
IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 11, NOVEMBER 2006 793

Differentiating Malicious DDoS Attack Traffic from
Normal TCP Flows by Proactive Tests

Zhiqiang Gao, Member, IEEE, and Nirwan Ansari, Senior Member, IEEE

Abstract— To defend against distributed denial of service
(DDoS) attacks, one critical issue is to effectively isolate the attack
traffic from the normal ones. A novel DDoS defense scheme based
on TCP is hereby contrived because TCP is the dominant traffic
for both the normal and lethal flows in the Internet. Unlike
most of the previous DDoS defense schemes that are passive in
nature, the proposal uses proactive tests to identify and isolate
the malicious traffic. Simulation results validate the effectiveness
of our proposed scheme.

Index Terms— DDoS defense, proactive test, TCP.

I. INTRODUCTION

D ISTRIBUTED denial of service (DDoS) attacks are
probably the most ferocious threats to the integrity of

the Internet. It is well known that it is rather easy to launch,
but difficult to defend against, a DDoS attack. The underlying
reasons include (1) IP spoofing; (2) the distributed nature
of the DDoS attack (a huge number of sources generate
attack traffic simultaneously); (3) no simple mechanism for
the victim to distinguish the normal packets from the lethal
traffic.

Over the years, many DDoS defense schemes have been
proposed. Mutaf [1] proposed a real-time anomaly detection
scheme to identify TCP SYN flood attacks by analyzing daily
maximum arrival rate. Similar work was done by Haggerty
et al. [2]. The above two schemes were designed for SYN
flood attacks, which occurred before connection establishment
while our effort is to identify malicious TCP flows after
successful TCP connections. Xu et al. [3] proposed to isolate
malicious traffic via HTTP redirect messages. Since most of
the attack flows employ spoofed source IP addresses, their
sources cannot receive the redirect messages, and thus the
subsequent packets from them will be blocked. This scheme
is simple and may be readily implemented. However, their
mechanism works only for web servers. Yau et al. [4] pre-
sented a QoS based DDoS defense scheme. Their scheme
tries to maintain fair share among all competing flows by
using the fair packet queueing technique. However, simply
using fair sharing without traffic discrimination does not
work. Consider the following two scenarios. 1) The high rate
traffic is legitimate while the attack traffic is low-rate [5].

Manuscript received May 1, 2006. The associate editor coordinating the
review of this letter and approving it for publication was Dr. Chuan-Kun
Wu. This work was supported in part by the New Jersey Commission on
Science and Technology via the NJ Center for Wireless Networks and Internet
Security.

Z. Gao and N. Ansari are with the Advanced Networking Laboratory,
Department of Electrical and Computer Engineering, New Jersey Institute of
Technology, Newark, NJ 07102 USA (e-mail: {zg4, nirwan.ansari}@njit.edu).

Digital Object Identifier 10.1109/LCOMM.2006.060669.

Rate-limiting is improper in this case. 2) Most flows carry
attack traffic during a flood-based DDoS attack while good
traffic is low-rate. Under this scenario, even imposing fair
sharing of bandwidth does not help the good traffic much
because the majority of bandwidth is consumed by malicious
flows. To ensure good performance and accommodate as many
normal users as possible, it is critical to differentiate traffic.
However, it is by no means trivial to make such a distinction.
Discrimination based on packet headers is vulnerable to IP
spoofing; discrimination based on packet contents may be
thwarted by the increasing use of end-to-end encryption.

We hereby propose to identify malicious traffic from their
behaviors. We believe that aggressiveness is the salient feature
of DDoS traffic, besides IP spoofing. One example of the
aggressive behavior is that an attack source may not care
about whether it may receive the response from the victim
or not, and it can still conduct an attack by bombarding its
target with a monstrous number of useless packets. Note that
”aggressiveness” is not equivalent to ”high-rate”. It is possible
that a high-rate flow is a normal TCP stream. The receiver
may identify the aggressive behavior by intentionally testing
the response of a source upon certain control signals from the
receiver. Any source that fails to pass such tests is regarded
as a lethal one and can be punished accordingly. However, a
source, which passes the test, may not be necessarily benign.
A sophisticated attacker may pass the test by behaving well
initially, and perform deleterious operations later. To handle
this case, the receiver may increase the frequency of such
tests. A better solution is to introduce some dynamics into
the test and randomly determine the frequency of the test
for each flow, especially the high-rate ones. To accommodate
high-rate legitimate traffic better, we set a threshold that
defines the maximal number of successful tests for a flow.
No more tests are conducted on packets from a flow once
the flow successfully passes the specified number of tests.
By actively testing a source, the receiver can determine with
high confidence the nature of a flow from that source and
react accordingly. Filtering based on behavior brings an attack
source into a dilemma: sends packet aggressively at the risk
of being identified and punished, or reduce the attack rate to
meet the requirements of the receiver so that the effect of an
attack is diminished. In so doing, the receiver may throttle the
scope and impact of potential attacks.

