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Abstract

The sharper variation points of 2 signal, measured at different scales, can be detected from
the local maxima of its wavelet transform. We describe an algorithm thar reconstructs one-
dimensional signals and images fmym (heir sharper vanation points at dvadic scales, This alge-
rithm reconstructs exactly images from their multiscale edges. We also prove that the evolution
across scales of the wavelet maxima characterizes the local shape of the signal sharp vanagons,
We can thus not only detect edges but also classify them, The wavelet maxima rcprcécmau’on is
a new rcorganization of the image information that epables us to develep algorithms uniquely
based on edges for solving image processing and computer vision problems. We describe an
“intelligem” compact coding algorithm based on this representation, thar takes into account the

information content of the image.
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numericaily that the whole signal information can be decomposed in multiscale edges.

An important issue in multiscale analysis is to relate the local propenies of the signal to the
evelution of the wansform values when the scale varies, The wavelet theory proves that this evo-
luticn across scales characterizes the local Lipschit regularity of the signal. The local maxima of
the waveiet transform thus not only detect the signal sharper vaniations but alse characterize their
"local shape". This complement of informaticn is very important to distinguish different type of
edges and discriminae textires. We study the application af this multiscale edge represeniation
to compact image coding. From the behavior of the edges across scales, we show that ong can
select the imporiant information that is required o reconstruct good quality images while remov-
ing a large portion of the edges. This opens a new approach on compact image coding based on
the analysis of the image informaticn from the multiscale edges. We desciibe a coding procedure
that leads to a compression by a factor of 40, The application of this representation @ pailern

recognition is also discussed.

2. Dvadic Wavelet Transform in Goe Dimension

For a complete presentation of the wavelat theory the reader is refered to a gencral review
[8) or an advanced functional analysis book of Meyer [12] A wawvelel is a function
yix)e LQ(R} whose imegral is zero. Let us denote by . (x) the dilation of y(x) by a scale

factor s

1
Vate) = — W) 4y
The wavelet transform of a function f (x) at the scale s and position x is given by the convolu-
Lion product:
W flx) = Feyiz) . (2)
Let us concentrate on scales s that vares along the dyadic sequence [:f] - We call dyadic
wervele! ransform the sequence of functions ’
E. ®
The Fourier transform of Waf (x) is
Wrzw) = flw) wz'e) . )

By imposing that

E 2w =1, (5)

J—
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we insure that the whole frequency axis is covered by a dilation of 11!((») by the scales lactors
[251 . One can then derive [9] that f{x) is reconstrocted from its dyadic wavelet transfomm
=2

by

F) = T W yeilz) .

J=—
It is imporant 10 observe that any sequence of funciipns [g;(x)] . is not a prioni the
jex

dyadic wavelet transform of some function f (x). One can prove that the sequence [ gix), .
i &

is the dyadic wavelet wansform of some function f(x) if and only it sausfics the following
reproducing kemel equation:

VieZ T mrK,x) =gz, with )
o

K ) =y iz .
This reproducing kemel equation expresses the inner redundancy within a wavelet transform at
different scales, This condiden shows that the vector space ¥ of all dyadic wavelet tansform is
smaller than the space of all sequences of L (R) functions. One can prove that the reproducing
kemel equation (6) defings an orthogonal projectar Py on the space VY. This means tha even if
the sequence of funcrions [ gj(x)} - is not the wavelet transform of some function in L:[]-:).

if {.‘tj(x)] is defined by:

LA
s
hxy= F o=k,
[=—-

Al
then [hj(x)' . € V. The operater Py is particularly important in the rest of this paper.
4 JE

In practce. the input signal is measured a1 4 finilg resclution 3¢ we can Dot compute the
wavelel transform at an arbirary fine scale. Also, we must limil cur computalions 10 a finie
larger scale. Let us suppose for nomalization pumose that the signal was measure at the resolu-
tion I and thus that the finner scale is 1. Let 2¥ be the larger scale. The wavelet transform a all

the scales larger than ¥, . Wo.f (x)} carries the low frequency information of F{r). One

F5f<tem

can prove 1hat these low frequencies can also be obtained with the convolution of f(x) with 2

Jow-pass filter gr(x):
SHflxy = o). o

The Fourier transform -Sy(w) of @v(x} can be expressed from the Fourier transform of the
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wavelst yix):
- - - .
op@it= T ip@w?
jael
We call finite dyadic waveler transform of f (x) between the scales 1 and 2/, the set of func-

tions
Syfx. | Waf@| l . ®
15)5-';_

The discratization of this model is carefully smdied in [9]. If the original discrete signal is
given by N samples, ane can compute 3 uniform discretization of a finite scale dyadic wavelat
transform with an algorithm of complexity © (M fog (V). This aigerithm is based on a cascade of
discrete convolutions with a low-pass and a band-pass filter. The reconstruction of the original
signal from its dyadic wavelcl transform is exact and also requires O (¥ fog (N)) COompuLations.
Fig. 1 shows the dyadic wavelet transform of a signal, computed between the scales | and 7
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Fig. 1: ra): fmage scan-line of 256 samples. (6): Dyadic waveler transform of signal Ha), on §
scales. Since we decompose up to a finite coarser scole (2°), we keep the remaining low-
frequencies Spf(x) (0 have a complete represemtation. (c): Maxima representation of the
dyadic waveler iransform shown in (b). Each dirac indicares the position and amplitude of o
local maxima of the at the correspording scale of the dyadic wavele! mansform,
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3. Wavelet Transform Maxima

The concept of multiscale is patticularly importani for edge detection. In order 1o separate
the fine sructures from the larger one, many rescarchers have smdied the properties of a multis-
cale edge detection [13). Let us show that for some particular wavelet functions yi(x} , the local
tnaxima of the wavelel transform indicate the position of the multiscale edges.

