
1624 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 9, SEPTEMBER 2006

Enhancing "-Approximation Algorithms
With the Optimal Linear Scaling Factor

Gang Cheng, Nirwan Ansari, Senior Member, IEEE, and Li Zhu

Abstract—Finding a least-cost path subject to a delay constraint
in a network is an NP-complete problem and has been extensively
studied. Many works reported in the literature tackle this problem
by using "-approximation schemes and scaling techniques, i.e., by
mapping link costs into integers or at least discrete numbers, a
solution which satisfies the delay constraint and has a cost within
a factor of the optimal one, that can be computed with pseu-
dopolynomial computational complexity. In this paper, having
observed that the computational complexities of the "-approxi-
mation algorithms using the linear scaling technique are linearly
proportional to the linear scaling factor, we investigate the issue
of finding the optimal (the smallest) linear scaling factor to reduce
the computational complexities, and propose two algorithms, the
optimal linear scaling algorithm (OLSA) and the transformed
OLSA. We analytically show that the computational complexities
of our proposed algorithms are very low, as compared with those
of "-approximation algorithms. Therefore, incorporating the
two algorithms can enhance the "-approximation algorithms by
granting them a practically important capability: self-adaptively
picking the optimal linear scaling factors in different networks.
As such, "-approximation algorithms become more flexible and
efficient.

Index Terms—Delay-constrained least cost (DCLC), NP-com-
plete, "-approximation, linear scaling factor.

I. INTRODUCTION

THE continuous growth in both commercial and public net-
work traffic with various quality-of-service (QoS) require-

ments calls for better services than the Internet’s best-effort
mechanism. One of the challenging issues is to select feasible
paths that satisfy the different requirements of various applica-
tions. This problem is known as QoS routing. In general, there
are two issues related to QoS routing: state distribution, and
routing strategy [1]. State distribution addresses the issue of
exchanging the state information throughout the network [2].
Routing strategy is used to find a feasible path that meets the
QoS requirements. It has been proved in [3] and [4] that the
routing problems involving the minimization of two or more
additive QoS parameters are NP-complete. In this paper, we

Paper approved by T. T. Lee, the Editor for Switching Systems and Network
Performance of the IEEE Communications Society. Manuscript received April
28, 2004; revised February 9, 2006. This work was supported in part by the Na-
tional Science Foundation under Grant 0435250, and in part by the New Jersey
Commission on Science and Technology via NJWINS. This paper was presented
in part at the IEEE International Conference on Communications, Seoul, Korea,
2005.

G. Cheng is with VPISystems Inc. Corp., Holmdel, NJ 07733 USA.
N. Ansari is with the Advanced Networking Laboratory, Electrical and Com-

puter Engineering Department, New Jersey Institute of Technology, Newark, NJ
07012 USA (e-mail: ansari@njit.edu).

L. Zhu is with the Advanced Networking Laboratory, Electrical and Com-
puter Engineering Department, New Jersey Institute of Technology, Newark,
NJ 07012 USA, and also with Voicenet Inc., Philadelphia, PA 19114 USA.

Digital Object Identifier 10.1109/TCOMM.2006.878832

focus on a relatively simplified problem: the delay-constrained
least-cost (DCLC) path-selection problem [5], defined below.

Definition 1: DCLC path selection [5]: Assume a network is
modeled as a directed graph , where is the set of all
nodes and is the set of all links. Each link connected from
node to , denoted by , is associated with
a cost and a delay . Given a delay constraint

, and a pair of nodes and , the objective of DCLC is to
find the path that has the least cost among the paths from to
, subject to .

