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Abstract-It has been shown that cyclostationarity in the 
received signal allows the receiver blindly identify the chan- 
nel impulse response using only second-order statistics. In 
orthogonal frequency-division multiplexing (OFDM) sys- 
tems, cyclostationarity is embedded at the transmitter due 
to cyclic prefix. In this.paper, a subspace approach based 
on second-order statistics is proposed for blind channel 
identification in OFDM systems. We derive a sufficient 
condition that guarantees all the channels to be identifi- 
able no matter what their zero locations are. Computer 
simulations demonstrate the superior performance of the 
proposed algorithm over methods reported earlier in the 
literature. 

I. INTRODUCTION 
Orthogonal frequency-division multiplexing (OFDM) 

has been proposed for different high-bit-rate data trans- 
mission systems including digital radio/TV broadcast- 
ing systems [l] [8], High-bit-rate Digital Subscriber Loop 
(HDSL) and Asymmetric Digital Subscriber Loop (ADSL) 
[2]. In OFDM, the entire channel spectrum is divided into 
many narrow band subchannels. Data are transmitted 
parallelly in subchannels. If the number of subchannels is 
large enough, the symbol duration is much larger than the 
length of the channel impulse response. Therefore, the in- 
tersymbol interference (1%) can be greatly reduced. In a 
practical OFDM system, a cyclic prefix is inserted before 
each transmitted data block. If the length of the cyclic 
prefix is longer than the length of the channel impulse re- 
sponse, IS1 is completely eliminated. However, the length 
of the channel impulse response is typically not under the 
control of the designer. It may be longer than the length 
of the cyclic prefix. To alleviate this problem, a shortened 
impulse response filter (SIRF) [6] is placed in the receiver 
to shorten the impulse response of the effective channel. 
Channel estimation is required for obtaining the optimal 
SIRF [6]. 

Traditionally, channel estimation is achieved by sending 
training sequences through the channel. However, when 
the channel is varying, even slowly, the training sequence 
needs to be sent periodically in order to update the chan- 
nel estimates. Hence, the transmission efficiency is re- 
duced. The increasing demand for high-bit-rate digital 
mobile communications makes blind channel identification 
and equalization very attractive, since they do not require 
the transmission of a training sequence. Early methods 

for blind channel equalization exploit higher-order statis- 
tics(H0S) of the outputs that are sampled at symbol rate 
. These methods require many observations, and have rel- 
ative slow speed of convergence. More recently, Tong, Xu 
and Kailath [9] [lo] showed that the second-order statis- 
tics of the channel output contains sufficient information 
to  estimate most communication channels if it is fraction- 
ally sampled. When the sampling rate is higher than the 
baud rate, the resulting output sequence is wide sense cy- 
clostationary. The output second-order statistics contains 
the phase information of the channel due to the cyclosta- 
tionarity. Most nonminmum-phase channels can be iden- 
tified from the second-order statistics of the cyclostation- 
ary output sequence. Since this breakthrough by Tong, 
Xu and Kailath [9], many elegant solutions such as sub- 
space method in [7] and deterministic approach in [13] 
have been proposed for blind channel identification. 

In [4], Giannakis uses a precoder to induce cyclostation- 
arity at the transmitter that guarantees blind identifiabil- 
ity of channels with minimal degradation of information 
rate. The OFDM with cyclic prefix is a special case of such 
a precoding scheme [3]. Heath and Giannakis [5] proposed 
a subspace method using cyclic correlation of the channel 
output to blindly estimate the channel in OFDM systems. 
But the estimated channel error in that study is large. 

In this paper, a subspace approach based on second- 
order statistics is proposed to blindly identify the channel 
in OFDM systems. The channel identifiability is due to 
the cyclostationarity inherent in the OFDM systems with 
cyclic prefix. We derive a sufficient condition that guar- 
antees all the channels to be identifiable no matter what 
their zero locations are. The difference between the pro- 
posed algorithm in this paper and the method in [4] is 
as follows. The approach in [4] uses the cyclic correla- 
tion that is defined as the Fourier series expansion of the 
time-varying correlation of the received data samples. In 
this paper, we use the time-invariant autocorrlation of the 
vector that consists of N blocks of the received data. Com- 
puter simulations show that the estimated channel error 
is much smaller than the one reported in [5]. 

