
 

  
Abstract—Core-stateless scheduling algorithms can provide a 

similar level of guaranteed services as the stateful approach, 
while they do not need per-flow management. They hence possess 
both the properties of Quality-of-Service (QoS) provisioning and 
high scalability. In this paper, by showing the current existing 
traffic models are not applicable to core-stateless networks, a new 
and efficient traffic model for characterizing traffic in a core-
stateless network is proposed, and its properties are presented. 

 
Index Terms— Core-stateless network, traffic scheduling, QoS 

 

I. INTRODUCTION 
 any integrated service architectures were proposed [1]-
[6] aiming to provide guaranteed services in packet-
switched networks. These architectures possess 

properties of high flexibility and high degree of service 
assurance. Since they need to maintain per-flow state and per-
packet classification, it is difficult to implement such solutions 
in a scalable fashion.  
   In contrast to the integrated service model, the differentiated 
service network architecture incorporates classification and 
conditioning functions only at network boundaries, and all 
flows belonging to a same class only share a single FIFO in 
core nodes, thus achieving a higher level of scalability than the 
integrated service architecture. However, it was shown [7] that 
the worst-case delay bound, which is a function of the hop 
count for a general network configuration (single FIFO), 
explodes at a certain utilization level, i.e., the worst-case delay 
at each router is bounded only when the network utilization 
level is limited to a factor smaller than *1/( 1)H − , where *H , 
referred to as the network diameter, is the maximum number 
of hops a path is allowed. Thus, the overall network utilization 
must be limited to a small fraction of its link capacities in 
order to provide guaranteed delay services for all flows using 
FIFO. Aiming to overcome the above drawback of the 
differentiated services, Z. Zhang et al. [8] proposed two new 
classes of aggregated packet scheduling algorithms: the static 
earliest time first (SETF) and dynamic earliest time first 
(DETF). It was shown that the maximum allowable network 
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utilization level can be greatly increased while the worst-case 
delay bound is decreased if additional time stamp information 
is encoded in the packet header. In [9], a core-stateless version 
of Jitter Virtual Clock (CJVC), which achieves the same 
worst-case delay bound as Jitter Virtual Clock, has been 
proposed. Like Jitter Virtual Clock, CJVC is non-work 
conserving, i.e., the server may be free even if there are 
packets in the buffer. The network resource may thus be 
under-utilized. In [10], a methodology to transform any 
stateful Guaranteed Rate (GR) per-flow scheduling algorithm 
into a core-stateless version was proposed. At the network 
edge, each packet is encoded with a time stamp which is a 
function of the packet’s arrival time, and the amount of arrived 
traffic and the flow to which the packet belongs; this time 
stamp is updated at each core node. Packets are served 
according to the order of their time stamps. The proposed 
mechanism is proven to provide the same delay bound as the 
corresponding stateful GR server.  
   In literature, many traffic models have been proposed to 
characterize network traffic. Among them, the ( , )σ ρ  traffic 
model proposed in [11] owing to its simplicity and efficiency 
has been widely adopted for the network performance 
analysis; here, the network performance analysis is referred to 
as the analysis of the worst-case delay, worst-case jitter, 
packet loss ratio, and so forth. In this paper, it is shown that 
the ( , )σ ρ  traffic model is not appropriate for characterizing 
traffic in a core-stateless network. Instead, we introduce a new 
traffic model, the ( , )β α  traffic model, which can better 
describe flows in a core-stateless network. Based on this 
model, three important issues are addressed: time stamp 
encoding at the network edge, traffic pattern distortion in a 
core network, and the worst-case delay analysis. We also show 
that the time stamp encoding scheme proposed in this paper is 
optimal in terms of minimizing the worst-case delay bound of 
a flow.  
Assumptions 
1. We only consider an arbitrary network topology with 

links and switches where each link is associated with a 
delay bound (propagation delay), and each switch is non-
blocking. 

2. A packet is considered “arrived” only after its last bit has 
arrived. 

3. Since a packet will only be delayed at a node if there is a 
packet being served, or there are packets waiting in the 
buffer with earlier time stamps, we assume the start time 
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of each busy period is initialized at 0. The delivery time 
of a packet at a node is the time when the last bit of the 
packet leaves the node. 

