Delay bound of youngest serve first (YSF)
aggregated packet scheduling
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Abstract: A simple scalable aggregated traffic scheduling scheme is proposed, called the ‘youngest
serve first’ (YSF) algorithm. It is shown analytically that YSF can provide bounded end-to-end
delay time with high link utilisation that may not be possible for the first-in first-out (FIFO)

scheme.

1 Introduction

For the past decade, how to provide end-to-end quality of
service (QoS) guarantees has received much attention.
Conventional solutions to this problem are rooted in per
flow based scheduling schemes [1, 2]. The most significant
drawback of these approaches is the lack of scalability,
which could hamper the provision of end-to-end QoS
guarantees in large internet service providers (ISPs) {3].
Recently, aggregated packet scheduling has been the focus
of research as a possible alternative to provide a scalable
approach to end-to-end QoS guarantees. In particular, the
Differentiated Services Working group has proposed RFC
2598 [4}, which defines expedited forwarding per hop
behaviour (EF PHB). In this approach, EF traffics, which
are regulated at the network edge, share a single FIFO
buffer and are scheduled in an aggregated manner in the
core network. FIFO packet scheduling 1s one of the most
attractive approaches because of the implementation
simplicity.

EF PHB aims to guarantee bandwidth at both large and
small time scales, but whether it can guarantee end-to-end
QoS still remains unclear. It was believed that end-to-end
QoS in the network could be guaranteed if the link
utilisation was kept small enough (i.e. less than 50%).
Recent studies [3, 5] show that the worst-case end-to-end
delay bound for EF traffic through the network is
proportional to 1/{1—(H—Dx} if the FIFO scheme is
applied, where H is the number of hops along the longest
path of all the flows in the network, and «, the so-called link
utilization, is the ratio between the total amount of EF
traffic on the link and the capacity of the corresponding
link. It is clear that the worst-case delay is bounded only
when < 1/(H—1). Thus, the provisioning power of traffic
aggregation 15 significantly weakened. The reason behind
the difficulty of obtaining bounded end-to-end delay for an
arbitrary network topology is that in aggregated scheduling,
packet delay not only depends on the traffic behaviour of
the flows sharing the same queue, but also on the traffic

© IEE. 2003

IEE Proceedings online no. 20030239

doi: 10.104%/ip-com:20030239

Paper first received 15th March and in revised form 19th August 2002

The authors are with the Advanced Networking Lab, Electrical and Computer
Engineering Dept., New Jersey Institute of Technology, University Heights.
Newark NI 07102, USA

6

patterns in the whole network, even those that occurred a
long time ago [3].

In this paper, a new simple aggregated packet scheduling
algorithm is proposed: youngest serve first (YSF) for EF
traffics. The main objective of YSF is to achieve a better
end-to-end delay bound for EF traffics than a FIFO
aggregate scheduling scheme. In YSF, EF traffics are
shaped at the network edge. A label value is used to indicate
the packet state and is encoded in a certain field in each
packet header. As packets travel through the network, the
encoded information is updated. All the packets are
scheduled based on the information carried in the header.
This approach not only has low computational complexity,
but it also needs a very limited number of bits {log, ) to
carry the label in the packet headers. Most importantly, it
can provide bounded end-to-end delay for any <1 and
any H.

2  Network model, terminology, and background

It is assumed that there are at least two classes of end-to-end
flows [3] including the class of EF traffics, which are served
with strict priority over other classes of traffics. In general,
EF services can be realised by the guaranteed rate (GR}
scheme instead of being limited to priority queueing [51. The
proposed YSF can be extended to the GR framework. It is
also assumed that all network nodes perform the same
packet-scheduling algorithm based on the limited informa-
tion carried in the packet headers. Before entering the
network, EF traffic flow & is shaped at the network edge to
conform to a token bucket with parameters {+*, %), which is
the traffic arrival curve satisfying Ao, g+ H<Fr+ [J’k,
where A¥(to, 1o+ 1) is the total traffic from flow & released to
the network during time interval [z, £+ {]. Denote F{I) as
the set of flows traversing node /. It is assumed that for
every F(I) and I, the following conditions hold [3, 5]:

Z W < aCy (n
keF()

and
> B < BG (2)
keF(D

where o (< 1) is the link utilisation factor, [} is a constraint
on the burstiness of all flows through [, and C; is the
outgoing link capacity of I. According to [3], f is linearly
dependent on 2, and so we set f=1q%, where 75 18 a
constant. In this paper, the fluid traffic model is adopted,
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but this work can easily be extended to the packet traffic
model. The effect of propagation delay is also assumed
negligible.

The following notation is adopted: &, represents the
maximum delay (worst case) experienced by packet p at the
ith node along its path from the source to the destination,
and D; represents the maximum total delay (worst case)
experienced by packet p from the first node to the ith node
(inclusive) along the path, j.e.

D,:ledj

Next, some basic conclusions from network calculus theory
are rev1ewed [6, 7]. For simplicity, A4() replaces A(ty, to+ 1)
as the total traffic arrival curve. Denote S(r) as the traffic
service curve, which, in this case, is S(f)= Cr. The number
of packets stored at each node is at most B, which is
given by

B =45 5(0) (3)
where ¢, deconvolution, is defined by
AZS(t) == sup{d(t + 1} — ${z)} (4)
1ER

If the total traffic arrive curve is
A(t) = aCt + pC (5)
it ¢can be verified that
B=pC (6)

In Fig 1, B is the maximum number of packets stored,
which is fC as shown above. 15 the maximum queueing
delay, is f in our case if FIFO scheduling is adopted. £, is
the maximum burst length or the longest time for the
system to clear the queue, as long as work-conserving
scheduling algorithms are adopted. 1; can be obiained by
solving the following equation:

S(ta) =A(ta) (7

S0 =

A(l) <20t + §C

bits

Fig. 1 THustrarion of basic concept of network calculus theory

3 The youngest serve first (YSF) algorithm

It is assumed that the edge node is the first hop for all EF
traffic. The proposed YSF algorithm works as follows:
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before entering the network, each packet is labelied with the
number 1; at each node, the packet with the smallest label
value is served first, and packets with the same label value
are processed in a FIFO manner; the label on each packet is
increased by one just before they are transmitted. The label

‘value of a packet indicates the time it has spent in the

network, or more precisely, the number of hops it has
traversed through the network. This is why the scheme is
called ‘youngest serve first’ [Note 1).

Naturally, the worst-case delay bound is experienced by
packets with H hops from their source to the destination; £,
as defined earlier, is the number of hops along the longest
path of all the flows in the network. Consider a packet p. It
can be seen that at different nodes along the path, p
experiences different delay bounds. At the first hop, p has
the highest priority due to the smallest label value carried in
its header. After p is transmitted from the first hop node, the
label value is increased to 2 at the second hop node. Thus, p

. cannot receive service as long as there are packets with label

value 1 in that node. Intuitively, the longer the packet stays
in the network, the larger the maximum delay it will
experience at each node. In other words, di=<dj for
1<i<j<fl In the rest of this paper, traffic is grouped
based on labels carried in packet headers.

Definition I: Denote F(I) as the set of flows which assume
their jth hop at node I  Therefore, FH=

FyuFDuU...uEAD, Define ) and o) as
pi=>r (8)
el ()
=> p ©)
ieF(1)

In other words, pf is the sum of rates of flows that assume

their jth hop at node 7, and 0‘} is the sum of burstiness of
flows that assume their jth hop at node 1.
Thus, (1) and (2) can be rewritten as

> = ZZM Zp;qc, (10)

keF (1) i=1 keF(I)
H

DB ZZ/}* Sej<pa (D)

keF) J=1 keF(h) J=1

Next, we derive the end-to-end delay bound with respect to
the link utilisation o, the value of H, and the burstiness
constraint f3.