Lat 8(x) be a smoothing function. A classiczal example ofien used in computer vision is the
Gaussian. Let wix) be the first order derivative of 8(x}:

L 48}
W) = =~ )]

Let us denpte B2/(x) = % B(%.). The wavelet wansionn at the scale 27 is given by:

o 91;
ax

Waf (1) = [ yp(t) = Fo (¥ —2yx) = 2 %G’* 02:(x) a0

The wavelet wansforms Woif (x) is proporional 1o the first derivative of f{x) smoothed by
8i(x). The maxima of [Waif(x)| are thus the maxima of the modulus of the derivative of
£ * Bai(x). It corresponds 10 the sharper variation points of the signal smoothed at the scale 2
This is illustrated in Fig. 2. These sharmper variation points are also called edge points. The max-
ima detsction of such 2 wavelet ransform is essendally equivalent to a Canny edge detection [1].
In fig. 1(c) the maxima of the wavelel transform are indicated by diracs. As expected, these max-
ima indicate the posidot of the sharper variatian points of the signal smoothed ar differemt scales.
Asg we shall see in section 6, the evolution of the amplitude of these maxima across scales,
characterizes the local shape ¢f the sharp vaniations.

Let us cbserve that if the wavelet yix) was the second dervative of 9(x), the sharp varia-
tion points of the signal smoothed at the scale 2 would be detected from the zero-crossings of
the wavelet transform. This can be viewed as a Marr Hildreth [11] edge detector. The inconveni-
ence of this approach is thar we can not distinguish maximum variation poinis from minimum

variation points (see fig. 2).
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Fig. 2: The inflection points of [ % 0yi(x} correspond to the extremaof Waf (x) if w(x} is the
first derivative of B(x} and ro the zero crossings of Waif (x) if Wx) is the second derivative of
8(x). For the first derivative case, we only record the points of abscissa xo and x; where
|Woif (x}| is maximun because they locate the sharper variation poinis of f{x) smoothed ai
the scale Y.

4, Completeness and Stability

4.1. Previous Resulis

A Pundamental issue is to vnderstand whether the mulliscale local maxima or the zero-
crossings define a complete and stable represemation of the original signal. Most previoos works
have been done with zero-¢rossings but these rosulis can easily be extended in the maxima frame.-
work., The most classical result concemning the characterization of a signal from its zem-
crossings is due 10 Logan {7]. Let g{x)e L’(R) and Jer us suppose that its Fourier wansform
has a support included in one octave intervals. Logan theorem (7] proves that if g(x) does not
share any zero-crossings with its Hilbert rransform, then it is uniquely characterized by its zero-
crossings. Lel vs give an initive justification of this result. We Xnow that there exists wy such
that the Fourer of g(x} has a suppert included in the imtervals |-2wn | =g ] 1y [dlg . 20dy]-
The Nvquist theorem proves that such a signal is characterized by a uniform sampiing at the rate

% . One can also prove that this signal changes sign approximatively as frequently as the func-

tion sinfwgx) . The number of zero-crossings is thersfore of the same arder than the number of

values needed to characterize the signal with a uniform sampling. OF course, the zero-¢rossing
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problem is different since 2ero-crossings are not uniformly distributed but one can see that quali-
tatively the same ameunt of information s available, The zero-crossing characierization as
explained by Logan is not stable: "the problem of actually recovering (the signal) from its sign
changes appears to be very difficult and impractical”. This unstability means that a small error
on the zerp-crossing pogiton might create an arbicrary large enror on the reconstructed function.
The Logan theorem catt not be applied in our framework because the functions Wy f (x) are not
one-octave band-limited. As a consequence, 2erc-Crossings ocour selectively at sharp variation
points of f(x) and not at regular intervals like for onc-octave band-limited functicns.

The Logan result has been exiended by several researchers by supposing only that g{x) is
band-limited. The proofs on the compleieness of the zero-crossings are based on an analytical
exiension of these signals in the complex plane. All these proofs do nol provide any stability
result since they are based on non-stable characterization of analytical functions [2, 14, 18]. The
reader is referred (o a review by Hummel and Moniot for more details [4].

Many studies have also described the propenies of zero-crossings of funciions convolved
with the Laplacian of a Gaussian. This convolution is equivalent to a wavelet transfonn built
from a wavelel y(z) cqual 10 the Laplacian of a Gaussian. Such a wavelet transform can be inter-
preted as the result of a heat diffusion process [5]:

WS () EWS (x)
s &t '

{an

Using the properties of the heat diffusion differential equations several authors have proved
interesting properics of the propagation of zero-crossings across scales {3.5.17]. Hummel &
Moniot as well a3 Yuille & Poggio have also proved that the position of the zero-crossings of
W.f fx) give a complele characierization of the function f{x) [3]. These pmofs are based on
deconvoluiion arguments which are highly instable and they do not take 2 full advantage of the
information given by the zero-crossings at all scales. They can therefore not be used for the
reconstruction of £ (x) from the zero-crossings of its wavelet transform. The differennal equation
(11} gives the evolutionary properties of W.f {x) when the scale s and the abscissa x vary. 1l
expresses the redundancy of the functions W.f (x) at different scales. Jn all applicadons, the

seale parameter varies on sparse discrete sequences such as the dyadic sequence [zf] - One
Jje

therefore cannot use Lhe heat partial differential equation to express the redundancy specifically at
these scales.