We assume that the time stamp of each packet lags behind its 
arrival time at any given node. This assumption may not hold 
for some core-stateless scheduling algorithms. However, note 
that packets are served by the order of their time stamps; the 
delivery order of packets will not change (thus, the delay for 
each packet to traverse the network remains the same) if the 
time stamps of all packets are increased by a constant D  at 
the network boundary. Therefore, if D  is large enough (for 
example, let D  be the worst-case delay of any packet through 
a given network, if such a bound exists), our assumption can 
be satisfied. We assume that, if the burst of each flow is 
bounded and the capacity of any link is no less than the 
average rate of the flows traversing the link, there exists a 
worst-case delay bound in the network, i.e., the worst-case 
delay of a flow to traverse any pair of nodes in the network 
with a limited number of hops is bounded. The framework 
proposed in this paper is only applicable to a work-conserving 
core-stateless network with bounded-delay.. 

 

II. THE ( , )β α  TRAFFIC MODEL 

   We first introduce the core-stateless network model we used 
in this paper.  
 

edge
router

edge
router

core
router

core
router
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Figure 1. Core-stateless network model. 

 
As shown in Fig. 1, routers are classified into edge routers, 
located at network boundaries, and core routers, located inside 
the network. When a packet arrives at the network boundary, 
the edge router will attach a label to the packet. The label 
includes some per-flow information such as the reserved 
bandwidth of the flow, and a time stamp, which could be a 
function of the arrival time of the packet, the packet length, 
and the reserved bandwidth. The time stamp may be updated 
at each core router. The label will be removed from each 
packet after it traverses the network. At all routers, packets are 
served by the increasing order of their time stamps. 
   In literature, the ( , )σ ρ  traffic model proposed in [11] has 
been widely adopted for characterizing traffic in a network, 
i.e., if the total traffic of a flow 1 2( , )F t t arrived in the time 
interval 1 2( , ]t t  is bounded by 

1 2 2 1( , ) ( )F t t t tσ ρ≤ + − ,                         (1) 

this flow is referred to as conforming to the traffic parameter 
( , )σ ρ . Packets are served by the order of their arrival times 
in the network where a single FCFS (First Come, First Served) 
queue is deployed in each node, and thus no per-flow 
information is maintained. In a stateful network, packets are 
served by the order of their time stamps, which are a function 
of the performance parameters, the amount of the previously 
arrived traffic of the corresponding flows, and the arrival 
times of the corresponding packets. Note that per-flow 
information is maintained at core nodes in the stateful 
network, and the performance parameters of each flow are 
static. Therefore, only one time parameter (arrival time) 
associated with each packet is enough for performance 
analysis in the stateful network and the “FCFS” network 
(where a single FCFS queue is used in each node), i.e., given 
the arrival times and sizes of all packets, the delivery time of 
each packet can be derived, and thus the worst-case delay and 
jitter of each flow can be computed. However, in a core-
stateless network, per-flow information is not maintained in 
core nodes, and packets in the buffer are served by the order of 
their time stamps, not their arrival times. There is also no 
distinct relation between the time stamp of a packet and its 
arrival time. Consider the following example. 
   Given two CBR flows 1 and 2 that are contending for the 
bandwidth of a link with a capacity of 2 /L c . The reserved 
bandwidths of the two flows are both /L c , and all packets are 
of size L . However, the inter arrival times of two consecutive 
packets of flows 1 and 2 are c  and / 2c , respectively. Assume 
the first packets of both flows arrive at time 0, and the arrival 
time of the k th packet of flow i , 1,2i = , is k

iA , where 
( 1)k

iA k c= −  if 1i = , and ( 1) / 2k
iA k c= −  if 2i = . The time 

stamp attached to the k th packet of flow i  is, however, kc , 
which is independent of i  and will make each flow attain its 
reserved bandwidth. Therefore, it can be observed that the 
worst-case delay of flow 1 is c and it is infinity for flow 2. 
However, if the time stamp of the k th packet of flow i , 