Lemma 1: The maximum delay experienced by packet p at
its first hop in the network is d, = § (also D).

Proof: Suppose the first hop node is 1. Since packet p has
the smallest label value 1, it has the highest priority in the
system. Any other packets with a larger label value will not
alfect the service time of p. As a result, p experiences the
worst-case delay when [ is the first hop for all the flows
traversing it. In this case, all packets have the same label
value or priority. Thus, the scheduling algorithm is just
FIFO. According te (10) and (11), the maximum overall
traffic arrival curve at [ is A(t)=oCy+ pC;. According to
Fig. 1, bused on the network calculus theory introduced
earlier and the fluid traffic model used throughout this
paper, the delay bound is §. g

Note I:Youngest serve first is with respect to the hop count.



Lenama 20 The maximum delay experienced by packet p
from its first hop node to the second hop nede (inclusive)
along the path is bounded by

B
gL
Ds IJrl—c:

Proof: This lemma could be proved by the alternative
approach used in [8]. Suppose the second hop node for p is
I. According to the analysis in lemma 1, only packets with
label value either 1 or 2 can affect the delay time of p at L.
To obtain the worst-case delay bound for flow jat 7, it is
assumed that only packets with label value T and 2 traverse
node 7. In other words, only packets experiencing their
either first or second hop at f are considered. Since packets
labelled with 2 may have already experienced delay D, the
traffic arrival curve for those flows is pi(r + 1) + o7

instead of pit + o7 [3]. For flows with the first hop at Z, the

arrival traffic curve is still p}¢+ o}, Therefore, the total .

arrival traffic curve at Iis
A(0) = pjt+0a; +pj(t+D0) + o] (12)

To obtain the maximum delay, the equalities in (10) and
(11) are used:

S gl =aC (13)
i=1
> o =HC (14)
i=1

Using (13) and (14), one can rewrite (12) as
Al =a(1l = x)Crt + xaCr(t + Dy ) + BC

=af{l — x)Crt + xaCyt + x2CeDy + C; - (15)

where x = pf /2C;. As can be seen, the burst size of the
overall traffic is changed from BC; to xuCD(+ pC,
According to the explanation in Section 2, it is known that
when packet p arrives at node /, the maximum buffer
occupied at { is xaCpD) + C;. All the packets in the buffer
hefore p arrives will be served before p, since their priorities
are not lower than p; packets that are labelled with 2 and
arrive after p will not affect its departure time, becausc they
carry the same labels as p and will be served in FIFO order.
However, those packets labelled with 1. of which the arrival
rate is (1-—-x)aC,, will affect the departure time of p even
though they enter the queuc after p. Thus, the effective total
arrival traffic curve that can determme the departure time of
D s

Ag_ff(t) = (1 — x)aCst + (xaCrDy + pC;) (16}
instead of (15). If we replace A(¢) in Fig. 1 with A,4(7), the
maximum delay experienced by p at its second hop node [is

o> =ty Using (7), d> can be determined from the following
equality:

Cid> = Aeﬂ'(dz) = (1 — X)OCC,'dg -} (XC(C]D] + [)’C,) (17)
Thus,

_oxa+f 0 o+ 18
dzil—(l—x)a_l—(lfx)ac (18)
Since
dd> —u2
B m{l— — }2[)'<0 {19)

when x=0. ¢, reaches its maximum:

p
= 20
&> T—= (20)
Hence,
D2:D|+d2:ﬁ+_lfa (21)
O

After packet p takes its second hop and moves 1o the jth
(>2) node, there are possibly more packets with smaller
label values or higher priorities at that node. Intuitively, p
could experience a longer delay at those nodes. Next, in
theorem 1, the delay bound is derived as p moves closer to
its destination.

Theorem I: The maximum delay experienced by packet p
from its first hop node to the kth hop node (inclusive) along
the path is bounded by

B +aDpa

Dy =D +
1 —u

22)
for any k=3.

