L A S T H O M E W OR K

CS 667 : Homework 5(Due: Apr 25, 2013)

Problems 1-6 are for 200pts. You may replace some of them with Problem 7 or 8 for a total of 200.

Problem 1. (40 POINTS)

(a) We plan to sort n keys using p processors ala-PRAM like using merge-sort as follows. We split the n input keys into p subarrays each one of n / p keys (don't worry about ceilings or floors). Each processor deals with one of those subarrays. At the end we end up with p sorted sequences of n / p keys. One processor takes over to complete the sorting.
(i) If $p=\sqrt{n}$, fill-in the details by providing the parallel running-time of the approach T and the speedup s achieved over regular merge-sort. Explain and justify your answers.
(ii) If $p=\lg n$, repeat the questions of part (i).
(b) Instead of using merge-sort we use bubble-sort of the sorting of the p sequences. Repeat questions (i) and (ii) above.

Problem 2. (40 POINTS)
Let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a sequence of n distinct keys. The rank of x_{1} in the sequence S or $r\left(x_{1}, S\right)$ is the number of keys less than x_{1} in S. The problem of sorting is equivalently the problem of determining the rank of each one of the n input keys.

Determine the rank of all keys in S in $O(\lg n)$ time with a CRCW PRAM. How many processors did you use?
Sort the n keys in the same time with a CRCW PRAM. How many processors did you use?
Can you repeat the two questions above for an EREW PRAM? How would the answers change? Explain.
Problem 3. (40 POINTS)
(a) Give an EREW PRAM algorithm that merges two sorted arrays of size $n / 2$ with $P=n / 2$ in $O(\lg n)$ time. You may assume that n is a power of two, and you may of course reuse prior or more recent results.
(b) Can you find the MAX of n keys with $n^{7 / 6}$ processors in $\Theta(1)$ time? Explain.

Problem 4. (40 Points)
We execute one query in Google and Bing. There are two pages of results for each. The query is CS 667 Algorithms. There a total of 20 results in two pages per search engine. Relevant documents are those that can positively identified from the available information (title, URL, context) as OUR COURSE. Everything else is NOT relevant.
(a) For each search engine, find and give the number of hits reported by each engine. Give the number of relevant document (read previous paragraphs) out of the 20 listed. Give the precision relative to the 20 documents reported for each engine. (These are the first 3 items in the table below.)
(b) Give 6 -point effectiveness along the lines of page 33 of Handout 6 by generating a table similar to that of page 33 . (This is item 4 in the table below. Items 5-8 can also be extracted.)
(c) Fill the table below. One point for a winner and 0 for the loser, 1 each for a tie. Who is the winner? Tie ?

	Values		Points		
	\|Google	Bing	\|Google	Bing	
1. \# Number of Hits reported (question (a))	\|		1		
2. \# Number of relevant docs among the 20	I		$1 \quad 1$		
3. Precision among the 20	I		$1 \quad 1$		
4. 6-point effectiveness	I		$1 \quad 1$		
5. 20% recall interpolated precision	\|		$1 \quad 1$		
6. 60% recall interpolated precision	\|		1 l 1		
7. 80% recall interpolated precision	I		1 I 1		
8. 3-point effectiveness ($20,60,80$)	1		1 \|		

Problem 5. (20 POINTS)
Kleinberg. Find the hub/authority rank of the graph of Figure 1. Initial values will be $1 / N$ (not 1). Iterate as many times as needed for the error to be less than 10^{-4}. (Do not forget scaling.)

Problem 6. (20 POINTS)
PageRank. Find the page rank of the graph of Figure 1. Initial values are $1 / N$. Iterate as many times as needed for the error to be less than 10^{-4}.