1,2i = , is set to /k
iA L c+ , the worst-case delays of both flows 

become infinity. Assume the difference between the arrival 
time of a packet and its time stamp is known. The worst-case 
delay of each packet can be computed, which is the difference 
between its delivery time and its arrival time plus the worst-
case delay of packets with respect to their time stamps. With 
( , )σ ρ , the worst-case delay of packets is infinity. However, 
we cannot tell which flow will experience such delay. 
Therefore, instead of using the ( , )σ ρ  traffic model, we will 
develop another traffic model to characterize traffic in a core-
stateless network, that could enable us to easily compute the 
worst-case delay of all packets with respect to their time 
stamps. Moreover, from the point of view of a node, packets 
are served only by the order of their time stamps, and their 
arrival times seem irrelevant. Thus, a packet with an earlier 
time stamp than another packet, though arrives later, may be 
served first. So, it is more reasonable to evaluate a packet’s 
delay with reference to its time stamp, which is referred to as 
the virtual delay of a packet, rather than merely its arrival 
time. Therefore, a new mechanism to characterize traffic in the 
core-stateless network is necessary.  
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   Since we evaluate the delay of a packet with reference to its 
time stamp, an intuitive idea to characterize a flow in the core-
stateless network is to define a parameter ( , )β α  such that the 
total traffic of the flow of packets, whose time stamps are in 
the range of 1 2( , ]t t , is no larger than 2 1( )t tβ α+ − , similar to 
the ( , )σ ρ  traffic model. Assume packets are ordered by their 
time stamps as 1 2, ,..., ,...kP P P  ( i jR R≥ , if i j> ; where iR  is 
the time stamp of packet iP ). Equivalently, for any two 

packets mP  and kP  ( k m≥ ), ( ) k
k m ii m

R R Lβ α
=

+ − ≥∑ , 

where, iL  is the size of iP . In this case, the parameter for the 
aggregated traffic of flow 1 and 2 in the above example is 
( , )L c . However, note that the virtual delay of each packet is 
0 , and the intuitive implication of the virtual traffic parameter 
( , )L c  is that the worst-case virtual delay of a packet (i.e., the 
worst-case delay with reference to its time stamp) is /L c . A 
packet may receive service as long as there is no packet in the 
buffer when it arrives. Thus, it is necessary to take into 
account of the arrival time of a packet to characterize traffic in 
the core-stateless network. Therefore, we define the virtual 
traffic parameter β α( , )  ( 0, 0α β> ≥ ) of a flow as follows: 
for any two packets kP  and mP of this flow ( 1k m≥ ≥ ), 

1 1( max{ , min{ , , ..., }})k m m m kR R A A Aβ α − ++ − k
ii m

L
=

≥∑ , 

where iA  is the arrival time of packet iP , 1 2= , , ...i , we refer 
to 1 2 2 1( , ) ( )F t t t tβ α= + −  in the time interval 1 2( , ]t t  as the 
virtual traffic function of this flow with the virtual traffic 
parameter ( , )β α , and the traffic model for characterizing 
traffic in the core-stateless network with the virtual traffic 
parameter is referred to as the ( , )β α  traffic model. 

   Our proposed traffic model, the ( , )β α  traffic model, is 
different from those proposed in the literature. A virtual 
reference system that has the virtual space property: 

1 1 /k k kR R L α+ +− ≥ , is introduced in [12]. It can be observed 
that, only when 0β = , the ( , )β α  traffic model possesses the 
virtual space property. A scheduler is said to possess the 
Coordinated Multihop Scheduling (CMS) property [13] if  

• k k kR A δ= +  at the entrance node, 

•  1 1k k kR R δ− −= +  at a core node, 

where [ , ]kδ δ η δ η∈ − + , δ  and η  are two constants that may 
vary with different nodes and flows. Since we do not place 
any constraint on the difference of the time stamps of two 
consecutive packets ( 1| |k kR R −−  and | |k kR A− could be infinity 
in our traffic model), the ( , )β α  traffic model does not 
possess the CMS property. Note that the time stamp is referred 
to as the priority index in [13]. 
 

