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A Generalized Parametric PR-QMF Design 
Technique Based on Bernstein Polynomial 

Approximation 
Hakan Caglar and Ali N .  Akansu, Member, IEEE 

Abstract-A generalized parametric PR-QMF design tech- 
nique based on Bernstein polynomial approximation in the 
magnitude square domain is developed in this paper. The pa- 
rametric nature of this solution provides useful insights to the 
PR-QMF problem. Several well-known orthonormal wavelet 
filters, PR-QMF's, are shown to be the special cases of the pro- 
posed technique. Energy compaction performance of a few 
popular signal decomposition techniques are presented for 
AR(1) signal sources. It is observed that the hierarchical QMF 
filter banks considered here outperform the block transforms 
as expected. 

I. INTRODUCTION 
UBBAND signal decomposition techniques have S emerged recently as an alternative to the well-known 

block transforms 111-[6]. Since the number of bands, M, 
is equal to the duration, L,  of transform basis functions in 
block transforms, there is not much flexibility to obtain a 
good frequency split. 

Subband filter banks assume L > M ,  therefore a good 
frequency split is achievable. Obviously, the price paid 
for this better frequency split is the increase of computa- 
tional complexity and longer duration in time. Whenever 
L = 2M, the special transform lapped orthogonal trans- 
form (LOT) is obtained [7], [8]. In general, there is no 
constraint on L except the practical considerations. 

Perfect reconstruction quadrature mirror filters (PR- 
QMF) have been proposed as the solution to the two-band 
frequency split 191-[ll] .  These filters, employing a hier- 
archical tree structure, provide a basis for a multiresolu- 
tion signal representation. Recently, the wavelet trans- 
forms have been proposed as a new approach for 
multiresolution signal decomposition [ 121-1 151. It has 
also been shown that the wavelet and subband signal rep- 
resentation techniques are very closely interrelated [ 131, 
[161. 
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We introduce in this paper a generalized, parametric 
PR-QMF design technique based on Bernstein polyno- 
mial approximation [ 171. This approach tries to approxi- 
mate given set of sample points of a desired magnitude 
square function by using Bemstein polynomials. This ap- 
proximation is mapped onto Z domain as R ( z ) .  The cor- 
responding filter function H ( z )  is obtained from R(z )  via 
factorization. Section I1 reviews the PR-QMF banks. The 
maximally flat magnitude square function is given in Sec- 
tion I11 and related to the well-known orthonormal wave- 
let filters [13] ,  1161. Section IV introduces the proposed 
generalized, parametric PR-QMF design technique based 
on the Bemstein polynomial approximation. The energy 
compaction performance of several different signal de- 
composition techniques for AR( l )  signal sources are pre- 
sented in Section V. The following section discusses the 
new directions for future research and concludes the pa- 
per. 

11. Two CHANNEL PR-QMF BANK 
The perfect reconstruction requirements of an ortho- 

normal two-band QMF reduces to [ l o ] ,  [ 161 

Q ( z )  = H(z)H(z- ' )  + H ( - z ) H ( - z - ' )  = 2 
= R ( z )  + R ( - z )  ( 1 )  

where H ( z )  is a low-pass filter of length 2N.  

is represented by a finite series of the form 
Note that R ( z )  is a spectral density function and hence 

R ( z )  = p(2N - 1)z2N- '  + p(2N - 2)Z2N-2 + 
+ p(0 ) z"  + . . . + p(2N - 1)Z-(2N-I) . (2) 

Then 
R ( - z )  = - p ( 2 N  - 1)z 2 N -  I + p ( 2 N  - 2)z"-2 

- * + p(0)zO - p ( 1 ) z - I  
+ . . . - p ( 2 N  - l )z-(2f i -u .  ( 3 )  

Therefore Q ( z )  consists only of even powers of z .  To force 
Q ( z )  = 2 it suffices to make all even indexed coefficients 
in R ( z )  equal to zero, except for n = 0. 