The wavelet transform reproducing kemel is an aliemative approach to formalize the redun-
dancy of the functions W,# (x). In the next section we reformalize the completeness problem by
using Ihe wavelet transform reproducing kernel equation.
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42. One-Dimensional Signal Reconsiruction from the Wavelet Maximz

In this secrion, we study the reconstructon of a function from the maxima of its wavelet
transform. We formalize the completeness problem within the wavelet framework and then

derive an algorithm to perform the reconstraction. Let f(x) e L*®) and [Wy f[;r}] be its

FLFA
dyadic wavelet transform, Since f(x) can be recovered from its dyadic wavelet transform, we

first try 1o reconstruct (W;;f(x}] . given the local maxima of each function Waif {(x). je Z.
. je

Clearly, for any scale 2/, there exlsts an infinite number of functions gy(x) which have the samc

local maxima as Wy f {x). However, any such sequence of functions [gj;(x } is nOL neces-
JEL

sarily the dyadic waveiet transform of some function in L(R). Indeed, we saw in scction 2 that
for being a dyadic waveltet wansform, it must satisfy the reproducing kemel conditions (6). Let us
recall from section 2 that Lthe space of all dyvadic wavelet ransforms is denoted V. In order 10
express the conditions given by the maxima of the wavelet transform of f (x), we define the set

|

U . such that for all scales 2/, g;{x) has the same maxima than
i

I" of all sequences [gj(x

Wofix). The local maxima representation is complete if and only there exists no dyadic

wavelet transform different from [szf (x}] that has the same¢ local maxima. In other
A J'ez

words, the intersection of I with 'V must be reduced to one element:
i ]
FAV=s [wyfrx:-:
L ENT ¥

In order 1o verify numerically this assention, we describe an algerithm that reconstructs the inter-
sectionof T” with V,

The set T is aimost convex [9]. A classical technic for recovering the intersection of a

convex sel with a linear space is o iterate on altemnative projections on the convex and the linear

space {18]. For any [g;-{x)| 5 in this Hilhert space, we can define [9] a projection Pr on T
4 JE

|

5
} into the sequence of fenctions [h,-(x)i e [ that is the closest o
4 ja L

that transforms [ 2ix
4 jek

[gj(:c)] . The functons A;(x) are smoothed deformations of g;(x) in order o matgh the
jeZ

maxima consttaint. The deformation is minimum when measured with an H' {R) nom. Let Py
be the orthogonal projection on the space ¥ and P = Pr o Py be the composition of Pr- and
Pv. Clearly any clement ar the intersection of T and 'V is a fixed point of P. To compute such
a fixed poinL. we iterate on the operator P. The aigorithm is ilustrated in fig, 3. Let B“) be the
compositien n times of e cperator P. The convergence of P("]'-[ gj(x)] o to an element of

T~V is guaranteed if one keeps all the maxima and minima of the wavelel transform [S].
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When only the maxima information is kept, we have not proved that the convergence is
guarantzed.

initial point

v solution

Fig. 3: The reconsiruction of the wavelet transform of f(x) is done with an alternating projec-
tion of the set T and the space ¥ of all dyadic wavelet transform.

5, Numerical Resulizin One Dimension

Within a discrere framework, the operators Py and Pr can be implemented with a com-
plexity of & (V log(N)). Each iteration on the operator P (hus requires O (N {og (N}) compu-
tations. Afier reconstruction the dyadic wavelel transfonm by iterating on P, we can then recon-
struct he corresponding signal. The eror is defined as the difference between this reconstructed
signal and the original one. We compute the error to signal rajo with a mean-squarc measure,
Fig. 4 is an example of reconstructed signal after 13 iterations. The erroz 1o signal ratio is 3 1072
Fig. 5 piots the error (o signal ratio as a function of the number of iterations on the operator P.
The decay of the error is fast during the first 20 iterations. Then it is slow but approximatively
consiant. The remaining ermoms are then concentrated in the highest frequencics, which are slower
to reconstruct exactly. This is due to the sucture of the reproducing kemel at the finner scale
[9]. The reproducing kemel expresses the redundancy between the functions Woif (x) at dif-
forem: scales 2. This fedundancy is maximum for consecutive scales: 2/ with 2/ and 277
At the scale 2!, there is no information availsble at the finner scale 2° so the correlation con-
straint is weaker, After 4000 iterations, the emor 1 signal ration is 2 107, [n these computa-
tions, the floating point numbers precision is 107 and the errur does not further decrease
because of this limit

All the numerical results obtained so far, seem 1o indicate thal the maxima of a dyadic
wavelet tansform do provide a complete and stable representation. This algorithm has been
tested on a large class of signals including all types of classical funcrions. We also used different
wavelets y(x) with similar convergence resulis (9], We therefore conjecture that for a large

class of wavelets, (he maxima of [W;J f (Jc}] provide 2 complete and siable representation of
JjeL

£(x). The class of wavelet for which 1his s tme remains o be defined. The reconstruction

10
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algorithm previously deseribed is bowever sufficient for the applications.