Section 2 is an 
overview of OFDM systems. The problem of blind chan- 
nel identification and the proposed scheme using subspace 

The paper is organized as follows. 
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method is presented in section 3. In section 4, we present 
performance simulations for the proposed algorithms. 

11. OFDM SYSTEMS 
In OFDM systems, the serial data are converted into 

M parallel streams. Each parallel data stream modulakes 
a different carrier. The frequency separation between the 
adjacent carriers is 1/T, where T is the symbol duration 
for the parallel data that is M times of the symbol dura- 
tion for the serial data. Let us consider an OFDM signal 
in the interval [nT, (n + 1)T) as 

where H ( - )  is the frequency response of the channel. It 
is evident from (4) that the IS1 is completely cancelled 
and the effect of the channel at  the receiver is merely a 
complex gain and AWGN. 

In the next section, we develop an algorithm for blind 
channel estimation that does not require the channel du- 
ration to be shorter than that of the cyclic prefix. When 
the channel duration exceeds the cyclic prefix duration, 
impulse response shortening [6] can be applied to cancel 
ISI. 

111. BLIND CHANNEL IDENTIFICATION 
M-1 

We begin with a data model for a baseband discrete- 
time OFDM system. Let us denote vector a(n) = 
[ao(n), al(n), . . . , a ~ - l ( n ) ] ~  as the nth block of data and 
vector s(n) = [ s ~ - ~ ( n ) ,  SK-2(72), . . . , so(n)]* as a se- 
quence of the nth block of the IDFT output and em- 
bedded cyclic prefix, where K = M + P and P is the 
length of cyclic prefix. Let us define W = e j s ,  and 

s(t) = C am(n)ejwmt, 

where a m ( n )  are symbols from a Constellation Such as 16- 
QAM, Wm is the frequency of mth carrier that is m $ *  
The M samples that are sampled at t = nT + i+, i = 

m=O 

0,1,. . . , M - 1, are given as A 

m=O 

It is seen from (2) that the M samples are exactly inverse 
discrete Fourier transform (IDFT) of a block for M input 
symbols. 

Theoretically speaking, when the number of carrierti is 
large enough, symbol duration T is much larger than the 
duration of FIR channel; IS1 is negligible. However, for the 
high-bit-rate communications, it is impractical to choose 
very large M to make IS1 negligible. Therefore, a cyclic 
prefix of length P is added into each block of IDFT output 
at the transmitter. The length of the prefix is chosen to be 
longer than the length of the channel impulse response in 
order to avoid inter-block interference (IBI). That results 
with total cancellation of IS1 and interchannel interference 
(ICI). The transmitted sequence is expressed as 

. a r  ' p 
M-1 

s ( ~ ( M  + P) + i) = am(n)eJx($- (3) 
m=O 
i = O , l ,  ... , M + P - 1 ,  

wheres(n(M+P)+i),i = 0, ... ,P-1,isthecyclicprefix. 
The received signal ~ ( n )  is distorted by the frequency- 

selective channel and degraded by additive white Gam- 
sian noise (AWGN). It is assumed that the length L of 
the channel impulse response is known. Assuming th.at 
blocks are synchronized and carrier frequency offset is cor- 
rected [12], the receiver removes the first P symbols cor- 
responding to the cyclic prefix and performs an M-point 
DFT on the remaining samples of received signal to asb- 
tain yi(n),i = 0,. . . , M - 1. If the cyclic prefix duration 
is equal or more than the channel duration, i.e. P 2 L, it 
is shown that[l4] 

(4) 
27F 
M y&) = ai(n)H(-i)  + 2ri(n), 

A the matrix [W], = W(M-l-i)j,i = 0,1,. . . , K - 1,j = 
0,1,. . . , M - 1, then the nth transmitted data sequence 
in (3) can be written as 

s(n) = Wa(n). ( 5 )  

For a later use, we partition matrix W as W = 
wr WfIT, where size M x M matrix W1 can be 
obtained by flipping the IDFT matrix up down and size 
P x M matrix W2 consists of first P rows of matrix W1. 