Figure 1: Problem 5-6 figure

Problem 7. (60 POINTS)
Use multithreading/multiprocessing, if you know how to do it, to implement the algorithm outlined in Problem 1 part (b). If you can't figure out how to implement bubble-sort, grab the code from my CS 435 web-page (section B4) and modify it as needed. I won't be able to help on multithreading. The data type used for testing would be randomly distributed doubles as in Homework 1. Time the running time of the sorting function implementation by capturing a running-time of ordinary bubble-sort, and then the modified one ON THE SAME INPUT sequence. A minimal interface needed is as follows.
\% ./psort threads nkeys
\% java psort thread nkeys

Problem 8. (60 POINTS)

Implement the HITS and PageRank algorithms. The inputs will be graphs represented through an adjacency list. The command-line interface would be as follows.

\% ./rank ranktype InitialValue Iterations InputFile
 \% java rank ranktype InitialValue Iterations InputFile

The command-line parameter ranktype takes one of two values: 0 if Kleinberg's HITS is used (with the scaling as otherwise shown on page XX of Subject YY) and 1 if the Brin and Page's PageRank algorithm is used (as shown on page ZZ of Subject YY). The second parameter InitialValue indicates how the initial values for the ranks will be computed. If it is 0 all ranks are initialized to 0 , if it is 1 they are initialized to 1 . If it is 2 they are initialized to $1 / N$, where N is the number of web-pages (size of the graph.) If the value is a numeric integer value other than $0,1,2$ then the ranks are initialized as InitialValue divided by 100. Thus an InitialValue equal to 50, initializes all ranks to $50 / 100=0.5$. Parameter Iterations runs the algorithms for that number of iterations. Parameter InputFile describes the input graph and it has the following form. The first line contains two numbers: the number of vertices (in the example below, this is equal to five) and the number of edges that follow on separate lines (i.e. six). In each line an edge (i, j) is presented by i j. The graph used in class in a lecture will be represented as follows. (Note that the graphs in class have vertices in the range 1..n, whereas in this implementation, it is $0 . . n-1$.