/:%mf.?“"rt'j i‘f\ﬁ

&

Fig. 4: Reconstruction with 15 iteérations from the maxima representation given in fig. ifc). The
error to signal ratis of the reconstruction 2 107,

] L] oo L] e Kl L ] L. s kol

Fig, 5: Evofution of error to signal ratio of the reconstructed signal from the maxima representa-
tion of jig. I{<), depending upon the number of iterations on the operator P.

6. Behavior of Maxima Amplitude Across Scales

The previous section showed experimentally that we can reconstruct the original signal
from the maxima of the wavelel jransform and thus that this represcntation is complete and
stabie. Let us now cxplain how o use directly the maxima representation for charecierizing the
different type of signal variations.

The singularity ot 2 funcrion at a point xy, can be charactenized with a Lipschitz exponent
e A function F(x) is Lipschitz o regularin v, (Dsa< 1), if and onlyif forall x in a neigh-
borhood of xq, wehave

1f () =f(xg)l = O(x=xg!%) . (12}

A step edge for exampie is characterized by o= 0. The following theorem relates the Lipschitz

11
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regularity of a function ta its wavelet transform amplitude.

Theorem 1
Let f(x)e szR),f (x) is Lipschiz o in all points of an open interval if and only if for all x in
this interval the wavelet tramsform satisfies

W, f(xr)l = OB . (i3

This theorem temains valid if the scale s ig restricted o a dyadic sequence [2:'] e The

e
proof can be found in [12]. Theorem 1 proves that we obtain the Lipschitz regularity of a signal
from the behavior of its wavelet transfonnl amplimde when the scale decreases. By applying
theorem 1, we can thus recover the Lipschitz regularity of a sharp variation points from the evo-

luuon of the maxima across scales.

Often the signal singularities are blurred due 1o some diffusion process. We thus get
smoathed “singularitics” and it i$ imponane o estimate this smoothing factor. For example, the
shadowse in an image do not produce sharp discorminuites of the image intensity but relanvely
smoorh variations because of the diffraction effect. In this case, the image intensicy is locally
equal 10 the convoluten of a siep edge with a smoothing kermel. Let us suppose that our signal
F{x) is locally equal to a singularity 4(x) that has been smoothed by 2 Gaussian of vanance o

a
—1- exp(—x—) 5

- h r =
fix) #palx) where golx) Ty o

We saw that the wavelet iransform of f (x) can be wrinen
Wl @) = ¥ e 800 = 2 e e ga = B0). (14)
Let us supposc that the function 9(x) is close w0 a Gaussian function. In this case we have:
By * golr) = 8, (x) with 5o="2Y +0% .
Equation {14} can thus be rewrinen:
Waf () = 2 - th+ 8, = = Wgho) (15)

In other words, the wavelet transform of a singularity smoothed by a Gaussian of vatiance o, at
the scale 2/, is equal 10 the waveict wransform of the non-smoothed singularity at the scale
sp=Y2% +a* . Theorem 1 relates the decay of the maxima of |W,k(x)| to the Lipschicz
exponent of the singularity af /({x). We can thus derive from equation {15) the decay of the max-
ima pencrated by a smoothed singularity.

12
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Fig. 6 gives several examples of singularities smoothed by Gaussians of different variances.
The decay of the maxima ane claary affected by the differen: Lipschitz exponent as well as the
varange of the Gaussian smoothing. Let us now explain how 0 compute numerically the
Lipschitz exponent o and the smoothing scale . Aficr renomalization, we can only compute
the wavelet transform at scales larger than 1. Let us supposc that a singularity in a point xg
creates maxima of amplitude a; at each scale 2 between the scale 2' and some farger scale
2%, 1f there is no smoothing factor (o =0), theorem 1 implies that a; decays like 2%. In order
10 estimaie the Lipschilz exponent o associated to this singularity, we compute the constants &

and n that minimize

Jg
E(K) = ¥ (a;-K2YY . (16)
=l

For isnlaled singularities, this simple procedure provides an estimation of o with 4 few percent

ermor [9]. If we wani also to estimate the smoothing scale o, then we ¢stimate the three constants
K. o and o that minimize

J [
E(0.®K) = T la; - K(¥o?42¥ )0 (17)
=l
The ermor of estimation of the Lipschilz exponent o depends upon the size of the smoothing
scale. The larger o the larger the error on the estimation of o More numerical resulis are
described in {9].

A
e
N AL
BV
A\ e

o, e v

Fig. 6: fa): The signal S4f is built from a funciion f{(x) whick kas four singularities respective-
Iy characterized by {w=0.0=0) . (w=0.06=58) . (a=025,0=0) and
(x=025,c=58).

{b}: The behavior of the maxima of Wi f , W f and Why depend upon the Lipschitz regularity
. and the smoothing scale o.