Now, consider N blocks of data, a = [a(n)*,a(n - 
,a(n - N + I)*]* and s = [ ~ ( n ) ~ , s ( n  - 

l )T, .  . . ,s(n-N+l)*]*. Let W = IN @ W, where IN is 
an N x N identity matrix an9 @ is the Kronecker prod- 
uct. From ( 5 ) ,  we have s = Wa. Therefore, the received 
signal is expressed as 

r = Hs+ b = HWa+ b. (6) 

where r is an ( N K  - L)  x 1 vector constructed as follows. 
Let the nth block of received signal be denoted as r(n) = 
[TK-I(~),TK-~(~), . . . ,ro(n)lT, then r = [r(n)*,r(n - 
l)T,.  . . , r(n - N + 2)T ,  r(n - N +  1)(1 : K - L)T]T,  where 
r(n - N + 1)(1 : K - L )  is a Matlab notation standing for 
the first K - L elements of r(n - N + 1). b is a noise vector 
that is assumed to be zero mean white Gaussian noise with 
variance matrix C~INK-L and be mutually independent 
with the input symbol sequence. H is an ( N K -  L)  x NK 
matrix defined as 

r ho ... hL 0 ... ... 0 1  

1 0  ... ... 0 ho ... h L J  

We define A 2 HW. Thus, (7) becomes 

r = A a + b .  
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Since the matrix A should be full column rank for the 
channel to be identified, we give a sufficient condition for 
full rank requirement as follows. 

Theorem 1: If L 5 P N ,  then the matrix A = HW is 
full column rank. 

Proof: H is a ( K N  - L )  x K N  matrix and W is of 
size K N  x M N .  Hence, A is of size ( K N  - L )  x M N .  
If L 5 P N ,  then A has at least the same number of 
rows as columns, which is necessary for the matrix A to  
be full column rank. We define a unitary M N  x M N  
matrix W3 = IN @ W1, where W1 is a unitary matrix 
defined earlier. Then, matrix AW3(= HWW3) has the 
same rank as A. WW3 = where = IN @ J and 
J = [IM ETIT, E = [Ip OpxM-p]. The columns of are 
either ei or ei + e i+M where ei is the unit vector with a 
1 in the ithposition and 0’s elsewhere. Obviously, The 
columns of J are not in the null space of H as lonq; as 
ho # 0. Thus, we have dim(nuZZ(A)) = dim(nuZZ(HJ) = 
0. Then, “ ( A )  = M N  - dim(nuZZ(A)) = M N ,  i.e. 
matrix A is full column rank. 0 

Remark 1: It is the inserted prefix that makes matrix 
A a “tall” matrix and be possible to be full column rank. 
The full column rank condition can always be satisfied as 
long as N is chosen to be large enough. Unlike in the mul- 
tichannel case ofIlO] in which the transfer function for each 
subchannel can not have common zeros, any FIR channel 
here can make H full column rank no matter what its 
zero locations are. The condition here and the algorithm 
developed below is also applied to the case with repeated 
coding in [ll]. 

As in the methods presented in [7][9] for the mul- 
tichannel cases, the identification here is based on the 
( N K  - L )  x ( N K  - L )  autocorrelation matrix R, of the 
measurement, where R, = E{rrH). Using (8), R, is ex- 
pressed as 

R, = A R , A ~  + a2~. (9) 

If matrix A is full column rank and the autocorre- 
lation of input R, is also full rank, then range(A)= 
range(ARaAH). Let us define the noise subspace for 
R, to be the subspace generated by P N  - L eigenvec- 
tors corresponding to the smallest eigenvalue, and let 
G = [GI,. . . , GPN-L] be the matrix containing those 
eigenvectors. Then, G spans the null space of ARaAH 
and is orthogonal to its range space 

G ~ A  = o i = 1,. . . , P N  - L,  (10) 

Under the appropriate conditions detailed in the theorem 
below, the noise subspace determines the channel coeffi- 
cients h up to a multiplicative constant. 

Theorem 2: Assume that we have L < for even 
N and L < - 1 for odd N .  Let h’ be a vector 
that has the same dimension as h. Let H’ be a nonzero 
matrix constructed from h’ in the same way as matrix H 

A constructed from h. Define the matrix A’ = H’W. The 
range of matrix A’ is included in the range of A iff the 
corresponding vectors h’ and h are proportional. 