However, the p(n)  coefficients in R ( z )  are simply the 
samples of the autocorrelation sequence of h (n)  

2 N -  I 

p ( n )  = c h(k)h(k  + n)  = h(n)  * h( -n )  = p ( - n )  
k = 0 

(4) 
where * indicates a convolution operation. 
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Now, we need to set p ( n )  = 0 for n even, and n # 0. If one defines a mapping 
Therefore, 

cosw = 1 - 2x 

IH(eiW)J2 can be obtained as a polynomial of degree 2N 
- 1  

2 N -  I 

(') 

If x ( n )  is a real sequence and input to a linear, shift- 
invariant system, the output of the system is expressed as 

(6) 
where h(n )  is the unit sample response of that system. 
The power spectral density function of the output can be 
written as 

P Y Y ( 4  = 1H(ei")12P,(4 (7) 

p ( 2 n )  = c h(k)h(k  + 2n) = 6,. 
k = O  

2 N -  1 

(14) P 2 N - l . k ( 4  = aux" 
u = o  y(n> = x ( n )  * h(n)  

with an approximation interval 0 5 x 5 1 and the prop- 
erties: 

a) PZN - I ,  ( x )  has zeros of order k at x = 1, 
b) P 2 N -  I . k ( ~ )  - 1 has zeros of order 2N - k at x = 

P Z N -  ,,&x) in (14) with the conditions a) and b) is a 
special case of Hermite interpolation problem and it can 
be solved by using the Newton interpolation formula [ 171. 

= - IH(e'")12P,(W) dw. (8) But there exists an explicit solution of this problem as 
given by the expression [19] 

0. and the variance of the output signal is obtained as 

a; = RY,(O) 

1 "  
2 x  -" 

It is seen from (8) that the output energy of the system 
is a function of input spectral density function and the 
magnitude square function. This relation is utilized to cal- 
culate the band variances which are needed for the energy 
compaction studies given in Section V .  

1 d k - '  252xu 
p 2 N - 1 , k ( x )  = - ' I k  ~ ( I  - k)!  ~ kk- '  " = o  

111. MAXIMALLY FLAT MAGNITUDE SQUARE 
RESPONSE The relation between the autocorrelation sequence of 

Let us assume that h (n) is a length 2N low-pass filter h (n)  and the polynomial coefficients is given by 

r2N-  1/21 
with the system function 

2 N -  1 

H(Z) = c h(n)z-" (9) . 
n = O  

and its magnitude square function with normalized sam- 
pling period and 

IH(ejw)12 = H(z)H(z-') 
2 N -  1 

= p ( 0 )  + 2 c p ( n )  cos (nu).  (10) 2 N -  I 

. c 2-' ( ) n =  1 

2k + 1 Let the sequence p (n)  satisfy the following conditions in r = 2 k + l  

frequency domain [ 191 : 
1 = 1 , 2 ; * * , 2 N - l  (17) 

v = 1, 2 ,  , 2(2N - 1 - k)  + 1 (12 )  

d" - IH(e'")l;=T = 0 p = 0, 1, * , 2k - 1 (13) 
dw" 

where k is an integer to be chosen arbitrarily within the 
limits 1 I k 5 2N - 1. The parameter k defines the 
degrees of flatness in the magnitude square function at 
w = 0 and at w = +_T.  

where rx1 means the integer part of x .  
It is clear that this relation provides a simple filter de- 

sign tool based on the desired degrees of flatness of mag- 
nitude square function at w = 0 and w = k x .  

It has been stated that if one desires to design a two- 
band quadrature mirror filter (QMF) bank, the perfect re- 
construction of the signal after the synthesis stage re- 
quires that 

H(z)H(zP) + H ( - z ) H ( - z - ' )  = 2 .  

By inspection, the unique maximally flat magnitude 
square function of PR-QMF has an equal number of zeros 
at w = 0 and at w = + x .  This implies the symmetry of 
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IH(eiw)(2 around w = 7 r / 2  and expressed as 

(18) 
Therefore, from (15), P 2 N  - I ,  k ( x )  for this special case be- 
comes [19], [13] 

Using the inverse mappings x = 1 / 2  (1 - cos w )  and cos 
w = 1 /2 ( z  + z - I )  in (19) the maximally flat magnitude 
square function can be expressed as [ 2 0 ] ,  [ 161 

. (1 + Z - l ) 2 ( N - l - 0  ( -  1)'( 1 - 2 - y r .  

( 2 0 )  

It is interesting that the right-hand side of this equation 
can also be expressed as the linear combination of even 
indexed, even symmetrical, N binomial sequences of 
length (4N - 1 ) .  Therefore, the time domain version of 
( 2 0 )  is written easily as 

n = 0 , 1 ; . *  , 4 N - 2  (21) 
where [ 161 

( 2 2 )  r, k = 0, 1, * 1 - , 4 N  - 2 .  

Letf(x) be defined on the interval [0, 11. The Nth ( N  
L 1 )  order Bemstein polynomial approximation tof(x) is 
expressed as [17] 

Equation ( 2 4 )  indicates that the interval [0, 13 is di- 
vided into N equal subintervals. Only the samples off@) 
at those (N  + 1) points are used to obtain the approxi- 
mation BN( f; x ) .  Iff(x) is differentiable, the approxima- 
tion is also valid for its differentials. This implies that 

BN ( f ;  x )  -b f(x) 

Bh(f; 4 -+ f ' (4 
where prime means the derivative. This feature holds true 
also for higher derivatives. Therefore the Bemstein poly- 
nomials provide simultaneous approximations of a func- 
tion and its derivatives [ 171. 