Many QoS routing algorithms have been proposed in the
literature. The limited path heuristic proposed by Yuan [6]
maintains a limited number of candidate paths, say , at each
hop. The computational complexity is for the ex-
tended Bellman–Ford (EBF) algorithm with two constraints,
where and are the number of links and nodes, respectively.
For the particular case of two constraints, Yuan [7] studied
two EBF algorithm-based heuristics, the limited granularity
and limited path heuristics. Yuan showed that under the con-
dition of uniform mapping, the limited granularity heuristic
is optimal in the sense that it provides optimal worst-case
guarantee in finding the paths that satisfy the QoS constraints
from among all limited granularity heuristic schemes. Guo
studied the minimum-cost QoS multicast and unicast prob-
lems in [8] and [9]. He presented two efficient algorithms,
respectively, to approximate the minimum-cost QoS trees and
minimum-cost QoS unicast paths in a communication network.
For the purpose of improving the response time and reducing
the computation load on the network, precomputation-based
methods [10] have been proposed. Korkmaz and Krunz [11]
provided a heuristic with computational complexity compa-
rable to that of the Dijkstra algorithm, to find the least-cost path
subject to multiple constraints. An algorithm, called A*Prune
[12], is capable of locating multiple shortest feasible paths
from the maintained heap in which all candidate paths are
stored. For the case that only inaccurate link state information
is available to nodes, approximate solutions [13] have been
proposed for the most-probable bandwidth delay-constrained
path (MP-BDCP) selection problem by decomposing it into
two subproblems: the most-probable delay-constrained path
(MP-DCP) and the most-probable bandwidth-constrained
path (MP-BCP). A Lagrange relaxation-based aggregated cost
(LARAC) was proposed in [5] for the DCLC path problem.
This algorithm is based on a linear cost function ,
where denotes the cost, the delay, and an adjustable
parameter. It was shown that the computational complexity of
this algorithm is . In [14], a heuristic algorithm
was proposed based on a linear cost function for two additive
constraints; this is a multiple constrained path (MCP) selec-
tion problem with two additive constraints. A binary search

0090-6778/$20.00 © 2006 IEEE

CHENG et al.: ENHANCING -APPROXIMATION ALGORITHMS WITH THE OPTIMAL LINEAR SCALING FACTOR 1625

strategy for finding the appropriate value of in the linear
cost function or , where

are the two respective weights of the path
, was proposed, and a hierarchical Dijkstra algorithm was

introduced to find the path. It was shown that the worst-case
complexity of the algorithm is , where

is the upper bound of the parameter . The authors in [15]
simplified the multiple constrained QoS routing problem into
the shortest-path selection problem, in which the weighted
fair queuing (WFQ) service discipline is assumed. Hence,
this routing algorithm cannot be applied to networks where
other service disciplines are employed. Widyono [16] intro-
duced a constrained Bellman–Ford (CBF) algorithm, which
deploys a breadth-first-search to locate paths of monotonically
increasing delay, while recording and updating the lowest-cost
path to the visited nodes. This approach yields the optimal
path, the least-cost path from among all the paths satisfying
the delay constraint. However, its worst-case computational
complexity is exponentially increasing with the network size.
Many researchers have posed the QoS routing problem as the

-shortest-path problem , [12]. The authors in [17] proposed an
algorithm, called TAMCRA, for MCP by using a nonlinear cost
function and a -shortest-path algorithm. The computational
complexity of TAMCRA is , where

is the number of shortest paths and is the number of con-
straints. To solve the delay-cost-constrained routing problem,
Chen and Nahrstedt [18] proposed an algorithm which maps
each constraint from a positive real number to a positive integer.
By doing so, the mapping offers a “coarser resolution” of the
original problem, and the positive integer is used as an index
in the algorithm. The computational complexity is reduced to
pseudopolynomial time, and the performance of the algorithm
can be improved by adjusting a parameter, but with a larger
overhead.

Many -approximation algorithms (the solution has a cost
within a factor of of the optimal one) subject to DCLC
have been proposed in the literature. Lorenz et al. [20] presented
several -approximation solutions for both the DCLC and the
multicast tree. Hassin [21] presented two -approximations al-
gorithms for the restricted shortest path (RSP) problem. Raz and
Shavitt [22] proposed an efficient dynamic programming solu-
tion for the case in which the QoS parameters are integers, and
a sublinear algorithm for the case in which all link costs use the
(same) function of their corresponding delays. Different from
[20]–[22], in which link costs are scaled into integers, the DSA
algorithm [23] scales the link delay into integers, and provides
a path having the cost and delay no larger than the cost of the
optimal feasible path and , respectively. Since the path
computed by [23] may have a delay larger than the delay con-
straint, it cannot guarantee a 100% success ratio.