13
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7, Wavelet Maxima Representation of Tmages

The wavelel transform ¢an be extended in L'®%) by introducing several wavelets
Py e Lzl’R"). We study more particularly a two-dimensional wavelel decomposition which
has only Two ofientation selectivities: a horizontal and a vertical one. This wavelet transform is
defined with two wavelets ¥ (x,y) and ¥(x.y) given by:

, .
Py = RGN oy oy < 2T as
a'(x,y} and €%(x1.y) are two smoothing functions. Let us denote Phitxy) = 2_;1 ‘1"(5.%
and Whix.y) = 2_‘2; Wi(%,a’i—.}l The wavelet wansfom of a function f(xy) e L7(R?) at the
scale 2/, along the horizontal and vertical eoentations is given by:
WhifGey) = FoPhinyy . Wity = ¥y . (19)
We call two-dimensional waveles transform of f(x,y) the sziof furkiions
(Whren Whray)] - 20
LA
With a particular choice of B'(x.y) and &%(x.y) we can have:
T (9 2o, 2e)? + 1P Qe Ye)?) =1 @n

j-_-—u
Given this constraint. the two-dimensional dyadic wavelet transform has the same properties than
in one dimension. The functon f {z,y) can be reconstructed from its wavelet transform, Simi-
larly to the onc-dimensional case, umy sequence of twp dimensional functions

[ giixy). gf(x.y)] - is not a priori the dyadic wavelet transform of some two-dimensional
JE

function. In order 1 be 2 dyadic wavelet transform, such a sequence must sadsfy a reproducing
kemel equation similar to equation {5). Like in one dimension. the set of all sequence of func-
tions which are the dyadic wavelet transform of some function in L*(R?) is a vector space that
we denote V. This vector space is smaller than the space of all sequences of Lz(Rz) functions.
We can build an orthogonal projectoron ¥V from the two-dimensional reproducing kemel equa-
tion.

Images are measured at a finite resolution 50 Wwe can nol compute the wavele? transform at a
scale below the limit set by this resolmion. Like in one dimension, we must also lirnit the larger
scale 10 a finite vaiue. Let us suppose far normalization purpose that the finner scale is 1 and the
larger onc is 2. One can prove that the lew-frequency information carried by the wavelet

transform [Wi;' £ (xy), Wi {x,y}] 1o ar the scales larger than 27, is given by the convolu-
L4

J £

14



Page 16

tion of f(x,¥} with a smoothing function @ (x.y):
Sfxy) = fr@rizy) . (23)

The Fourier transform of $wr(x,y) is given by:

(Bpi@am)? = 3 (¥ (o, 207 + ¥ Pe,Ye)l?) | 23)
=i

The discretization of this model has been stdied in [9). If the oniginal signal f{z.y} is uni-
formly sampled, ene can ¢ompute a uniform sampling of the rwo-dimensional dyadic wavelet
tansform. If the image has ¥ pixels than we need OV log (M)} compurations re compute the
corresponding dyadic wavelet tansform. The reconstruction of the original image from its
wavelel transform also requires J (¥ log (X)) computations.

Ler us denote by Blix,y)= ;T; &' (%,;‘;—.) and BL(zy)= ;T; Gl(ir-z%) . Equa-
tions (18) and (19) yield:

Wifixy) = 2’% {f * 94)ny) and (24)
Wif (xy) = 21% (f * B3y . (25

The dyadic wavelet ransform Wif (z.y) and Wif(x,¥) are respectively the pamial derivadve
along the horizontal and vertical directions of f (x,¥) smoothed at the scale 2/ In practice, the
two functions 8'(x.y) and B*(x.y) are very similar so that the wavelet transforms Wiif (x.y)
and W F (x,y) can be viewed as the two components of the gradient vector of f£(x,¥) smoothed
at the scale 2/. Fig. 7 shows the dyadic wavelet transform of a circle image decomposed
berween the scales | and 2%,

Let us now define a modulus and angie image at each scale 24

Myf(xy) = VIWhf ay)? + IWhfiey? . (26)
Wiif (x.y)

Asif (xy) = argtan{ —22 y @n
F o 2 Wiif (x.y)

M4if (x.y) can be ineepreted as the modulus of the gradient vector of £ {x,¥) smoothed at the
scale 2 whereas A»f (v.)} pives the angle of the gradient vector orientation. The modulus
and angle images of the circle are also shown in fig. 7.

The sharper variation points of f(x.y) smoothed at the scale 2 correspond 1o the points
where Moif {x.y) has 2 local maxima along the gradient direction. For cach of these maxima,
we record the corresponding amplitude of Moif(x.y} and the angle Ayf(xy) . This maxima

detection is essendally equivalemt to Canny’s non-maxima suppressien |1l [n fig. 7 these

15
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maxima are located at the border of the circle. The first colunn of fig. 8 gives an example of
modulus images My f(x.y) at four scale levels for a lady image. The second column gives the
corresponding position of the maxima, The third and fourth columns display the maxima whose
amplitude are respectively larger than 4 and 8. The higher amplitude maxima correspond 1o the
most important edges of the image.

16
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Fig, 7: The original image is at the top left and next to it the low-frequency image Sz¢f (LY).
The first column From the left gives the images | Whif (x,y) “ and the scale increases from
1)
top to bortom. The second columns {5 [W%; f (x.}‘)] . Black. grev and white pizels indicaie
1554
respectively negative, zero and positive sample vaiues. The third column dispiays the moduius
imgges | Maif(x.y) o black pixels indicare zero values whereas white one correspond 10
Lred
the highest value. The fourth column gives the angle images [A auf (x.y)] , and we cak $e¢
lgysa

that the angle vaiue wras from & o —n along the circle contour. The fifth colurn displays in

black the position of the maxima of [M 2+F (¥}
4 1si%4
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8. Reconstruction of Twe-Dimensional Signals from the Wavelet Maxima

The recanstruction of the original image from its wavelet maxima is dane with a direct
extension  of ‘the  onedimensional  algohm. Let  f(zy)e L’R?)  and
iw& Sy), Wiif (x.y)J i be its dyadic waveler transform. For each scaje 2/, we defcet the

maxima of Mif (x.y) along the dircction of the gradient given by the angle image Axf (r.y).
We record the position of each maxima as well as the value of Myif (z,y) and Ao f(x,y) at the
corresponding location. It is possible 1o reconstruct the dyadic wavelet transform of f{x,y)
given these maxima if and only if there is 0o other wavelet transform having the same maxima
{posidon, amplitude and angle).