The above design is feasible for TCP solely because TCP
has the built-in congestion control and reliable transmission
mechanism. Note that TCP is the dominant traffic in the
Internet, and as much as 90% of DDoS traffic uses TCP [6].
Currently, TCP occupies 80% in terms of the number of flows,

1089-7798/06$20.00 c© 2006 IEEE

794 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 11, NOVEMBER 2006

and 90% with respect to the number of packets. It is thus
essential for DDoS defense schemes to accommodate TCP
traffic effectively and efficiently.

The rest of the letter is structured as follows. Section II
presents in detail our proposal. We then present in Section
III some simulation results to validate our scheme. Finally,
conclusion is presented in Section IV.

II. TCP FLOW DIFFERENTIATION

A. Connection Establishment

Whether a connection has been established has a signif-
icant implication to the receiver. A successfully established
connection indicates that both ends have completed the three-
way handshaking procedure, which implies that IP spoofing is
not employed by the source. For an incomplete connection, on
the other hand, the receiver shall be alert, and be conservative
in its resource consumption. Possible measures to mitigate
potential attacks include (1) tightening the total bandwidth
allocated to all incomplete connections, and (2) significantly
reducing the timeout value to avoid buffer occupied by half-
open connections for a long time, or no buffer allocation at
all for half-open connections.

B. Benign and Malicious Flows

TCP is an end-to-end solution that requires close orches-
tration between the sender and the receiver. To characterize
the nature of a TCP flow (after a successful connection),
the receiver can actively test the response of the sender
by delaying the ACK packets intentionally. If the sender is
normal, it will take action accordingly and reduce its sending
rate. On the contrary, for a DDoS attack, two cases may
occur. One is that the sender uses forged source IP addresses,
and thus cannot receive the rate-reduction message from the
receiver. It has no idea of the proper sending rate. The other
scenario is that the sender does receive the notification, but it
neglects it and just keeps sending packets, thus violating the
protocol, and it may be punished by the recipient to reduce
its share or even block its traffic. This procedure is dynamic.
The protected site can decide the frequency and extent of rate-
reduction so that no perpetrator can easily fool the system to
believe that the traffic from the perpetrator is normal. Fig. 1
depicts the flowchart of the traffic differentiation procedure.

Upon the arrival of a new incoming packet, the receiver
first determines to which flow the current packet belongs by
checking the tuple of (source IP address, source port number,
destination IP address, destination port number). If it is the
first packet of a flow, the receiver examines whether the
number of admitted flows reaches the maximum flow count,
a threshold set by the receiver to ensure proper provisioning
of quality of service. If this does occur, the packet is dropped.
Otherwise, the new packet is admitted after updating the flow
table maintained by the receiver, resulting in an increment of
the flow count by 1, and initialization of several counters, such
as the number of successful tests and the number of failure
tests. The receiver then checks the behavior history of the flow.
If the number of failure tests is no less than a threshold, f , the
packet will be dropped. An integer larger than 1 is selected
to prevent our scheme from falsely identifying the behavior

Fig. 1. Flowchart of the traffic differentiation.

of a flow. A low value of f may exacerbate packet dropping.
In case of a false identification, subsequent packets from an
innocent flow will be blocked. Selecting a too high value is
unwise, either. A high f delays the packet dropping decision,
and thus subsequent packets of a malicious stream may still
consume system resources. Through extensive simulations, we
found that f=3 provides a good balance between the proper
identification rate and the acceptable performance impact.

For the flow whose behavior is not so bad in the past, our
scheme further examines whether the flow has passed a certain
number of tests, h. The receiver will admit directly any packet
of flows having passed h tests successfully (Similarly, some
tradeoff has to be made to determine a proper value of h. We
set h to 6 by trials and errors). For other flows, we further
check the current state of the flow. If the flow is under a
test, its current rate shall not exceed one half of its previous
one (the receiver enforces this constraint by manipulating the
reverse ACK rate). If the flow conforms to that constraint, the
flow passes the current test and its pass num is incremented
by 1. Otherwise, the flow fails one test. In the case that the
flow is not in the state of testing, its sending rate is compared
with that of the fair share of each flow. The result of the
comparison is used to determine the test probability for that
flow. Obviously, a flow with less bandwidth consumption is
subject to less number of tests. The test probability p for a
high-rate flow (over the fair share) is 1/(pass num+1). At the
very beginning, pass num is 0 for all flows. Therefore, as
long as a high-rate flow has not passed a test, its chance of
being tested is 100%. As the number of successful tests of a
flow increases, its test probability reduces. The test probability
p for the less resource-consumption flow is 1/max(m, 2*h),
where m is the total number of flows. For the normal case,
m is far greater than 2h; thus, p=1/m. We use the max(.)
function to address the case that only a few flows exist in the
system and ensure that the test probability for a low-rate flow
is at most 1/2 of that of a high-rate one.