The basic idea behind DCLC -approximation approaches is
to use some functions, referred to as scaling functions in this
paper, to approximate the link costs with bounded finite ranges,
thus reducing the original NP-complete problem to a simpler
problem that can be solved in polynomial time. In this paper,
we focus our discussion on a particular kind of -approxima-
tion algorithm, the linear scaling -approximation algorithms,
defined below.

Definition 2: A linear scaling -approximation algorithm
refers to an algorithm that can provide an -approximation
solution by first linearly increasing or decreasing the link costs,
and then quantizing them into integers. In particular, given a
nondecreasing quantization function , where

is the set of positive real numbers and is the set of posi-
tive integers, and a network in which each link is
associated with a cost , a delay , and
a delay constraint , an algorithm which yields the optimal
solution in that is an -approximation solution in

, where is constructed from by
mapping the link cost to and

is the linear scaling factor, is referred to as a linear scaling
-approximation algorithm.

As reviewed above, it can be observed that except those pro-
posed for the case in which link costs are already integers or
discrete, most -approximation algorithms, if not all, use the
linear scaling functions, e.g., . Moreover, we find
that their computational complexities are linearly proportional
to the linear scaling factor. Note that since the linear scaling
factor of all -approximation algorithms reported in the litera-
ture is linearly proportional to , their computational com-
plexities are linearly proportional to . For instance, many
-approximation algorithms use Bellman–Ford-like algorithms

(e.g., RSP [20] and DAD [23]) to find an optimal solution (the
least-cost path satisfying the delay constraint) in the network
where link costs are integers. Since the computational complex-
ities of these Bellman–Ford-like algorithms are linearly propor-
tional to the cost of the optimal feasible path (if it exists), which
is, in turn, also linearly proportional to the linear scaling factor,
the computational complexities of these algorithms are conse-
quently linearly proportional to the linear scaling factor. Hence,
our task in this paper is to minimize the linear scaling factor
so that the computational complexity of -approximation algo-
rithms can be reduced. It should be noted that although the algo-
rithms presented in this paper are tailored for the DCLC -ap-
proximation algorithms, they can be readily applied to all other
cases where linear -approximation techniques are deployed,
except those in which is used for scaling (not). Further-
more, we analytically show that the computational complexities
of our proposed algorithms are very low with respect to those of
-approximation algorithms. Therefore, incorporating the two

algorithms into -approximation algorithms does not increase
their computational complexities, but can, in fact, effectively
reduce their computational complexities, because the optimal
linear scaling factor can always be computed by our proposed
algorithms.

It should be noted that this paper presents, to our best knowl-
edge, the first attempt at minimizing the linear scaling factor
of the -approximation algorithms. Accordingly, the optimal
linear scaling algorithm (OLSA) and the transformed OLSA
(T-OLSA) are the first two algorithms proposed specifically to
computing the optimal linear scaling factor.

II. A FRAMEWORK OF -APPROXIMATION

APPROACHES FOR DCLC

In this section, a framework for optimizing linear scaling
-approximation algorithms is presented. Observe that in an
-approximation approach, the nondecreasing quantization

1626 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 9, SEPTEMBER 2006

function plays the key role. Hence, Definition 3 is provided
below to formulate the set of functions that can be used to
design an -approximation algorithm.

Definition 3: Given an instance of DCLC and a nonde-
creasing function , a delay
constraint , and a network , in which each
link is associated with a cost and a delay

is constructed from by
mapping the cost of link to . If
the optimal feasible path in from the source to the
destination has a cost no greater than a factor of from that
of the optimal feasible path between the corresponding pair of
nodes in , is called a feasible -approximation
function.

Based on Definition 3, we present the next proposition, from
which feasible -approximation functions may be derived. Note
that as long as a function satisfies the next proposition, it satisfies
Definition 2 (for any), i.e., the functions satisfying the
next proposition are universally feasible.