Let us dencte by I the set of all sequences of functions [ g1y, gf(x.y}] "z such that
i€

for all je Z the functions YViglmy)i® + Igfx )2 and VIWhfxy)? + 1Whfxy)?
have the same local maxima and the same angle value a1 the maxima locations:

5y _ Whfltay)
By Wiy

Let us recall that 'V is the space of all possible dyadic wavelet transform. The reconstruclion is
possibie if and only if the intersection of ¥V with T" is reduced to the wavelet transform of

Jxyx

vl ={{Wirf(x,y:-‘ W%ff(x-y)] ,;z} : (28}

As in the one-dimensional case, we take a numerical approach to this problem and develop an
algorithm for reconstructing the intersection of I' and V. Like in onc dimension, the algorithm
iterates on a projector on V and a projector on T We saw in the previous section that we can
define a two-dimensionat repmducing kemel equation that defines an crthogonal projection Py
on VY. We also describe in [9] a projector Pr that transforms any somicncc

:
[ glexy). gieyy| . of two-dimensional function into a new sequence [.i:} (x.y). hf(:,y)J .
E 1 Je

which is in . The projecior Pr makes a non-linear deformation of (g)(x.¥) £3(x.y)) so that
the resulting funcrions (h} (x,yy, hz(x,)')) have the same maxima (posilion, moduius, angie} than
Wwhifxy), Wi (x,3)). The algorithm iterates on the projectors Py and Pr 1o reach the
intersectionof V ang T
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Fig. B: The first column gives the modulus images My f(x.y) for 1 £ =4 of the lady image
shown at the wp left of fig. 9. The second column displays the peasition of the maxima of
Mot f (x.y). The third and fourth columns display the position of the {ocal maxima whase ampii-
tude are respectively larger than 4 and 8. The maxima that have been removed correspond essen-
tially to the apise and the light rexture irregularitiey,
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Fig. 9: The upper left is the original lady image. The upper right image (s @ reconsiruction from
the maxima representation shown in the second column of fig. 8. This reconstruciion is performed
with & iterations and the noise to signal ratio is 6.6 1672, The lower left and lower right images
have been reconstructed from the maxima representation shown respectively in the third and
fourth colwmn of fig. 8 (thresholding by the factors 4 and 8). The light textizres have disappeared
but the strong edges and lexiures remasn unchanged.
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9. Numerical Reconstruction of Images from the Wavelet Madma

The upper left image of fig. 9 is the criginal image whereas the upper right is the recon-
siructed image from the moaxima representation with 8 jierations. These two images arc visually
identical on a good quality image display. If the original image has N pixels, the implementa-
tion of both Py and Pr requires OV log (V) computations. Each iterations thus has a com-
plexity of G (¥ log (W)). The error te signal ratie of this reconstrucrion is 6.6 1. Eig. 10 gives
the ervor 1o signal mtio when reconstrucing Uk iady image from the wavelet maxima cheained
with these wavelets. Afier 16 iterations, the error 1o signal rafio is approximatively 3 1072, Inthis
case, the ermor 10 signal ratio decreases steadily and reaches 2.5 107 afier 5000 ierations, Like
in one dimension, the reconsomction errots are concentrated in the high frequencies and the decay
rate of the signal to eror ratio reflects the decay rate of the high frequency emors. After 300
iterations, the crmor made on the value of any pixel in the reconstructed image @5 always smaller
than 0.5. Since the pixel values of the original image are coded with intcgers between 0 and 255,
we can recover exactly this image with a round-off operation. The reconstraction algorithm has
been t2sted for a large collection of Images inctuding special two-dimensional funcdons such as
Diracs, sinusoidal waves, Step edges. Brownian noises... For all these cxperiments, the ermor 1o
signal ratic behaves similar?y 1o fig. 10. Ler us emphasize that for image processing gpplicadons,
we heed a1 most 10 jterattons for reconstructing an image with no perceivable distortions. The
computations required by the algorithms are cascade of convolutions and can thus be imple-
mented in real time on a pipe-ling hardware architecrore.

The stabilily of the convergence enables us to slightly perturbate the local maxima
representation and reconstruct a close image. The lower Left and lower right images in fig. 9 ame
reconstructed from the maxima whose amplitude are respectively larger than 4 and 8. Here, we
removed the maxima produced by the noise and the light textures. As expected, the fine exmres
disappear in the reconstructed images but the sharp image vartations are not affected. The higher
the threstiold, the more textures disappear. In section 11 we study more carcfully how 1o select
the maxima that can be removed from the representation without affecting the quality of the
mconstrucied image.
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Fig. 10: Evolution of the errer o signal ration for the reconsiruction of the lady image from its
maxima representation, depending apon the number of iterarions on the operator P.