It is interesting that a monotonic and convex function 
is approximated by a monotonic and convex approximant 
if Bernstein polynomials are used. This tells us that the 
approximation follows the behavior of the approximated 
function to a remarkable degree. The price paid for this 
nice feature is that these polynomials converge slowly to 
the function to be approximated. 

The proposed two-band PR-QMF design approach is 
introduced now. This approach provides the tools to de- 
sign PR-QMF's based on the desired magnitude square 
functions in continuous variable x .  The samples of the 
desired function are approximated by the Bemstein poly- 
nomials. 

Let us consider now a desired low pass function f ( x ) ,  
0 I x I 1 ,  which satisfies the PR-QMF magnitude square 
conditions in x 

(25)  f ( x )  + f(1 - x )  = 1 ,  f (x)  2 0. 

As in the ideal low-pass case if we choose 

1 ,  1 I X  I 1 / 2  

0, 1 / 2  < x 5 1 
(26)  f ( x )  = 

IV. A GENERALIZED PR-QMF DESIGN TECHNIQUE 
its equidistant sample values at 2N sampling points are USING BERNSTEIN POLYNOMIAL APPROXIMATION 
stated as 

Two-band orthonormal PR-QMF requires that the mag- 
nitude square condition, ( l ) ,  1 0 1 i s N - 1  

. (27)  
1H(e jw))2  + IH(ej("+"))I2 = 2 

be satisfied where ( H ( e j " ) I 2  is the magnitude square func- 
tion of the low-pass filter to be designed with the length 
2 N .  Since p (2n)  = 6,  holds for an orthonormal or para- 
unitary PR-QMF, (10) is easily modified for this case as 

f (&) = io N I  i s  2 N -  1 

For interpolating these samples of the desired function 
f(4 with the Bernstein Polynomials, substitute ( 2 7 )  into 
( 2 4 )  and the corresponding interpolation function is found 
as 

with the nonnegativity constraint 

( H ( e j " ) ( 2  L 0, VU. 

N + i - 1  
= (1 - X ) N  ( ) x;. ( 2 8 )  

/ = a  
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The properties of the Bernstein polynomials assure that 

I max f ~ [ ( 2 N -  l ) ]  I 

holds for the interpolation considered here [ 171. It is seen 
from (28) that the interpolation function BZN - I ( f ;  x )  is 
the maximally flat function with the symmetry around x 
= 1 /2 within the interval 0 I x I 1 .  This is the unique 
maximally flat magnitude square function of PR-QMF's 
in the variable x ,  as was shown in (20). 

If one maps x onto Q, 0 I Q I 03 as [18] 

Q2 
1 + Q2 

x = -  

then the corresponding rational function in Q is found as 

(1 + Q2)2N-I . B 2 N -  I ( f ;  = 

If we now define q = jQ and use the conformal mapping 

z = -  1 + q  
1 - q  

then the magnitude square function mapped into the z do- 
main is obtained as 

. (1 + z - l ) 2 ( N - l  - 0  ( 1  - z-1)2i 

= H(z )H(z - I ) .  (30) 

The magnitude square function R ( z )  is factorized to ob- 
tain the PR-QMF low-pass filter H ( z ) .  This low-pass filter 
H ( z )  is identical to the binomial-QMF. It is shown in [16] 
that binomial-QMF is also identical to the compactly sup- 
ported orthonormal wavelet filters proposed by Daube- 
chies [13]. Therefore, here we connect the works of 
Herrmann [ 191 and Daubechies [ 131 as the special case of 
the proposed PR-QMF design techniqde. 

Remark I: R ( z )  corresponds to a low-pass function 
with R(e'"I2)  = R ( e j 0 ) / 2 .  It is expressed as a combi- 
nation of odd harmonics of the cosine functions. These 
coefficients of the representation also correspond to the 
Fourier coefficients of the ideal low-pass function. 

The PR-QMF filters obtained from an orthonormal 
wavelet approach have the regularity or differentiability 
constraint of wavelet functions in addition to the PR-QMF 
constraints. Daubechies [13] has proposed to use the ze- 
ros of function H ( z )  at w = a as a tool to have some 
regularity. The filters with maximally flat magnitude 
square function have maximum possible zeros at w = a 
but they are not the most regular solutions [ 2  1 1 .  