Proposition 1: Given any instance of DCLC, assume
there exists a nondecreasing function such that

, and for any two sets of positive num-
bers, and ,
if

(1)

(2)

imply that

(3)

then the function is a feasible -approximation function.
Proof: Given an instance of DCLC, assume an optimal fea-

sible path between nodes and is path , and the optimal fea-
sible path is after the costs of links have been scaled to integers
via the function . Therefore

(4)

(5)

By the definition of

(6)

Hence, is a feasible -approximation function.
Finding such universally feasible -approximation functions

for any instance of DCLC solely based on Proposition 1 is dif-
ficult. Instead, we focus on deriving a solution for an easier
case: find a feasible linear scaling -approximation function for

a given instance of DCLC. Since the computational complex-
ities of -approximation algorithms subject to DCLC are lin-
early proportional to the linear scaling factor , the smaller
the linear scaling factor, the better. Therefore, for the purpose
of reducing the computational complexities of -approximation
algorithms, our objective is to find the smallest linear scaling
factor.

Definition 4: Given a network , the feasible linear
scaling -approximation function that has the lowest
scaling factor among all feasible functions is called the optimal
linear scaling -approximation function.

III. OPTIMAL LINEAR SCALING FEASIBLE

-APPROXIMATION FUNCTIONS

In this section, we will analytically demonstrate how to find
the optimal linear scaling -approximation function. We first
provide the next proposition to simplify the search for a feasible
-approximation function.

Proposition 2: Given an instance of DCLC and
is a feasible -approximation function

if there exists a such that

(7)

Proof: Given any two sets of links and ,
if

(8)

(9)

then

(10)

By Proposition 1, is a feasible -approximation function.

Different from the functions satisfying Proposition 1, the
ones satisfying Proposition 2 may be only feasible to a given in-
stance of DCLC in which link costs are already given; i.e., they
may not be universally feasible. Since

and , a straight-
forward solution is . It should also be
noted that for a given may not be
feasible, since there may exist such that

(11)

Hence, we will try to compute such that , (7) is
satisfied. As shown in Fig. 1, given a link , because of the

CHENG et al.: ENHANCING -APPROXIMATION ALGORITHMS WITH THE OPTIMAL LINEAR SCALING FACTOR 1627

Fig. 1. Illustration of the feasible region of the linear scaling factor for a given
link.

discrete nature of , there are many intersections be-
tween and , and accordingly, the re-
gion for satisfying (7) is split into many intervals, which are
highlighted with bold lines. We refer to the union of these inter-
vals (of) as the feasible region of , and these intervals as
the feasible intervals of . Therefore, our objective is to find
a point which exists in all feasible regions of links, i.e., to find

such that is a feasible function. In other words,
we need to find the that is located in the intersection of the
feasible regions of all links. From Definition 4, the smaller the

, the better. Hence, the optimal feasible linear scaling factor is
the lower bound of the intersection of the feasible regions of all
links. We numerically present the feasible intervals of a link by
the next theorem.

Theorem 3: Given an instance of DCLC,
is a feasible -approximation function if

such that

(12)

Proof: such that

(13)

Consider the case that

(14)

Consider the other case that

(15)

Therefore

(16)

Therefore, is a feasible -approximation function
by Proposition 2.

Definition 5: is feasible if is a feasible -ap-
proximation function, and is optimal if is the
optimal feasible linear scaling -approximation function. is
said to be feasible to a link if such that

(17)

Theorem 3 defines the constraints for to be a
feasible -approximation function. Since our final objective is
to minimize the computational complexity of -approximation
algorithms by finding the least feasible linear scaling factor, it
is preferable that the computational complexity introduced by
computing the optimal is trivial, or negligible, with respect to
the overall computational complexity of -approximation algo-
rithms.