GAO and ANSARI: DIFFERENTIATING MALICIOUS DDOS ATTACK TRAFFIC FROM NORMAL TCP FLOWS BY PROACTIVE TESTS 795

source

FTP source

attack source FTP sink

FTP smart sink
/FTP sink

destination

Fig. 2. Simulation setup for comparison study of the effectiveness of traffic
differentiation.

The rate of a flow is calculated according to the following
formula, num pkt*sz pkt/t, where t is the time interval
(window), num pkt the number of packets received during
this period, and sz pkt the packet size. It is worth mentioning
that the flow rate calculated here is not the average rate of
a flow, as normally used by others, because we update the
starting time of a flow once it passes a test. In so doing, we
can effectively thwart a low-rate DoS attack which sends a
burst of attack packets to incite congestion and keeps silence
for a much longer period to significantly lower its average rate
in order to escape detection and filtering.

Four scenarios may happen. 1) An attack source always
behaves well, and thus the effect of an attack is greatly
diminished. 2) An attack source behaves well initially and
misbehaves later. When tested, the constraint that the current
rate is at most 1/2 of the previous rate will not be satisfied,
and the source fails the test. 3) An attack source always
misbehaves, that may be easily thwarted by the fail count. 4)
An attack source misbehaves at first and behaves well later.
In this case, the attack source is exposed to more chances
of being tested because its pass num is offsetted by the
fail num once it fails a test. Note also that a low-rate flow
is also subject to test, though at a lower probability in our
design. As time passes by, the chance that a low-rate flow
has never been tested by the receiver is very low. We enforce
this policy to contain the case that some low-rate streams are
malicious.

III. SIMULATIONS

To test the effectiveness of our proposed traffic differentia-
tion, we set up a simulation scenario including 1 FTP source
and an attack source, as shown in Fig. 2. These flows pass
through the same bottleneck link. The difference is that one
simulation uses a normal FTP sink to accept packets from
both flows, and the other uses our developed TCP sink, called
TCP smart sink. The simulation results are shown in Fig. 3
and Fig. 4.

Fig. 3 shows the throughput of the attack traffic using
the FTP sink while Fig. 4 presents the throughput of the
attack traffic using our proposed TCP smart sink, in which
the throughput of attack traffic drops drastically after 3.2s.
After 42.3s, the attack traffic is totally blocked. In contrast,
using the FTP sink as the receiver, the attacker may keep the
highest throughput during its lifetime. The result demonstrates
the effectiveness of our proposed traffic differentiation.

Fig. 3. Attack traffic throughput using FTP Sink

Fig. 4. Attack traffic throughput using TCP Smart Sink

IV. CONCLUSIONS

A novel DDoS defense scheme has been presented in this
letter. The salient benefits of our proposal mainly lie in its
capability of identifying malicious TCP flows by proactive
tests. Preliminary simulation results have validated our design.

REFERENCES

[1] P. Mutaf, “Defending against a denial of service attack on TCP,” in Proc.
International Symposium on Recent Advances in Intrusion Detection
(RAID 99).

[2] J. Haggerty, T. Berry, Q. Shi, and M. Merabti, “DiDDeM: a system for
early detection of TCP SYN flood attacks,” in Proc. IEEE GLOBECOM
2004, pp. 2037-2042.

[3] J. Xu and W. Lee, “Sustaining availability of Web services under
distributed denial of service attacks,” IEEE Trans. Comp., special issue
on reliable distributed systems, vol. 52, no. 2, pp. 195-208, Feb. 2003.

[4] D. Yau, J. Lui, F. Liang, and Y. Yan, “Defending against distributed
denial-of-service attacks with max-min fair server-centric router throt-
tles,” IEEE/ACM Trans. Networking, vol. 13, no. 1, pp. 29-41, Feb. 2005.

[5] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of
service attacks (the shrew vs. the mice and elephants),” in Proc. ACM
SIGCOMM 2003, pp. 75-86.

[6] D. Moore, G. Voelker, and S. Savage, “Inferring Internet denial-of-service
activity,” in Proc. 10th USENIX Security Symposium, pp. 9-22.