18. Maxima Chain Representztion

The meaningful features of the maxima Tepresentation are not the local maxima by them-
selves but razher the chains of maxima points that correspond to the borders of the different image
structurcs. En fig. 7, at each scale, these chains correspond 1o the border of the circle. For a given
scale 27, we must chain together the maxima points of Mz fx,y) in order to recover these boun-
daries. Let us study more carefully the chaining procedore. At each maxima point, we know the
value of Ayf {x,y) which is the angle of the pradient vector of f(x.y) smoothed 4l the scale
2!, At a given maxima point. ¢learly the gradient vector is perpendicular to the boundary which
goes through this point. We therefore chain (ogether maxima whose respective posidon is perpen-
dicular 10 the direction indicated by 417 (x.y). Along a given chain, we also impose that the
value of Maif (x,y) varies smoothiy which indicates that the gray level profile of the boundary
varies smoothly. We thus chain together two maxima only if their modulus value My f (x.y) is
close enough. With this chaining procedure, we build a representation that is a set of chains of
maxima for gach scale 2.

As we just mentioned, (he angle Az:f{xy) a a maxima point, is perpendicular w the
tzngent of the maxima chain that goes through this maxima. Once we have chained together the
maxima point, we do not need ta keep any more this angle information since it is encoded into
the chain orientation. This is however only an approximation since the rwo smoothing functions
8'(x.y) and &%(z,y) are not strictly equal so the angle Aif (x.y) is not exacty perpendicular
10 the chain tangent. [n practice, the error of estimation on the angle A2if (x.y) is negligible.
The image in fig. 1! is reconstructed after chaining together the maxima at cach scale and
suppressing the angle information. Of course, one can cempute the the tangent 10 the maxima
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chain only when the maxima chain has a1 least 2 maxima points so we suppress all the chains of
length one. A noise removal operation. described in the next section, is performed before the
chaining operation. There are almost no visual difference berween this image and the original
one. The errors introduced by the estimation of the angle are too small to be visible.

We have now reorganized the image information into a set of chaing which cormespond to
the boundary of the image structures. Along cach chain we only record the value of the modulus
M f (x.y). The reconstruction algorithm shows that this representation carries all the neccssary
information have a stable reconstruction with no visible distortion. In the next section. we study

the application of this image representation 1o compact image coding.

11, Compact Image Coding

As explained in the introductien, our goal is not to oblain an image coding that reproduces
exactly the image with a small mean-square error but an image 1hat is visually of good quality.
By adapting the coding 1o the propertcs of the human viswal perception and to the information
content of the image, we want to obiain higher eompression rates than with classical image pro-
cessing methods. There arc two scparaie SIeps in such a coding procedure. We first select the
information that can be remeved from the maxima chain representaon without affecting the
visual quality of the reconsiructed image. This selection cleatiy depends upen (he a prion infor-
mation that we have on the information ¢ontent of the image. For example, we might we able to
remove the light textures of the image withour affccting much the overall quality of the image
and its information content. We might also be able to remove some image patiems after CoR-
nizing them based on the shape of their contours. The secend step is to code efficiendy the
remnaining maxima chains. This is a purely signal processing problem that we can solve indepen-
dently.

The removal of information from the maxima representation fequires to undersiand how
these chains relate @ the information in the original image. In section 6, we saw that the evolu-
tion of the maxima amplitude across scalcs characterize the type of imegularities it corresponds
too in the original signal. In order 10 compule the type of these singularities, we must relaie
across scales the maxima that correspond o the same sharp veration in the image. This is done
before chaining. We shall consider that twoe maxima appearing respectively at the scales p Lt
and 2 do comrespond to the same shamp variation of the image if their positions and angle values
Apf(x.y) are close encugh We insure that this propagatien is a one o one relationship across
scale. When the scale increases, the number of maxima decreases so cleary nol all the maxima
(hat appear at the firner scale 2! do propagate at the scakes 2% and 2.

The maxima that appear at the scale 2! but do not propagate at the scale 2% correspond 1
the small high frequency image variations that are generaily due to the image noige. In the lady
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image, there are 54% such maxima at the scale 2', Fig. 11 is a reconstruction of the lady image
after removing thesc maxima from the maxima representation. This removal introduces almost no
visible distortion on the reconstructed image. One can also remove all the maxima at the scale
2! and 22 that do not propagate up 1o the scale 2°. By doing this, we remove 78% of the max-
ima at the scale 2' and 59% at the scale 2°. Fig. 12 shows the image reconstructed after this
removal. Although the recansiructed image is still of good quality, here we can see that the
lighter textures disappeared from the image. All the main bourdaries remain unchanged. in the
fallowing, we keep only the maxima that do propagate up to the scale 2° and build the maxima
chain representation from these maxima

Among all the chains of the maxima representation, we want to suppress the onc that
correspond ta non-important features in the image. Such a removal can be quite sophistcared if
one takes into account the information content of the image. For cxample, the eyes of the lady are
very important for the image visualization and must therefore not be affected. Here, we are
removing some of the maxima chain with a simiple thresholding. Let us call chain amplitude the
sum of the maxima medulus along a partcular chain. This chain amplitude increases with the
length of the chain and the value of the modulus of each maxima in the chain. In the right of fg.
13, we show all the chairs at the szale 2% whase total amplitude is larger than 32, These chains
carry the information of (he most importam structures in the image. ‘We alsn suppress at the
scales 2! and 2%, all the chains which propagate at the scale 2° 1o a chain that has been
removed. Any chain av a scale 22 now corresponds 1o a chain at a scaie 2! and to another one at
the scale 2°. A priori. the position of these chains might differ slightly duc 1o the blurting effect.
In order to save bits for the coding, we are going 1o suppose that all these posilions are the same
and cqual 10 the position at the scale 2%, This means that we modify the position of the chains at
the scate 2' and 2° in order o match exactly the position at the scale 22. The complement of
information provided at the scale 2' and 2% is therefore reduced to the value of the modulus al
these scales. This characterizes the type of the edges as we explained in section 6, The lefi image
of fig. I3 was reconstructed from this perturbated maxima chain representation. Although the
represeatation was sericusly modified, the reconstructed image is of good quality.