Let

(18)

(19)

By Theorem 3, if is feasible, ,
where

(20)

The minimum of is the optimal . Given a link

(21)

We convert the problem of finding the optimal linear
scaling factor into computing the minimum of (21). The
remaining problem becomes designing an efficient algo-
rithm for computing the minimum. The most intuitive and
straightforward solution is to iteratively search for the fea-
sible in , where is initialized as zero
and increased by one after each iteration. Note that
and there is exactly only one interval in

for to be feasible to link

1628 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 9, SEPTEMBER 2006

Fig. 2. Shaded regions are the regions for � to be feasible to the corresponding
links.

. We divide into an infinite number of periods,
(each period has a fixed length

of , and the th period is from to
, for each link . For each particular

integer , we consider the shortest (smallest) period , which
is a period of the link with the largest link cost. Intuitively,
given any number of consecutive periods of any other link,
at most two of them have nonempty intersections with , as
each of them has a length larger than that of . Theoretically,
as shown in Fig. 2, since , for all

, at most two consecutive periods of link
would have nonempty intersections with one period of the
link(s) having costs . As such, we can simplify the process
of computing the minimum of (21) by the following theorem.
Denote

, and , we
can prove the next theorem.

Theorem 4: Given an instance of DCLC and , a fea-
sible -approximation function ,
exists iff , where

(22)

and is the empty set.
Proof: Note that given a link , only

when , i.e.,
is a point only when .

When

(23)

Furthermore, because

(24)

We first prove that if a feasible -approximation function
exists, then .

Given a link . Consider

the case that . By Theorem 1, if is a
feasible -approximation function, such that

(25)

If

(26)

The equation is held only when and
(it is impossible that because

and). If

(27)

Since , if

(28)

Therefore

(29)

So, if a feasible -approximation function
exists, , where

(30)

Note that if .
We can simplify as

(31)

If , by Theorem 3, a feasible -approximation
function , exists.

CHENG et al.: ENHANCING -APPROXIMATION ALGORITHMS WITH THE OPTIMAL LINEAR SCALING FACTOR 1629

Next, we will try to find the smallest feasible based on
Theorem 4. Since is a point only when

, the point can be eliminated by checking if
is the solution (optimal). If is feasible, the smallest

feasible in must be . Otherwise, we set

(32)

Let

(33)

The remaining problem is to compute

(34)

It should be noted that if are independent with
each other, the computational complexity of computing

could be rather high. Hence, the next theorem
is introduced to further reduce the complexity of computing

. The basic idea behind the next theorem is

to find the condition such that only one of and

has a nonempty intersection with . As
such, we can reduce the worst-case computational complexity
of computing (34) to .

Theorem 5: Given a link , if , and
, either

(35)

or (36)

Proof: When

(37)

while

(38)

Hence, either

(39)

or (40)

By Theorem 5, given a network in which , either
or , we have

(41)

only when , where is the integer
such that (41) is satisfied. Hence

(42)

In other words

(43)

Accordingly, the computational complexity of computing
a feasible linear scaling factor in becomes ,

which results from computing and

.

IV. PROPOSED ALGORITHMS FOR SEARCHING

THE OPTIMAL LINEAR SCALING FACTOR

In this section, we will propose two efficient algorithms for
searching the optimal linear scaling factor, which can be incor-
porated into -approximation algorithms to reduce their compu-
tational complexities. We first introduce the next theorem, based
on which, an upper bound on the optimal linear scaling factor
can be derived.

Theorem 6: Given an instance of DCLC, the linear scaling
-approximation solution computed with a linear scaling factor
has a cost less than

(44)

where and are the cost and the number of hops of the op-
timal feasible path of DCLC, respectively.

1630 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 9, SEPTEMBER 2006

Proof: Assume the optimal path of DCLC is , and the path
computed by using a linear scaling factor is . Therefore

(45)

Hence, the feasible path computed with linear scaling factor
has a cost less than .

Based on Theorem 6, the next lemma provides an upper bound
on the optimal feasible linear scaling factor of a given instance
of DCLC.

Lemma 7: Given an instance of DCLC, the linear scaling
-approximation solution computed by using a linear scaling

factor is an -approximation solution, where
is a lower bound on .

Proof: By Theorem 6, the path computed with the linear
scaling factor has a cost less than

(46)

Hence, the path computed with a linear scaling factor
is a -approximation solution.