44
02
03
10
21

Kleinberg might report, at the 14-th iteration, Authority/Hub pair values of

Base: $0: \mathrm{A} / \mathrm{H}[0]=0.25000 / 0.25000 \mathrm{~A} / \mathrm{H}[1]=0.25000 / 0.25000 \mathrm{~A} / \mathrm{H}[2]=0.25000 / 0.25000 \mathrm{~A} / \mathrm{H}[3]=0.25000 / 0.25000$ Iterat : $1: \mathrm{A} / \mathrm{H}[0]=0.50000 / 0.81650 \mathrm{~A} / \mathrm{H}[1]=0.50000 / 0.40825 \mathrm{~A} / \mathrm{H}[2]=0.50000 / 0.40825 \mathrm{~A} / \mathrm{H}[3]=0.50000 / 0.00000$ Iterat : $2: \mathrm{A} / \mathrm{H}[0]=0.31623 / 0.94281 \mathrm{~A} / \mathrm{H}[1]=0.31623 / 0.23570 \mathrm{~A} / \mathrm{H}[2]=0.63246 / 0.23570 \mathrm{~A} / \mathrm{H}[3]=0.63246 / 0.00000$ Iterat : $3: A / H[0]=0.17150 / 0.98473 \mathrm{~A} / \mathrm{H}[1]=0.17150 / 0.12309 \mathrm{~A} / \mathrm{H}[2]=0.68599 / 0.12309 \mathrm{~A} / \mathrm{H}[3]=0.68599 / 0.00000$ Iterat : $4: \mathrm{A} / \mathrm{H}[0]=0.08771 / 0.99612 \mathrm{~A} / \mathrm{H}[1]=0.08771 / 0.06226 \mathrm{~A} / \mathrm{H}[2]=0.70165 / 0.06226 \mathrm{~A} / \mathrm{H}[3]=0.70165 / 0.00000$ Iterat : $5: \mathrm{A} / \mathrm{H}[0]=0.04411 / 0.99902 \mathrm{~A} / \mathrm{H}[1]=0.04411 / 0.03122 \mathrm{~A} / \mathrm{H}[2]=0.70573 / 0.03122 \mathrm{~A} / \mathrm{H}[3]=0.70573 / 0.00000$ Iterat : $6: \mathrm{A} / \mathrm{H}[0]=0.02209 / 0.99976 \mathrm{~A} / \mathrm{H}[1]=0.02209 / 0.01562 \mathrm{~A} / \mathrm{H}[2]=0.70676 / 0.01562 \mathrm{~A} / \mathrm{H}[3]=0.70676 / 0.00000$
Iterat : $7: \mathrm{A} / \mathrm{H}[0]=0.01105 / 0.99994 \mathrm{~A} / \mathrm{H}[1]=0.01105 / 0.00781 \mathrm{~A} / \mathrm{H}[2]=0.70702 / 0.00781 \mathrm{~A} / \mathrm{H}[3]=0.70702 / 0.00000$
Iterat : $8: \mathrm{A} / \mathrm{H}[0]=0.00552 / 0.99998 \mathrm{~A} / \mathrm{H}[1]=0.00552 / 0.00391 \mathrm{~A} / \mathrm{H}[2]=0.70709 / 0.00391 \mathrm{~A} / \mathrm{H}[3]=0.70709 / 0.00000$ Iterat : $9: \mathrm{A} / \mathrm{H}[0]=0.00276 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00276 / 0.00195 \mathrm{~A} / \mathrm{H}[2]=0.70710 / 0.00195 \mathrm{~A} / \mathrm{H}[3]=0.70710 / 0.00000$ Iterat : $10: \mathrm{A} / \mathrm{H}[0]=0.00138 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00138 / 0.00098 \mathrm{~A} / \mathrm{H}[2]=0.70711 / 0.00098 \mathrm{~A} / \mathrm{H}[3]=0.70711 / 0.00000$ Iterat : $11: \mathrm{A} / \mathrm{H}[0]=0.00069 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00069 / 0.00049 \mathrm{~A} / \mathrm{H}[2]=0.70711 / 0.00049 \mathrm{~A} / \mathrm{H}[3]=0.70711 / 0.00000$ Iterat : $12: \mathrm{A} / \mathrm{H}[0]=0.00035 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00035 / 0.00024 \mathrm{~A} / \mathrm{H}[2]=0.70711 / 0.00024 \mathrm{~A} / \mathrm{H}[3]=0.70711 / 0.00000$ Iterat : $13: \mathrm{A} / \mathrm{H}[0]=0.00017 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00017 / 0.00012 \mathrm{~A} / \mathrm{H}[2]=0.70711 / 0.00012 \mathrm{~A} / \mathrm{H}[3]=0.70711 / 0.00000$ Iterat : $14: A / H[0]=0.00009 / 1.00000 \mathrm{~A} / \mathrm{H}[1]=0.00009 / 0.00006 \mathrm{~A} / \mathrm{H}[2]=0.70711 / 0.00006 \mathrm{~A} / \mathrm{H}[3]=0.70711 / 0.00000$
and PageRank
Base $: 0: P[0]=0.25000 \mathrm{P}[1]=0.25000 \mathrm{P}[2]=0.25000 \mathrm{P}[$ 3] $=0.25000$
Iter: $\quad 1: P[0]=0.25000 \mathrm{P}[1]=0.25000 \mathrm{P}[2]=0.14375 \mathrm{P}[3]=0.14375$
Iter : $2: P[0]=0.25000 \mathrm{P}[1]=0.15969 \mathrm{P}[2]=0.14375 \mathrm{P}[3]=0.14375$
Iter : $3: P[0]=0.17323 \mathrm{P}[1]=0.15969 \mathrm{P}[2]=0.14375 \mathrm{P}[3]=0.14375$
Iter : $4: P[0]=0.17323 \mathrm{P}[1]=0.15969 \mathrm{P}[2]=0.11112 \mathrm{P}[3]=0.11112$
Iter : $5: P[0]=0.17323 \mathrm{P}[1]=0.13196 \mathrm{P}[2]=0.11112 \mathrm{P}[3]=0.11112$
Iter : $6: P[0]=0.14966 \mathrm{P}[1]=0.13196 \mathrm{P}[2]=0.11112 \mathrm{P}[3]=0.11112$
Iter : $7: P[0]=0.14966 \mathrm{P}[1]=0.13196 \mathrm{P}[2]=0.10111 \mathrm{P}[3]=0.10111$
Iter : $8: P[0]=0.14966 \mathrm{P}[1]=0.12344 \mathrm{P}[2]=0.10111 \mathrm{P}[3]=0.10111$
Iter : $9: P[0]=0.14242 P[1]=0.12344 P[2]=0.10111 P[3]=0.10111$
Iter : $10: P[0]=0.14242 \mathrm{P}[1]=0.12344 \mathrm{P}[2]=0.09803 \mathrm{P}[3]=0.09803$
Iter : $11: P[0]=0.14242 \mathrm{P}[1]=0.12083 \mathrm{P}[2]=0.09803 \mathrm{P}[3]=0.09803$
Iter : $12: P[0]=0.14020 \mathrm{P}[1]=0.12083 \mathrm{P}[2]=0.09803 \mathrm{P}[3]=0.09803$
Iter : $13: P[0]=0.14020 \mathrm{P}[1]=0.12083 \mathrm{P}[2]=0.09709 \mathrm{P}[3]=0.09709$
Iter : $14: P[0]=0.14020 \mathrm{P}[1]=0.12002 \mathrm{P}[2]=0.09709 \mathrm{P}[3]=0.09709$
Iter : $15: P[0]=0.13952 \mathrm{P}[1]=0.12002 \mathrm{P}[2]=0.09709 \mathrm{P}[3]=0.09709$
Iter : $16: P[0]=0.13952 \mathrm{P}[1]=0.12002 \mathrm{P}[2]=0.09680 \mathrm{P}[3]=0.09680$
Iter : $17: P[0]=0.13952 P[1]=0.11978 P[2]=0.09680 P[3]=0.09680$
Iter : $18: P[0]=0.13931 \mathrm{P}[1]=0.11978 \mathrm{P}[2]=0.09680 \mathrm{P}[3]=0.09680$
Iter : $19: P[0]=0.13931 \mathrm{P}[1]=0.11978 \mathrm{P}[2]=0.09671 \mathrm{P}[3]=0.09671$