Proof: We define the matrices B AW3 and 
B’ e A’W3, where the matrix W3 is defined in the same 
way as in the proof of theorem 1. Matrix B has the same 
range as matrix A because W3 is unitary. Partition ma- 
trix B as 

B =  B2 h B3 . (11) [ 1 
The middle column is the (LYJ + 1)th column, where 
1.J stands for the largest integer less than 2. For an 
even N ,  B1 is a (q - L) x matrix and B5 is a 
(2 - L - 1) x (y - 1) matrix. For an odd N ,  B1 is a 
1- - LJ x LYJ matrix and B5 is a [v - L - 
11 x ([?I - 1) matrix, where 1.) stands for the smallest 
integer greater than 2. If we take the same column from 
matrix B‘ and since it is in the range of matrix B, we 
obtain 

KN 

B1 0 0 

[ i ]  = [ ;; ; E h ]  [ z] (12) 

where a1 and a2 are vectors and a is a scalar. Using the 
same procedure in the proof of Theorem 1, we can show 
that matrices B1 and B5 are full column rank as long as 
the number of rows is equal to  or greater than the number 
of columns. The conditions for both B1 and B to be full 
column rank are L < for even N and L < e - 1 
for odd N .  Then, both a1 and a2 are equal to  0 vectors. 
Therefore, h‘ is proportional to h, i.e. h‘ = ah. 0 

Remark 2: The condition given here for the channel 
to be identifiable is sufficient but not necessary. We can 
always choose an appropriate N to satisfy the condition. 
Since in practice only the estimate of Gk is available, we 
choose to solve (10) in the least square sense. Let us define 
a matrix G k  as 

Gk,O ... Gk,j 0 ... ... 0 
0 G ~ , o  ... Gk,j 0 ... 0 

G k = [  0 ... . .. 0 Gk,o . .. Gk,j 1 ,  
(13) 

where J = K N  - L - 1. Then, GTH = hT&. This leads 
to the following minimization problem 

PN-L 

L = arg min G E H I X W ~ H ~ G ~  
k=l 

PN-L 

- - arg min hH&WWH@h 

= arg min hHQh, 
k=l 
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Fig. 1. Average channel estimates f standard deviation for M=15, P=4, SNR=SOdB 

' 0  5 10 15 20 25 30 35 40 
SNR (dB) 

' 0  5 10 15 20 25 30 35 
SNR (de) 

Fig. 2. Channel error vensus SNR for M=15, P=4, 120M data 

where !4? A C,'=",-"&WW H. Minimization is sub- 
ject to  the constraint 11 h 11 = 1. Therefore, & is given by 
the eigenvector corresponding to the smallest eigenvalue 
of \E. 

IV. PERFORMANCE SIMULATIONS 

In this section, we use simulations to  examine the per- 
formance of the proposed algorithm. To measure the per- 
formance, we define the root-mean-square error (RMSE) 

as &Jh 11 hi - h 112 and the channel aver- 

age bias as I i$) - h(Z) 1, both aver- 
aged over D Monte Carlos to evaluate the channel error. 
We use the same multipath channel as in [5]. The chitn- 
ne1 impulse response is h(t)  = e- j2n(0 .15)~c( t  - ~ / 2 ,  p:i + 
0.8e-j2"(0%-,(t- 1.2T, p), where rc(t) is the raised cosine 
function with roll-off factor p = 0.35. h(n) is obtained by 
sampling h(t)  at t = 0, T,. . . ,4T. We used M = 16 and 
16 - QAM constellation which are the same as the ones 

L 

3 

in [5].  The data plotted are averaged over 400 indepen- 
dent runs, i.e. D=400. For comparison, the results in [5] ,  
which are denoted as Giannakis, are also displayed. In 
Fig. 4, with P = 4, we show the average channel estimate 
for S N R  = 20dB and 120 blocks of data. It is seen that 
the estimated channel error of the proposed algorithm is 
much smaller than that in [5].  The channel error versus 
SNR is displayed in Fig. 5. Fig. 6 demonstrates that the 
estimator is consistent. In Fig. 7, for S N R  = 20dB and 
120 blocks of data, we consider the channel error depend- 
ing on the size of cyclic prefix when M is fixed. We can 
observe that the channel is identifiable even when P 5 L. 
It is seen that the performance of the proposed algorithm 
is better than the one in [5]. 

V. CONCLUSIONS 

In this paper, a subspace method is proposed to  blindly 
identify the channel in OFDM systems. The identifiabil- 
ity of a channel is due to  the cyclic prefix used in OFDM 
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Fig. 3. Channel error versus number of blocks of data for M=15, P=4, SNR=2OdB 
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Fig. 4. Channel error versus size of cyclic prefix for M=15, P=4, SNR=2OdB, 120 M data 

systems. A sufficient condition for the channel to be iden- 
tifiable is given. This condition is easily satisfied in prac- 
tical systems. Performance simulations demonstrates the 
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