How to compute is beyond the scope of this paper. Readers
can refer to [20] and [24] for related information. We adopt

as an upper bound on the optimal linear scaling
factor by Lemma 7.

The first algorithm, OLSA, is recommended for cases where
, either or ,

so that Theorem 5 can be applied to reduce the computational
complexity for searching the optimal linear scaling factor. As
mentioned before, we use as a loose upper bound for the op-
timal linear scaling factor. The basic idea behind OLSA is that
the optimal linear scaling factor can be found by Theorems 4
and 5 by gradually increasing the integer until reaches ,
implying that is limited by

(47)

in OLSA. Without loss of generality, we assume for
the rest of the paper, which can be achieved simply by dividing
all the link costs by .

Thus, OLSA consists of the following steps.
Step 1) Initialize .
Step 2) Apply Theorems 4 and 5 to find a feasible linear

scaling factor in
. If at the th iteration, the op-

timal feasible must be the lower bound of .
Hence, set to the lower bound of , and the
optimal feasible linear scaling factor is found. End.

Step 3) . If , go to step 4. Otherwise, go
to step 2.

Step 4) By Lemma 7, let .
Since the computational complexity of computing a feasible

linear scaling factor in
is, by Theorems 4 and 5, , and there are totally
iterations in OLSA, the computational complexity of OLSA is

(48)

It can be observed that the worst-case computational
complexity of OLSA is very low. On the other hand,
since OLSA always locates the optimal , the compu-
tational complexities of -approximation algorithms de-
ploying OLSA can be reduced, especially in some special
cases. For example, for a given network , and

is a
feasible linear scaling factor, which is independent of . As
a result, the computational complexities of -approximation
algorithms are greatly reduced when is small. Moreover, in
this case, the computational complexities become polynomial,
no longer pseudopolynomial.

Remark 1: As mentioned earlier, most -approximation ap-
proaches adopt Bellman–Ford-like algorithms, e.g., RSP [20]
and DAD [23]. Therefore, their worst-case computational com-
plexities are linearly proportional to the upper bound of the path
costs (the computational complexity of DAD is linearly propor-
tional to the delay bound). For example, given a delay bound
and an upper bound on the cost of the optimal feasible path,
the computational complexity of RSP [20] is (it should
be noted that link costs must be integers to deploy RSP). Given
a linear scaling factor and an upper bound on path costs, in
order to achieve a 100% success ratio in finding the optimal fea-
sible path with a cost less than , the upper bound is adjusted to

after all link costs are linearly scaled by . Accordingly,
the computational complexities of -approximation algorithms
are proportional to . Note that must be larger than

. Otherwise, we can prune the links whose costs are larger
than . Therefore

(49)

which implies that adopting OLSA will not increase the compu-
tational complexities of -approximation algorithms. Note that
the upper bound of adopted in this paper is ,
and in [24], efficient methods have been introduced to esti-
mate and such that , where is a constant.
For instance, the authors provided an efficient algorithm in
-OPQR (optimal QoS partition and routing) which gurantees

. Therefore, the computational complexity of OLSA
is bounded by

(50)

which is, to our best knowledge, no larger than the compu-
tational complexity of any DCLC -approximation solution,

CHENG et al.: ENHANCING -APPROXIMATION ALGORITHMS WITH THE OPTIMAL LINEAR SCALING FACTOR 1631

implying that OLSA can be adopted by -approximation
algorithms to minimize their linear scaling factors without
increasing their computational complexities. On the other hand,
since the computational complexities of -approximation algo-
rithms are linearly proportional to the linear scaling factor, their
computational complexities can be reduced by adopting OLSA.
Finally, we need to point out that since OLSA is proposed
under the assumption that is used for scaling, it may not be
directly applicable to algorithms, e.g., DSA [23] and S-OPQR
[20], in which is deployed.

Note that OLSA is not applicable to cases where
such that and . Thus,

we propose our second algorithm, T-OLSA, by first setting the
costs of the links with costs no less than to ,
and then applying OLSA.