Proogft This theorem could be proved by an approach
applying the worst-case delay for a priority queue [8}. Here
we use induction to complete the proof. One can reasonably
define Dp=0. From lemma | and lemma 2 we have

D
92:D1+dz:ﬁ+L:D1+ﬁ+a ¢ (23)
| — o |l —a
Assume
} Dy
Dy = Dyy TP Ti; : (24)

Nexi, it is shown that the above expression holds for &+ 1.
Let node 7 be the (£ + 1)th hop of packet p, and thus only
packets with label not larger than K+ 1 can affect the delay
of p at I. In other words, only packets assuming their jth
(f<k-+1) hop at node I will be considered. The overall

arrival traffic curve can be written as

Aty =" pj(e+ D) + of) (25)

Define x; = g} /aC;. and also note that zkfll x; = 1. Then
(25) can be rewritten as
I k)

Ay = Z{p,(t+Dj1+0‘]} pr(ur )+> 4
=

Ftl
Z O(CI t+D Y+ BC < xpqaCrt + xpaCrDy

+ Z \’foCﬂ + ZXJOCC:Dk L+ G

=1 =l

=xp112Ct + xp 1 9C Dy + (1 - xk+1)OCC1!

k
+ZXjOCC]Dk_| +ﬁC[ =X;H,1OCC[[+ (l —.Xk+1)O€C1f

=1
+ [xk+|0£C/D,(- + (1 — xpe1)aCrDyy + BCI] (26)

The inequality in (26) is based on the fact that Dy< Dy if
i<k—1. The third term in the last equality stands for the
maximum traffic queued in the system when packet p joins
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the queue. The first term can be viewed as traffic which
assumes the (k+ 1)th hop at node 7, and arrives after p, and
thus cannot affect p’s departure time. The second term
represents traffic with smaller label values, which also
arrives after p, but can affect the departure time of p. Using
a similar argument to that the proof of lemma 2, the
effective arrival traffic curve can be written as

Ae_g'(t) =(1 —Ik+])-7.c1t + xpp10C Dy

+ (I - xk+|)azC;Dk,1 -+ ,BC; (27) 7

By solving for d...; in the following equation
Crdyt =Aegy (dig1) = (1 — xpq1 )aCredpry

+ X 10C Dy + (1 — xp )2Cr Dy + BC

(28)
we get
NprreDy + (1 — oDy 4+ 8
et = T (1 —xpp1 ) (29)
Thus,
Odeyy  al(1 —o)Dy — Dyy — fi]
Oxior {1 = (1= mp)a)’

K [ =(Di +1§’%ﬁ) Dy = f|
{1 =01 —x )}
_ (D2 — Dy
{1— (1= xer)a}

<0

(30)

Equation (24) has been used to reach the third equality in
(36). So, when x;41=0, ;4. reaches its maximum value.
From (29),

aDe .+ 8
=1 T8 31
g - (1)
and
alp_y +
Diepy = Dy +dpyy = Dy + ‘“Iki—aﬁ (32)
O

Using the recursive relationship in (32) with the initial
conditions stated in lemma | and lemma 2, we have

_ﬁ rm—a—1; r—o-1 -
b= { it ro—=r " ]} (33)

o rm—n
jz3
where
| —atv-3 +20+1
2= 21 =2)
are the roots of the following quadratic equation
rzfr*lf =0 (34)

It can be shown using (33) with further algebraic
manipulation that Dy o Hf when o is very small, and Dy
o (1 — o{)_"”2 when o= 1. Based on the above analysis,
one can conclude that the link utilisation, which is
independent of H, can approach 1, and the end-to-end
delay is also bounded at the same time. The end-to-end
delay bound for FIFO [3] is HB/{1—x{H—1)}, if the fluid
traffic model is applied. Note that £ is denoted by 7 in [3].
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Fig. 2 shows the performance comparison between YSF
and FIFO with H= 10. The vertical axis is the number of
time units {in terms of t4). With a given link utilisation a,
YSF performs much better than FIFO, especially when = is
large.
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Fig. 2 Performance comparison between YSF and FIFO

I may seem very natural to adopt another scheme,
namely oldest serve first (OSF), in which the packets with
the largest label value are served first instead of being served
last in YSF. Next, it is shown that YSF performs better
than OSF.