About $8,330,000$ results (0. 28 seconds)
CS 667 Design Techniques for Algorithms by A. V. Gerbessiotis ... cs.njit.edu/alexg/courses/cs667/index.html
Apr 4, 2013-CS 667 Section 102 (Spring 2013). Course Information. Course
E-mail: algb67@cs.njit.edu [algob7@oak.njit.edu DOES NOT WORK! Time...
TPDF CS 667 Frequently asked questions (PDF)
cs.njit.edu/alexg/ courses/cs667/handouts/hand0.pdf
File Format: PDF/Adobe Acrobat - Quick View
Jan 22, 2013 - CS 667: Frequently Asked Questions. 1. What's the complete name of the course? CS 667 : Design techniques for algorithms. 2. Who takes this ...

CS 667 - Computer Science Course In formation web.njit. \#du , SPRING_2012, List
Description, A. V. Gerbessiotis CS 667-101. Jan 5, 2012 Spring 2012. Course Information Handout 1. Sequential and parallel algorithms for numerical and ...
${ }^{[P D F}$ CS 667 Frequently asked questions (PDF)
cs.njit.edu/alexg/courses/cs667/OLD/S12/handouts/hando.pdf
File Format: PDF//Adobe Acrobat - Quick View
Jan 5, 2012-CS 667: Design techniques for algorithms. 2. Who takes this course? Students who have completed CS (or CIS) 610 at NJIT or have take a ...