Theorem 8: Given an instance of DCLC, construct
by setting the costs of the links in whose costs are not
less than to , and then construct from

by linearly scaling the link costs by , where is the
optimal linear scaling factor computed by OLSA in .
Assume the least-cost feasible path in is ; has a cost
in no larger than , where is the cost of the
optimal feasible path in .

Proof: Assume is the optimal feasible path of
is the optimal feasible path in , and

is the cost of in . Since is con-
structed from by linearly scaling the link costs by ,
and is the optimal feasible path of (or is the solu-
tion of an -approximation algorithm computed in)

(51)

Define as the cost of link in . Since
is the optimal feasible path in , and is con-
structed by setting the costs of the links in whose costs
are no less than to , implying that for any link

, and thus

where is the cost of in . Thus

(52)

Therefore

(53)

where is the cost of in , i.e., has a cost in
no larger than .

Thus, T-OLSA consists of the following steps.
Step 1) Set the costs of the links whose cost are no less than

as , where .
Step 2) Initialize .
Step 3) Apply Theorems 4 and 5 to find a feasible linear

scaling factor in
. If at the th iteration, the op-

timal feasible must be the lower bound of .
Hence, set to the lower bound of , and the
smallest feasible linear scaling factor is found. End.

Step 4) . If , go to step 5. Otherwise, go
to step 2.

Step 5) By Lemma 7, let and set .
Lemma 9: Given an instance of DCLC and , by letting

, a path with cost no larger than can be
found by an -approximation algorithm (with parameter) if
T-OLSA is adopted for finding the linear scaling factor.

Proof: Assume the path computed by the -approximation
algorithm with parameter is . Therefore, by
Theorem 8

(54)

where is the cost of the optimal feasible path.
Observe that T-OLSA does not totally rely on OLSA. Since

, by Lemma 1, the computational complexity may un-
necessarily increase if is larger than . In this case, we can
directly solve the original problem (link costs are not modified)
by setting

(55)

Therefore, the worst-case computational complexity of
T-OLSA is the same as that of OLSA.

V. CONCLUSION

In this paper, having observed that the computational com-
plexity of many -approximation algorithms is linearly propor-
tional to the linear scaling factor, we have investigated the issue
of finding the optimal linear scaling factor in order to reduce
their computational complexities. Two algorithms, OLSA and
T-OLSA, have been proposed. We have analytically shown that
incorporating the two algorithms into DCLC -approximation
solutions not only does not increase, but, in fact, reduces their
computational complexities because the optimal linear scaling
factor can always be found. Besides the DCLC -approximation
solutions, our proposed algorithms can be applied to all linear
-approximation solutions in which is used for scaling. Sim-

ilarly, algorithms can also be developed for cases in which
is deployed for scaling.

REFERENCES

[1] S. Chen and K. Nahsted, “An overview of quality-of-service routing for
next-generation high-speed network: Problems and solutions,” IEEE
Netw., vol. 12, no. 6, pp. 64–79, Jun. 1998.

[2] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale
link state on quality-of-service routing,” IEEE/ACM Trans. Netw., vol.
9, no. 2, pp. 162–176, Apr. 2001.

1632 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 9, SEPTEMBER 2006

[3] M. S. Garey and D. S. Johnson, Computers and Intractability: Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[4] Z. Wang and J. Crowcroft, “Quality of service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, Jul. 1996.

[5] A. Juttner, B. Szyiatovszki, I. Mecs, and Rajko, “Lagrange relax-
ation based method for the QOS routing problem,” in Proc. IEEE
INFOCOM, 2001, vol. 2, pp. 859–868.

[6] X. Yuan, “Heuristic algorithm for multiconstrained quality-of-service
routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 244–256, Apr.
2002.

[7] ——, “On the extended Bellman–Ford algorithm to solve two con-
strained quality of service routing problems,” in Proc. IEEE ICCCN,
1999, pp. 304–310.

[8] G. Xue, “Minimum cost QoS multicast and unicast routing in commu-
nication networks,” IEEE Trans. Commun., vol. 51, no. 5, pp. 817–824,
May 2003.