Now, we extend the proposed design technique to ob- 
tain a broad family of smooth PR-QMF's defined by a set 
of parameters. If one defines a set of nonincreasing, po- 
sitive function samples which will be the guide points of 
the approximation as 

1 i = O  

1 - C Y ,  

ai N < i 1 2 ( N - l )  

1 5  i I N -  1 
(31) 

0 i = 2 N -  1 

where CY; = ( Y 2 N -  - i  and 0 I CY; < 0.5 with 1 I i I N 
- 1 then the approximation to f ( x )  with those constraints 
of ( 2 5 )  using the Bernstein polynomials is expressed as 

(32) 

After applying similar mappings, the corresponding mag- 
nitude square function in z domain, R ( z ) ,  is obtained as 

2N - 1 2 ( N -  I )  

i = N  

(33) 

Similarly, the low-pass PR-QMF function H ( z )  is ob- 
tained from the magnitude square function R(z )  via fac- 
torization. 

Example: We design a 6-tap smooth PR-QMF with the 
desired sample values in magnitude square domain 

O I i I l  

( 0  4 1 i 1 5  

where 0 I CY < 0.5. This set of desired samples in fre- 
quency corresponds to a low-pass filter function h ( n ) .  Its 
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high-pass mirror filter has two vanishing moments for a 
> 0, and three vanishing moments for a = 0 [ 131, [ 161. 
The magnitude square function for this example is ob- 
tained similarly as 

From there, one can obtain the 6-tap low-pass PR-QMF 
H ( z )  via factorization. Fig. 1 displays f( i /2N - l ) ,  
B2,+ I ( f ;  x) and R ( z )  functions for the 6-tap PR-QMF 
case with cy = 0.25. 

Remark 2: The vanishing moments of PR-QMF high- 
pass filter ( -  1)" + ' h  (1 - n )  with length 2N is defined in 
the time domain as [21] 

n ' ( - l ) "+ 'h( l  - n )  = 0 i = 0, 1, . . , N. 
n 

'This is equivalent to the flatness requirement of the QMF 
filter response in frequency 

It is seen that the maximally flat magnitude square filters, 
binomial-QMF, with v = N, has the maximum number of 
vanishing moments on their high-pass filter. It is clear that 
all possible moments are used only by the high-pass filter 
and the low-pass filter does not have any vanishing mo- 
ments. cy, # 0 for any i decreases the number of vanishing 
moments of the high-pass filter by one in the proposed 
design technique. 

The magnitude functions of several known smooth or 
regular 6-tap QMF's and their a values, as defined in the 
earlier Example, are displayed in Fig. 2 .  

Remark 3: It is found that a = 0.2708672 corresponds 
to the 6-tap Coiflet filter solution and cy = 0.0348642 
gives the 6-tap PR-QMF of the most regular orthonormal 
wavelet solution [21]. a = 0 gives the binomial QMF- 
wavelet transform with three vanishing moments [ 131, 
[16]. This parametric solution of the PR-QMF problem 
provides a useful tool for the design of orthonormal 
wavelet bases. It connects the frequency behavior of the 
PR-QMF with the properties of the corresponding wave- 
let transform basis. Since this subject is beyond the focus 
of the paper, it will be reported in another paper. 

V. ENERGY COMPACTION AND PERFORMANCE RESULTS 
All orthonormal, variance preserving, signal decom- 

position techniques can be evaluated by employing the 
energy compaction criterion. For the block transforms, 
gain of transform coding over PCM, GTC, and for the sub- 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
X 

l . l o j  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
"CY (ma=) 

Fig. 1 .  f ( i / Z N  - I ) ,  B , ,  , ( f ;  x). and R ( z )  functions for the 6-tap PR- 
Q M F  case with a = 0.25. 

band decomposition techniques, gain of subband coding 
over PCM, GsBc are unified as [22] 

1 - 7 1  
M 

p I =  I ffq 
Here 0; is the variance of the Ith transform coefficient or 
the I th  subband of the analysis stage. This equation holds 
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IH (eJW) I 
1.20 

0.40 - 

0.00 1 .OG 2.00 3.0C 

2319 

w 

Fig. 2. Magnitude functions of three different 6-tap PR-QMF’s; maxflat 
(CY = 0), coiflet of [21] (CY = 0.2708672), and for CY = 0.480. 