Lemima 3: In OSF, for any packet p with H hops to its
destination, the worst-case delay experienced upto the
(H—1)th hop (inclusive) is

(H-1#

Dri1 = 1 — ol

Proof: To derive the worst-case delay, it is assumed that the
node T is the kth (1 <k < H-1) hop node along p’s path to
its destination, and all packets from other flows assume
their Hth hop at I According to OSF, packet p has the
lowest priority ahd can cnly be served when no other
packets are in the corresponding node. Since other flows
may all experience the maximum delay Dy_,, the total
arnival traffic curve is

A(H) = 2C(t + D1} + P&, (35)

Then, dp, the delay bound of p experienced at the kth node
can be obtained by solving the following equation;

S(d_g) = Cidk = A(d;() = OCC[(d/\» -+ DH,]) + ﬁC[ (36)

Thus, we get
Dy +§

= T 7
gy =22 (37

On the other hand, we alse have

H-1
ADy-1 + f

Dy = dy=(H—-1)———— 38
H-1 ; b= e (38)



Hence,

(H-1)p

Dot =0

(39)
g

From lemma 3, it can be seen that Dy, is bounded only
when a<1/H. Since z can approach 1 in YSF, YSF
achieves higher link utlisation. From (39), it is also seen
that in OSF, when a approaches |, the end-to-end delay
bound tends to infinity. However, in YSF, the end-lo-end
delay bound always remains finite as long as «< 1. Thus,
YSF also performs better than OSF in terms of the end-to-
end delay bound.

4 Discussion and conclusions

A new aggregated traffic scheduling scheme, youngest serve
first {(YSF) has been proposed, and its end-to-end delay
bound derived. YSF has been proven to have the following
merits. First, link utilisation « in YSF can approach 1,
regardless of the network topology and the value of H;
second, the end-to-end delay bound in YSF is much smaller
than that in FIFO, and thus better end-to-end delay bound
can be guaranteed. Even with the additional complexity
required, which is rather low, the advantages described
make YSF preferable to FIFO. At each node, there are H
different label values. Thus, we need at most H queues,
corresponding to the different label values. Packets are
placed into different queues based on their label values and
the backlogged queue with the smallest label value is served
first. Therefore, YSF is scalable because we need to manage
only H queues, no matter how many flows traverse each
node. Note also that only log,H bits are required 1o encode
the label. One may use either the TTL field or the TOS field
m the IP header to realise YSF, but this issue 1s beyond the
scope of this paper. Ideas from timestamp-based scheduling
algorithms such as WFQ [1] and WF’Q [2] may be
incorporated in designing aggregated traffic scheduling
schemes. However, YSF possesses the following advantage
not shared by the timestamp-based approaches: the nodes
in the network need not be synchronised in time, and
timestamps need not be computed and updated.

YSF can be incorporated in Diffserv, which is the
emerging service architecture for the Internet. YSF can be
an alternative to the FIFO scheme, which is currently
employed in EF traffic scheduling. EF is usually assumed to
support delay-sensitive applications, ¢.g. audio streaming.
As addressed in [3] and [5], the FIFO scheme can provide a
strict end-to-end delay bound only for small link utilisation
and limited hop count. This shortcoming of FIFO can
severely limit the QoS provisioning required by many delay-
sensitive applications using EF. Retaining the simplicity of
aggregate scheduling, YSF provides strict and low end-to-

end delay bound for any hop count and link utilisation {less
than 1).
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