III. PROPERTIES OF THE ( , )β α TRAFFIC MODEL 

   Since packets are served by the order of their time stamps, 
and no per-flow information is maintained at core nodes, all 

packets are treated as if they belong to a single flow. 
Therefore, the performance analysis of an individual flow at a 
node can be achieved by analyzing the performance of the 
aggregated flow at this node, which can be facilitated with the 
knowledge of the aggregated flow’s traffic parameter. It is 
well known that the aggregated traffic of two flows with 
traffic parameters of 1 1( , )σ ρ  and 2 2( , )σ ρ  in the ( , )σ ρ  
traffic model, respectively, has the traffic parameter 

1 2 1 2( , )σ σ ρ ρ+ + . Here, we show that the aggregated traffic 
in a core-stateless network also possesses the same additive 
property by Theorem 1 with respect to the virtual traffic 
parameter. 
[Theorem 1] Given two flows with virtual traffic parameters 

1 1( , )β α  and 2 2( , )β α , the virtual traffic parameter of the 
aggregated traffic of the two flows is 1 2 1 2( , )β β α α+ + . 
Proof: Assume packets are ordered by their time stamps. 
Given any two packets kP  and mP  ( k m≥ ) of the aggregated 
flow, assume packets 

1i
P , 

2i
P ,…, in

P , ( 1 2 ... ni i i< < <  and 

( 1)n k m≤ − + ) belong to flow 1, and the rest of packets 

1 2
, ,...,j j j p

P P P , ( 1 2 ... pj j j< < <  and 1p k m≤ − + ) belong to 

the other flow. Thus, by definition of the virtual traffic 
parameter, 

1 1 11 1 2 1
( max{ ,min{ , ,..., }}) in

i i i i i sn n s i
R R A A A Lβ α − =

+ − ≥∑ ,        (1) 

and 

2 2 11 1 2 1
( max{ ,min{ , ,..., }}) jp

j j j j j sp p s j
R R A A A Lβ α − =

+ − ≥∑ .    (2) 

Since max{ , }i j kn p
R R R= , 

1 2
min{min{ , ,..., },i i in

A A A  

1 2
min{ , ,..., }}j j jp

A A A 1min{ , ,..., }m m kA A A+=  and 
1 1min{ ,iR −  

1 1 1}j mR R− −= , 

1 2 1 2 1, 1( ) ( )( max{ min{ , ,..., }})k m m m kR R A A Aβ β α α − ++ + + −  
        1 1 11 1 2

[ ( max{ ,min{ , ,..., }})]i i i i in n
R R A A Aβ α −≥ + − +  

           2 2 11 1 2
[ ( max{ ,min{ , ,..., }})]j j j j jp p

R R A A Aβ α −+ −  
k

ss m
L

=
≥∑ .                                                                  (3)  

By Theorem 1, the virtual traffic function of an aggregated 
traffic can be derived provided that all the virtual traffic 
functions of individual flows are known. 
In Theorem 1, in order to derive the virtual traffic parameter 
of the aggregated flow, we assume the traffic parameters of all 
individual flows are known. A connection’s traffic can be 
characterized at the entrance to the network, but the traffic 
pattern may be distorted inside the network, and thus the 
source characterization is not applicable at a core node 
traversed by the connection. Moreover, as one of the major 
components for some core-stateless scheduling algorithms, 
such as DETF and GR, packets’ time stamps are updated at 
core nodes, that may also contribute to the traffic pattern 
distortion. From the viewpoint of the virtual traffic function, 
we provide Theorem 2 to analyze the variation of the traffic 
parameter of a flow in a core-stateless network. 

 [Theorem 2] Assume the traffic parameter of the input traffic 
of a flow at a node is ( , )β α , and the worst-case virtual delay 
to traverse this node is D . The virtual traffic parameter of the 
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output traffic of this flow is '( , )β α  if all of its packets are 
updated by an increment d  at this node, where 

'
maxmax{0, ( ) }D d Lβ α β= − + + . 