NJTT - New Jersey Institute of Technology CS 667- Design Tech ... https://www.myedu.com/C S-667-Design...Algorithms/.../s/2585993/
CS 667 - Design Tech - Algorithms at New Jersey Institute of Technology is about Prerequisite: Cs 610. An Introduction To The Principles Of Major Design ...

CS 667 Professors - MyEdu
www.my Medu.com/CS-667-Design-Tech-Algorithms/.../s/.../professon/
CS 667 professors, class schedule and professor ratings for Design Tech -
Algorithms (CS 667) at New Jersey Institute of Technology (NJIT)
NJTT CS 667 I Practice Exams. Lecture Notes, Textbooks, Study ... Www. coursehero.com , ... s NJIT, Computer Science (CS)
A. V. Gerbessiotis Sep 5, 2007 Course Information CS 667-101 Fall 2007

Handout 1 Sequential and parallel algorithms for numerical and combinatorial ...
NJT: CS 667 : hand1
www.coursehero.com, New Jersey
V. A. Gerbessiotis Sep 5, 2007 Course Information CS 667-101 Fall 2007

Handout 1 Sequential and parallel algorithms for numerical and combinatorial ...

Results for similar searches
Algorythm Recordings
Www.algorythmrecordings. com
The Live It Up EP sees Sinister Souls flexing their hard, melodic drum \& bass skills on 3 banging tracks. The EP wouldn't be oomplete without ミome signature
\cdots
More results for counter strike algorithm
MET CS 667 C1
people.bu.edu/kalathur/cs667_fall_04/metcs667.htm
MET CS 667 C1 - Enterprise Java. (Main Campus, Wednesday, 6:00-9:00 PM).
Instructor. Suresh Kalathur. Ph.D. Assistant Professor, Computer Science Dept.
More results for cs 667 =lgorithme

Figure 2: Google for CS 667 Algorithms

spogle
 c．s．667 Algorithms
 Go to Gaogle Home

VUeb Images Saps Shopping Sore Search topls

Page Q of about $B, 320.000$ result $=(0,18$ seoonds）
NJTCS 667 Textbooks：Buv Sell Trade Desiqn Tech－Alciorithins．．．
wruv．locazu．©0m／NJIT－CS－667－t戶xtbooks．．．Algorithms．1888577
Euy：三ell．trade uSed textbooks directly with other NJIT CS 667 students and save up to 90% ．

Spring 2012 Computer Soience Sohedule for Campus．Telewision ．．． wave．cs．odu．edui～iblispr1Zall．html
May 9，2012－40．20577，CS 101，Computers：An Introduction，1300－1350，MNF，
OCNFS O2OD．GUFTA．R．．．．．Advanced Data Structures and Algorithms．．．

CPDF Two Improwed Range－Efficient Alciorithmis for Fo Estimations wevw．cs．Cityru．edu，hki～okpooniresearchitamoDTproo．pdif
File Format：PDF／Adiobe Acrobat－Quick View
by H Sun－Related articles
We present two new algorithms for range－efficient FO esti－mating problem and
 particular，the time ．．．．．Two Improwed Range－Efficient Algorithms for fo
Estimation．667．．．
opDF From Loqics to Alqorithms－Department of Computer Soienoe．．．
www．cs．rice．Adui～wardilpapersiwalOT．pdf
File Format：PDFfAdobe Acrobat－Quick View
by MY Wardi－Cited by 23 －Related articles
wardi＠cs．rice．edu ．．．emptiness－testing algorithms for these models of automata，this yrields deci三ion ．．．highly wseful algorithmi for LTL model ohecking MVNBEa］．．．．．．．Automata：From Logics to Algorithms．G67．T 0 u qO w0 qO．T 1 u 90×0 वO．T 2 u ．．．

Soheme of Studies－PpaAS－Arid Aqriculture University Ravealpindi whav，uझar，ediu．pkiuitischemne－of－三tudies．php？dept＿id＝31
QO＋items－CS Core Courses $(18,13 B)$ ．B courses．Supporting Courses ．．．
1 C5－323 Frogramming Fundamentalis
3 CS－443 Data Structures and Algorithms