From the bandwidth of the image at cach scale, we ¢an derive that about % of e total

image informarion is concemrated ar the three finner scales 2', 2% and 2°. We shall therefore
concentrate on the coding of the maxima chains After the modification of the maxima chain
representation explained in the previous paragraph, the remaining information 10 code is the posi-
tion of the chains ar the scale 27 and the value of the modulus My (x.¥} along lhese chains, at
the scales 2', 2* and 2. We record the position of the first point of each chain and the
geometry of the chain is coded with cubic splines. Along each chain, we use a predicave coding
technic to Tecord the value of Maif (x,y) at the scales 2°, 22 and 2*. In order to obtain a
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compact coding. we quantize the prediction errors on few bits. Ermors on the value of the
moduolus along the chain do pot preduce large visual distonicns on the original image. The

image in fig. 14 required less than é bit per pixel in order 0 code the infermation at the scales

2!, 2% and 2%. In general, the number of bits required to code the image depends upon the com-
plexity of the image. For the circle image of fig. 7, only 4 107 bits per pixeis are necessary for
the first three scale levels,

The coding procedure that we described can be certainly enhanced. The thresholding pro-
cedure to remove some of the maxima chain is clearly too brutal. In pamicular, it creates visible
distortions around the eyes of the lady. The information comtent of the image must be taken into
account more carefully. Alsa, the predicrive coding technic that we used ro record the modulus
amplitude is quite simple and one can probably develop a more efficient coding scheme.
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Fig. 11: The right image shows the position of the maximu at the finner scale 2', after removing
the maxima thar do rot propagate at the scale 2. The left image I5 a reconsiruciion afier tAis
maxima removal. The angle infermarion A5if (x.y) was not kept bui estimated from the tangent
of the maxzima chams. These modificanions inroduce very few distortion.

maxima that do not propagase af the scale 23, The left image is a reconstruction from the max-
ima chain represeniation built after this maxima removal. Some light textures disappeared in rhis
reconstricied image but the strong edges and textures are ot affecred.
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Fig. 13: We removed all the maxima az the scale 2' and 2% that do not propagate up 1o the
scale 3. We then threshoided the maxima chain representanon and removed all the chains at
the scate 20, whnse otal amplitude is larger than 32. The nght image shows the remaining
chains at the scale 2%, Oniy 200 chains remain with @ total af 5000 maxima points. At the
scale 2V and 23, we kepr onfy the chains which correspond 1o a chain at the scale 2° which
has not been removed. We also moved the posifion of the chain at the scales 2! and 2° sothat
their position is the sarme than at the scale 2% The left image is the tmage reconstructed from e
corresponrding maxima representation. Although the maxima chain represeniqiion was heavily
modified, the reconstructed image is of good guality.

Fig. 14: This image was reconsructed after making a compact coding of the chalns that were
kept in fig. 13. The coding introduces some further distortions bur it regquires less thak % bit per
pixel (with no entropy coding) fa code the maxima information ar the scales 21,22 and P,
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12. application 1o image understanding

The maxima chain representation provides a reorganization of the whole image information
into multiscale edpes. There is no need 10 further motivate the importance of edges for image pat-
temn Tecognition since many ¢xisting visien algorithms are edge based. An imponam contribution
of the wavelet theery is the understanding of the behavior of edges through scale. This enable us
o characterize the rypes of edges through their Lipschitz exponent and their blurring facwor o
Instead of viewing edpe detection as a hinary process that classifies the image pixels into edge or
non-gdges. we can obtaln a complement information about the local shape of the edpe. We
indead believe that edge detection should not only separate smooth regions from discontinuities
but rather chamcicrize the different wype of discontituites. Even il the image intensity is
extremely imegular almost everywhere, often there are some singularitics that one might want 1¢
distinguish from others. For example, in the lady image of fig. 9, th ireularitics of the fur tex-
ture of the hat are very different from the edges comesponding to the border of the shoulders. A
better understanding of the classifications of the image singularities is necessary to make a stable
distinction between edges and textures and for texmre discimination.

13, Conclusion

We saw that muliiscale edges can be obtained from the local maxima of a waveler
transform and we explained how to reconstmct the original signal from these local maxima. The
reconstruction algorithm can restore exaclly the image and thus gives 2 venfxation of Marr con-
jecture cn the completeness of multiscale edges. The mathematical study of the completeness
problem remains on open question. We also proved tha one can characterize the type of the edge
points from the decay of the waveler maxima amplilude across scales. This is pamicularly impor-
tant to disctiminate the different image sharp vaniauons. The wavelet maxima representation is a
new rcorganizarion of the image information in order 10 develop solulions to image processing
problems, from the propertics of the image edges. In paricular, we showed that it enables 1o
beild & compact image coding that takes into account the infermation ¢ontent of the image.
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