Proof: Assume packets are ordered by their delivery times, 
i.e., for packets kP  and mP , ( )k m≥ , k mT T≥ , where iT , the 
delivery time of packet iP , 1,2,...i = , is also the arrival time 
of iP  of the output traffic. Since the worst-case virtual delay is 
D , for any packet iP , 1,2,...i =  

i iT R D≤ + .                                  (4) 
Furthermore, since the time stamp of each packet that has been 
delivered by node j  is updated by d , and 

'
maxmax{0, ( ) }D d Lβ α β= − + + , for any two packets k  and 

m ( 1)k m≥ ≥ , 
                '

1[ max{ , }]k m mR d R d Tβ α −+ + − +  
                '

1[ max{ , }]k m mR d R d R Dβ α −≥ + + − + +  

1 maxmin{ ( ), ( )}k m k mR R L R Rβ α β α−≥ + − + + − .  (5) 
By the definition of the virtual traffic function, 
               1 1[ max{ ,min[ , ,..., ]}]k m m m kR R A A Aβ α − ++ − . 

1( )k k
i k m ii m i m

L R R Lα −= =
≥ ⇒ − ≥∑ ∑ .                     (6) 

Thus, define ' max
i i

L
R R D

α
= + +  as the time stamp of packet 

iP  in the output traffic, 1,2,...i = ; by Equations (5) and (6), 

            ' '
1 1[ max{ , min[ , ,..., ]}]k m m m kR R T T Tβ α − ++ −  

1 maxmin{ ( ), ( )}k m k mR R L R Rβ α β α−≥ + − + + −  

      max1
min{ , }k k k

i i ii m i m i m
L L L L

= = + =
≥ + ≥∑ ∑ ∑ .             (7) 

Therefore, the virtual traffic parameter of the output traffic of 
this flow is '( , )β α .                                                                   
[Lemma 1] Assume the traffic parameter of the input traffic 
of a flow at a node is ( , )β α , and the worst-case virtual delay 
to traverse this node is D . Assume the propagation delay for a 
packet of this flow to transmit from node j  to its next node is 
δ . The virtual traffic parameter of the input traffic of this 
flow at the next node is '( , )β α  if all its packets are updated 
by an increment d  at this node, where 

'
maxmax{0, ( ) }D d Lβ α δ β= + − + + . 

Proof: From the viewpoint of the input port of a node, the 
worst-case virtual delay of a flow is D δ+  if there is no time 
stamp update at the previous node of this flow, where D  is 
the worst-case virtual delay of this flow at that node, and δ  is 
the propagation delay between the two nodes. Thus, by 
Theorem 2, the virtual traffic parameter of the input traffic of 
this flow at this node is '( , )β α  if all of its packets are updated 
by an increment d  at the previous node, where 

'
maxmax{0, ( ) }D d Lβ α δ β= + − + + .                                     

   Based on the concept of the virtual traffic function and 
parameter, and their properties, we shall next analyze and 
derive the worst-case delay of a flow to traverse a node in a 
work-conserving core-stateless network, with the assumption 

that the virtual traffic function of the aggregated flow or all 
individual flows is known.   
[Theorem 3] Assume the input traffic of a node consists of 
flows 1,2,...,v , whose virtual traffic parameters are ( , )i iβ α , 
respectively, and the capacity of the output link of this node is 
c , 

1
( )v

ii
c α

=
≥∑ . Let packets of each flow be ordered by their 

delivery times, and i
kP  represents the kth packet of flow i . 

Define 1 11
max{min{ min{ , ,..., }},0}i i i i

i m m m kk m
R A A Aθ − +≥ >

= − , where 
i
mR  and i

mA  are the time stamp and arrival time of i
mP . Thus, 

the worst-case virtual delay at this node is bounded by 

max1
( )v

i i ii
L

c
β α θ

=
− +∑ ,                          (8) 

where maxL  is the maximum size of a packet. 
Proof: Let kP  ( 1, 2,...k = ) represent the kth packet of an 
aggregated flow in which packets are ordered by their time 
stamps. For any packet kP , assume m  be the largest integer 

0k m> >  such that k mR R<  and k mT T> , where iR  and iT  
are the time stamp and delivery time of iP . Thus,  

m k iR R R> ≥  for all m i k< < ,                    (9) 
and 

k i mT T T> >  for all m i k< < .                    (10) 
That is, packet mP  is transmitted before packets 1,...mP +  , kP ; 
however, its time stamp is larger than that of packets 

1,...,m kP P+ . So, 

1min{ ,..., } m
m k m

LA A T
c+ > − .                    (11) 