TABLE I 
ENERGY COMPACTION OF DCT, KLT, 6 A N D  %TAP BINOMIAL-QMF 1161, [13], &TAP SMITH-BARNWELL CQF [9], A N D  IDEAL 

FILTER BANK AS A FUNCTION OF M FOR AR (0.95) 

8-Tap Smith- 
M DCT KLT 6-Tap B-QMF 8-Tap B-QMF Bamwell Ideal 

2 3.20 3.20 3.76 3.81 
4 5.71 5.73 6.77 6.90 
8 7.63 7.66 8.52 8.74 

16 8.82 8.86 9.25 9.50 

OD 10.2s 10.25 10.25 10.25 
. . .  . . .  . . .  . . .  . . .  

3.83 3.94 
6.97 7.23 
8.84 9.16 
9.62 9.95 

10.25 10.25 
. . .  . . .  

for regular binary tree structures of subband technique. 
The derivation of G assumes the same pdf type for all 
coefficients or bands as well as the input. This criterion is 
derived by using the rate-distortion theory. It is already 
widely employed in the signal processing and coding fields 
as a common performance tool for different signal decom- 
position techniques 1231. 

The unidimensional first-order autoregressive signal 
model AR (1) is used for energy compaction comparisons 
of several decomposition techniques. This source model 
is defined as 

s(n) = rs(n - 1) + E(n) (37) 

where r is the correlation coefficient and ( ( n )  is a zero- 
mean white Gaussian noise with known variance. This 
model is a crude approximation to the real world signals 
like speech and images, r = 0.85 for speech, r = 0.95 
for image, and commonly used for performance compar- 
isons. Energy compactions G ,  of several decomposition 
techniques such as DCT, KLT, binomial-QMF [16], and 
Smith-Barnwell CQF 191 based hierarchical subband 

structures and ideal subband filter banks for different val- 
ues of M and r = 0.95 are given in Table I. It is seen 
from this table that the ideal filter bank reaches the per- 
formance upper bound, when M .+ m, faster than the op- 
timum block transform KLT. It is also observed that the 
performance of 8-tap binomial-QMF and Smith-Bamwell 
CQF are very comparable for the cases considered here. 

Fig. 3 displays the 2-band energy compaction perfor- 
mance of 4-tap and 6-tap 2-band PR-QMF banks as a 
function of a for the input sources AR (0.75), AR (0.85), 
and AR (0.95). It is seen that a = 0, the binomial QMF, 
compacts better than all the other smooth QMF solutions. 
It is expected for this source model since a = 0 corre- 
sponds to the maximally flat magnitude square function 
around w = 0. Fig. 4 displays the variations of the filter 
coefficients of all the possible smooth PR-QMF’s as a 
function of CY for 2N = 4. Haar basis corresponds to CY = 
1/3  in this figure. The phase responses of the filters in 
this a range are linear-like. Similarly, Fig. 5 gives the 
coefficients of all possible 6-tap smooth PR-QMF’s as a 
function of parameter a.  Here the high-pass filters have 
two vanishing moments except for CY = 0. 
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4.00 

3.00 

2.00 

1 .oo 

0.00 

G 
4 

1 P = 0.85 

I 

p = 0.75 

0 50 3 io 0.40 
(1 

Fig .  3 .  Two-band energy compaction of 4 and 6-tap PR-QMF's as a function o f  CY for AR (0.75), A R  (0 .85) ,  and AR (0.95) 
sources. 

I 1.00 4 

~. . 

0.50 

-0.50 .~ 

0.00 0.20 0.40 
Fig. 5 .  All the possible smooth 6-tap PR-QMF coefficients as a function o f  C Y .  
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VI. DISCUSSION AND CONCLUSIONS 
A parametric PR-QMF design technique based on the 

Bemstein polynomial approximation is developed in this 
paper. Any orthonormal PR-QMF can be designed with 
this technique. The filter examples we considered are the 
special cases with smooth, ripple-free frequency re- 
sponses. This design approach can also be used for rip- 
pled QMF design problems. All PR-QMF filter solutions 
of a given length can be obtained as a function of the 
design parameters in this approach. 

Since the wavelet functions are evaluated with their 
regularity, this approach provides a tool to design ortho- 
normal wavelet bases with the desired degree of regularity 
[13], [21]. For this purpose, the parameters of the design 
technique are linked to the regularity of the corresponding 
wavelet function. This provides the pattem of the rela- 
tions between the frequency behavior of PR-QMF’s and 
the degree of regularity or differentiability of the corre- 
sponding orthonormal wavelet functions. 

From the signal coding point of view, the energy com- 
paction is an important performance measure. It is shown 
that the max-flat magnitude square binomial QMF- 
wavelet filters [13], [16] and Smith-Bamwell CQF [9] 
have comparable energy compaction and both outperform 
the most regular wavelet filters [21] for the cases consid- 
ered here. 
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