CS URGE－Vihat is Research in Computer Science？
ora．orgiocoicsunge－iwhati引 php
Resources for Undergraduates－CS Graduate Sohool ．．．undergraduate ourriculurn has an associated and active area of research．from algorithms． architecture，．．．．

The Alaorithm That Helps You Friend People Mou Don＂t known
cra．Orgicodirh－friending．php
Computer 三cienti三ts have deweloped an algorithm that uses the structure of a三ocial ．．．Fhone：202－234－2111｜Fax：202－667－1003 I E－mail：webmaster gig cra． org．

GPDF The Efficiency of Alqurithnns－Misconceptions Judith ．．．Cite．．．
citeseerx．ist．pEu．edu／viewdocidownioad？dioi＝10．1．7．138．
File Format PDF／Adiobe Acrobat－Quick View
by J Gal－Ezer－Cited by 3－Related articles
includes all the basic Elements of traditional CS programe．Ast its oore ．．．
efficiency of algorithms for the first time in the framework of a high 三ohool currioulurn，it was crucial for it \equiv ．．．．．International Journal of Soience Ediucation． 18 ．6．653－667，211

CS 667 Desiqn Techniques for Alqorithmis by A．M．Gerbessiotis．．． cs．njit．＝duvalacgiocursesics667／OLD／S12 index．html
Apr 18， $2012-$ CS 667 Seotion 101 （Spring 2012 ）．Course Information．Course E－mait；algeat Encs．njit．adu IalgCBT\＆omk，njit．edu DOES NOT WORK1］．．．
fPDF Incremental Constructions Con BRIO－Computer Soience Division
www．cs berkeleycedu／～jrsimeshpapersiBRIO．pdf
File Format：FDF／Adobe Acrobat－Quick View
by N Anmenta－2003－Cited by 80 －Related articles

Figure 3：Google for CS 667 Algorithms

29.900 RESULTS Any time *

CS 667: Introduction to Parallel Algorithms

https://Aww.student.cs.uwsterico.ce/~csee7
CS 667: Introduction to Parsllel Algorithms. This course will no longer be offered in Winter 1999; it will be replaced by CS 7e0L. also to betaught by Neomi...

Design Techniques for Algorithms - Computer Science Course
web.njit edu/cs/cs_courses/index.php?ono=2348s=SPRING_2012 -
Course No. CS 667: Sections: 102: Title: Design Techniques for Algorithms: Course Website: Prerequisite(s)-Instructor: Alexandros Gerbessiotis; Office Room No. : GITC...

CS 667 Design Techniques for Algorithms by A. V. Gerbessiotis ... os.njit.edu/alexg/courses/csee7
A. Announcements. 4/4 HW/ emsils have been sdknowledged (as of 17:18. Thu 4/4). 4/4 Office Hours today April 4.20131 might belate: please didk the link at the top ...

CS 667 Design Techniques for Algorithms by A. V. Gerbessiotis ...
cs.njit.edu/alexg/courses/cs8e7/OLD/S12
A. Announcements. Apr19: HW5 All HW5 (Problem 8 and 9) submissions have been graded. Emails have been sent out around 2pm on Apr 19. Solutions for P1-7 will be ...

CS667-12 Optimization Algorithms - DSPCSP Pages

www.dsposp.com/poly/lect12.htm *
Cs 667 Optimization Algorithms. What are evolutionary algorithms (EA) ? NOT neural networks: Uselong time biological intelligence: Key ideas from biological evolution:

CS667-05 Soft Neurons and the LMS Algorithm - DSPCSP Pages www.dspcsp. com/poly/lect05.htm -
CS 667 Soft Neurons and the LMS Algorithm. Widrow's adsptive filter; Noise cencellation problem; FIR filters; Adsptive FIR filters; Minimization of energy: ADALINE:

Consequences and Limits of Nonlocal Strategies
https://cs. uwaterloo.ce/~deve/courses/F09CSee7/Lec7toLec9Qip08.ppt
Introduction to Quentum Information Frocessing CS 487/CS 667 Phys 667 / Fhys 787
C\&O 481 / C\&O E81 Lecture 7 (2008) Richard Cleve DC 2117 deve@cs. uwaterloo.ce
A.V. Gerbessiotis: Courses (CS list)
web.njit.edu/~slexg/courses/index.html
Graduate level courses. CS 667: Design Techniques for Algorithms. Fall 2006, Fall 2007. Fall 2009, Spring 2012, Spring 2013. CS 610: Dats Structures and Algorithms.

Cornell: CS 667: moore88
www. coursehero.com/file/18e9957/moore88
Register now to acoess 7 million high quality study materials (What's Course Hero?)
Course Hero is the premier provider of high quality online educational ...
NJIT - Graduate Catalog: Computer Science
catalog.njit.edu/graduate/programs/computerscience.php * CS 667: Design Techniques for Algorithms (3 oredits) ...

Figure 4: Bing for CS 667 Algorithms

CSE 667 - Stony Brook University - Department of Computer Science

 www.cs.sunysb.edu/graduate/courses/cse667.htmi -Why CS@SBU: Our Policies; ... CSE 667: Back to Special Topics Courses: Course: CSEeB7: Title: Algorithms: Credit Informstion: 2 oredits: M.S. Progrem :

Course Requirements | Rutgers Business School
business.rutgers.edu/mit/old-course-requirements *
CS 667 Design Tech-Algorithms; CS 870 Artificial Intelligence; CS e80 Linux Kernel Programming; CS 884 Software Test \& Quality Assurance: CS B98 ST: Software...

QIC 700 s
whw. ucalendar. uwaterloo.ca/SA/GRAD/O910/GRDcourse-QIC.htmI *
(Cross-listed with CO 881, PHYS 787, AMATH 871 , CS 667) Review of bssics of quentum information and computational complexity: ... QIC 823 Quantum Algorithms \{0.EO) LEC:

CS 665 - Department of Computer Science. Cornell University
whm.cs.cornell.edu/Courses/csees *
be on practical rendering algorithms for real applications. ... Any of CS 485/48e, $487 / 488$, or 667 are acoeptable pre-requisites. If you have not taken these

Course Work

Www.cs.iastate.edu/~svalcati/courses.html *
CS 667 Design Techniques for Algorithms CS 704 Sequencing and Scheduling CS 811 Computability and Complexity CS 744 Data Mining and Management in Bio-.

Project Abstracts for cs 667. co 681, ph 767, am 871 (Fall 2009)
en.conviocs.org/docs/index-32937.html
Project Abstracts for CS 667. CO 881. PH 787. AM 871 (Fall 2009) This file will be updated as more abstracts are received. If I didn't reoeive a recent emsil sbout...

Dijkstra Algorithm implementation in Java
cs.nyu-edu/~vs667/development/~DijkstraAlgorithm *
Frogram Summary: This is my implementation of the Dijkstra Algorithm. Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstrs in 1959,[1] is a ...

NJIT - Courses: Computer Science

catalog.njit.edu/courses/cs.php *
CS 667 - Design Techniques for Algorithms (3 oredits) Prerequisite: CS 810. An introduction to the principles of major design techniques in algorithms.

Graduate Course Descriptions - NDSU Computer Science
 cs.ndsu.edu/gredcourses.htm -
 Basic principles and algorithms of dynamic programming as applied to sequential decision problems in CS and OR. Prereq: Math 188. 667: Algorithm Analysis: 3: ...

My Home Page

www. cse.unr.edu/~tippabha/index.html
Graduate Student in Computer Science at UNR. ... CS $790 K$: Genetic Algorithms: 3.00: Sushil J. Louis: Fall 97: 9: ... CS 667: Theory of Computation: 3.00:

Figure 5: Bing for CS 667 Algorithms

