.22

We observe from Tables VIa, VIb and VIc that accuracies
increase as the difference ∆ρ = ρ1 − ρ0 increases. We also
observe that the accuracies decrease as ρ0 and ρ1 values get
smaller even when ∆ρ is constant. This is due to the smaller
signal to noise ratio of AR(1) source model, SNR = 1/(1−
ρ)2 for smaller ρ values [4]. It is seen that higher dimension
improves accuracy when both data classes are in the higher
SNR range for the N values used in this paper. The impact
of ∆ρ and SNR of the two classes on classifier accuracy
deserves further analytical study. We had observations with
similar trends for the test scenarios where Sigmoid activations
are replaced by Tanh or ReLU functions in the hidden layers
of the networks.

V. REMARKS AND CONCLUSIONS

The following remarks are made based on the accuracy
results and our observations for AR(1) signal source based
experiments with two classes presented above.

a. The nonlinear activation function of a node is a one-to-
one invertible mapping and reshapes the statistics of the input

Table V: Compression ratio of Tanh function in the hidden
layer (ηHE ) and compression ratio of Sigmoid function in the
output layer (ηOE ) and test accuracies for AR(1) data sets
of various ρ1 − ρ2 pairs in the 4-4-2, 16-16-2, and 64-64-
2 networks. N and K are the number of nodes in the input
and hidden layers, respectively.

(a) The results of the 4-4-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 4 4 1.32 1.6 97.52

0.3 0.99 4 4 1.42 2.24 97.65

0.6 0.99 4 4 1.44 1.19 94.68

0.9 0.99 4 4 1.52 0.95 84.12

0.85 0.95 4 4 1.57 0.9 69.3

0.75 0.85 4 4 1.5 0.94 61.9

0.65 0.75 4 4 1.28 0.98 57.3

(b) The results of the 16-16-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 16 16 1.36 4.34 99.88

0.3 0.99 16 16 1.51 4 99.98

0.6 0.99 16 16 1.47 3.71 99.9

0.9 0.99 16 16 4.38 2.37 96.12

0.85 0.95 16 16 2.68 1.11 85.6

0.75 0.85 16 16 2.43 0.88 65.97

0.65 0.75 16 16 2.54 0.91 59.4

(c) The results of the 64-64-2 network.

ρ0 ρ1 N K ηHE ηOE Test Acc

0 0.99 64 64 1.98 3.87 99.62

0.3 0.99 64 64 1.91 3.7 99.78

0.6 0.99 64 64 1.88 4.15 99.78

0.9 0.99 64 64 2.75 3.68 99.1

0.85 0.95 64 64 2.31 2.35 90.5

0.75 0.85 64 64 3.27 1.51 65.6

0.65 0.75 64 64 3.35 1.42 54.18

signal with different pdf, correlation and entropy properties at
the output. It is a lossless entropy compression method. We
introduced the node compression ratio (NCR) as the metric to
quantify the information processing characteristics of hidden
(ηHEi

) and the output layer nodes (ηOEi
) for the given scenario.

Similarly, we defined the layer compression ratio (LCR) as
the average ηE = 1

N

∑N−1
i=0 ηEi

for the given hidden Hk or
output Ol layer. It is observed from Tables IV and V that the
accuracy and the layer compression ratio of the output layer
have correlation. In contrast, the layer compression ratio of the
hidden layer has inverse correlation with classifier accuracy.
We found this relationship quite interesting although it needs
further study since it is at the core of the network optimization.

We observed that the impact of each node is different in
the overall network performance. It is noted that ηHEi

might
become quite large when the input histogram and the activation
function pair yields significantly reduced output energy for
some nodes. Hence, a proper threshold to ignore such extreme
ηHEi

values in the calculation of ηHE might be needed. The



Table VI: Accuracies of the 4-4-2, 16-16-2 and 64-64-2
classifier networks for the training and test data sets of various
ρ0−ρ1 pairs with Sigmoid function. N and K are the number
of nodes in the input and hidden layers, respectively.

(a) The accuracies of the 4-4-2 network for various
ρ0 − ρ1 pairs.

ρ0 ρ1 N K Train Acc Test Acc

0.1 0.99 4 4 97.32 97.68

0.3 0.99 4 4 96.8 96.75

0.5 0.99 4 4 95.9 95.8

0.7 0.99 4 4 96.4 96.35

0.9 0.99 4 4 84.52 84.22

0.85 0.95 4 4 69.18 69.78

0.65 0.75 4 4 56.54 57.38

0.45 0.55 4 4 54.31 55.75

0.25 0.35 4 4 52.81 54.1

0.05 0.15 4 4 52.21 51.5

(b) The accuracies of the 16-16-2 network for various
ρ0 − ρ1 pairs.

ρ0 ρ1 N K Train Acc Test Acc

0.1 0.99 16 16 99.98 99.95

0.3 0.99 16 16 100 99.88

0.5 0.99 16 16 100 99.9

0.7 0.99 16 16 99.99 99.85

0.9 0.99 16 16 99.24 98.65

0.85 0.95 16 16 88.96 86.42

0.65 0.75 16 16 67.15 63.3

0.45 0.55 16 16 61.74 57.12

0.25 0.35 16 16 57.99 54.2

0.05 0.15 16 16 57.94 53.08

(c) The accuracies of the 64-64-2 network for various
ρ0 − ρ1 pairs.

ρ0 ρ1 N K Train Acc Test Acc

0.1 0.99 64 64 100 100

0.3 0.99 64 64 100 99.98

0.5 0.99 64 64 100 99.82

0.7 0.99 64 64 100 99.88

0.9 0.99 64 64 99.96 99.7

0.85 0.95 64 64 99.16 92.95

0.65 0.75 64 64 89.62 57.22

0.45 0.55 64 64 87.42 53.78

0.25 0.35 64 64 87.15 50.55

0.05 0.15 64 64 87.48 49.62

impacts of the number of hidden layers (network depth) and
nodes (layer dimensions) on the output node characteristics
and accuracy of the network are currently being studied by
the authors.

b. The accuracy of the classifier is related to the SNR of
each class data as well as the difference of their correlation
coefficients ∆ρ = ρ1 − ρ0. It suggests that we may utilize
more sophisticated correlation model than the exponential
correlation function of AR(1) source for better representation

of real world signals like images.
c. The performance is related to the dimension N and

the number of hidden layers. Therefore, the topology of the
network has strong impact on the optimization and accuracy
[1], [7]. We were not able to include the multiple hidden layer
network architecture examples and our observations in this
paper due to the availability of limited space.

One needs to study the available data to model its statistical
properties prior to designing the network for the given task.
The statistical signal models are good tools to methodically
assess and improve network performance. The theoretical
relationships between classifier accuracy, SNR and ∆ρ using
various network architectures and activation types for various
data types are of great interest and actively pursued by many
researchers in the field.
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