Since 1,...,m kP P+  arrive after m
m

LT
c

− , and depart before kP , 

1

k
ii m

k m

L
T T

c
= += +∑ .                         (12) 

Note that i iR A≥  (Assumption 4) for all 1,2,...i = , and thus 

m
k i i m

LR R A T
c

≥ ≥ ≥ −  for 1,..., 1i m k= + − . Furthermore, 

according to the definition of the virtual traffic function, 

1 11
max{min{ min{ , ,..., }},0}i i i i

i m m m kk m
R A A Aθ − +≥ >

= −  

1 1 1min{ , ,..., } max{ ,min{ , ,..., }}i i i i i i i
m m k m m m kA A A R A A Aθ+ − +⇒ + ≤  

1 1
[ (min{ , ,..., } )] ki i i i i

i i k m m k i jj
R A A A Lβ α θ+ =

⇒ + − + ≥∑ .       (13) 

Since packets 1,...,m kP P+  comprise the packets of flows 
1,2,...,v , 

11 1
{ [ (min{ , ,..., } )]}k v

i i i k m m k ii m i
L R A A Aβ α θ+= + =

≤ + − +∑ ∑ .  

1 1
( ) ( )[ ( )]v v m

i i i i k mi i

LR T
c

β α θ α
= =

≤ − + − −∑ ∑ .                    (14) 

From Equations (12) and (14), 

             1

k
mi m

k m

L
T T

c
= += +∑  
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1 1
( )[ ( )] ( )v vm

i k m i i ii i

m

LR T
cT
c

α β α θ
= =

− − + −
≤ +

∑ ∑
 

            max 1
( )v

i i ii
k

LR
c c

β α θ
=

−
≤ + +∑  

         max 1
( )v

i i ii
k k

LT R
c c

β α θ
=

−
⇒ − ≤ +∑ .                       (15) 

If there does not exist such m , then 1 1,... kP P −  all leave the 
node before kP ; thus 

1 1 1
( ) ( )k v v

i i k i i ii i i
k

L R
T

c c
α β α θ

= = =
+ −

= ≤∑ ∑ ∑  

1
( )v

i i ii
k kT R

c
β α θ

=
−

⇒ − ≤ ∑ .                                 (16) 

So, for any packet, its virtual delay is bounded by 

max1
( )v

i i ii
L

c
β α θ

=
− +∑ .                                                            

   It should be noted that, by deploying our proposed ( , )β α  
traffic model, the design and performance analysis of core-
stateless algorithms such as the one proposed in [10] can be 
easily achieved. For example, in order to make the virtual 
traffic parameter of each flow at the input port of any node 
(0, )α , where α  is the requested rate of this flow, by Lemma 
1, all its packets’ time stamp of this flow should be updated by 

an increment maxLd D δ
α

= + +  at a node, where D  is its worst-

case virtual delay to traverse this node, and the δ  is the 
propagation delay from its previous node to this node. 

Moreover, by Theorem 3, it can be derived that maxLD
c

= , 

because the virtual traffic parameters of all flows are in the 
form of (0, )α . Therefore, the time stamp increment of a flow 

at a node is max maxL Ld
c

δ
α

= + + , which is the same the one in 

[10]. 

IV. CONCLUSIONS 
   In this paper, by showing that the current existing traffic 
models are not applicable to core-stateless networks, a new 
traffic model, the ( , )β α  traffic model, for core-stateless 
networks is proposed, and its properties are presented. It has 
been shown that it is simple and efficient. 

   However, as the first step for a core-stateless network to 
deliver packets, time stamps are encoded in packets at network 
boundaries. Since we propose the ( , )β α  traffic model to 
describe the traffic in a core-stateless network, it is necessary 
to investigate how to encode time stamps of packets of a flow 
that conforms to a given virtual traffic parameter. We will 
address this issue by proposing a time stamp encoding 
mechanism in our next paper, and show that it is optimal in 
terms of minimizing the end-to-end worst-case delay of a flow 
to traverse a core-stateless network. Moreover, we will also 
provide the worst-case delay of any flow in a core-stateless 

network with our proposed ( , )β α  traffic model. 
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