[9] ——, “Primal-dual algorithms for computing weight-constrained
shortest paths and weight-constrained minimum spanning trees per-
formance,” in Proc. IEEE IPCCC, 2000, pp. 271–277.

[10] A. Orda and A. Sprintson, “Precomputation schemes for QoS routing,”
IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 578–591, Aug. 2003.

[11] T. Korkmaz and M. Krunz, “Routing multimedia traffic with QoS guar-
antees,” IEEE Trans. Multimedia, vol. 5, no. 3, pp. 429–443, Jun. 2003.

[12] G. Liu and K. G. Ramakrishnan, “A�Prune: An algorithm for finding
K shortest paths subject to multiple constraints,” in Proc. IEEE IN-
FOCOM, 2001, vol. 2, pp. 743–749.

[13] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selec-
tion under inaccurate state information,” IEEE/ACM Trans. Netw., vol.
11, no. 3, pp. 384–398, Jun. 2003.

[14] T. Korkmaz, M. Krunz, and S. Tragoudas, “An efficient algorithm for
finding a path subject to two additive constraints,” in Proc. ACM SIG-
METRICS, 2000, pp. 318–327.

[15] C. Pomavalzi, G. Chakraborty, and N. Shiratori, “QoS based routing
algorithm in integrated services packet networks,” in Proc. IEEE Conf.
Netw. Protocols, 1997, pp. 167–174.

[16] R. Widyono, “The design and evaluation of routing algorithms for
real-time channels” Univ. California, Berkeley, Tech. Rep. TR-94-024,
1994.

[17] D. Eppstein, “Finding the k shortest path,” in Proc. 35th Annu. Symp.
Found. Comput. Sci., 1994, pp. 154–165.

[18] H. De Neve and P. Van Mieghem, “A multiple quality of service
routing algorithm for PNNI,” in Proc. IEEE ATM Workshop, 1998, pp.
324–328.

[19] S. Chen and K. Nahrsted, “On finding multi-constrained path,” in Proc.
IEEE ICC, 1998, vol. 2, pp. 874–899.

[20] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS parti-
tion and routing of unicast and multicast,” in Proc. 8th Int. Workshop
Quality of Service, 2000, pp. 75–83.

[21] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Math. Oper. Res., vol. 2, no. 2, pp. 36–42, 1992.

[22] D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” IEEE J. Sel. Areas Commun., vol. 12, no. 12,
pp. 2593–2602, Dec. 2000.

[23] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all destina-
tions,” in Proc. IEEE INFOCOMM, 2001, pp. 854–858.

[24] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Oper. Res. Lett., vol. 28, no.
5, pp. 213–219, 2001.

Gang Cheng received the B.S. degree in 1997 in
information engineering, and the M.S. degree in
information and signal processing in 2000, both from
the Beijing University of Posts and Telecommunica-
tions (BUPT), Beijing, China, and the Ph.D. degree
in 2005 from the New Jersey Institute of Technology
(NJIT), Newark.

He joined Lucent Technologies in 2000. Currently,
he is with VPIsystems Corporation, Holmdel, NJ, fo-
cusing on network planning optimization algorithm
design and development. His research interests in-

clude Internet routing protocols and service architectures, information-theory-
based network optimization and protocol design, and modeling and performance
evaluation of computer and communication systems.

Dr. Cheng was the recipient of the Hashimoto Prize from NJIT, which is
awarded annually to the best doctoral graduate in electrical and computer engi-
neering.

Nirwan Ansari (S’78–M83–SM’94) received the
B.S.E.E. degree (summa cum laude) from the New
Jersey Institute of Technology (NJIT), Newark, in
1982, the M.S.E.E. degree from the University of
Michigan, Ann Arbor, in 1983, and the Ph.D. degree
from Purdue University, West Lafayette, IN, in 1988.

He joined the Department of Electrical and Com-
puter Engineering, NJIT, as an Assistant Professor in
1988, and has been a Full Professor since 1997. He
authored Computational Intelligence for Optimiza-
tion (Norwell, MA: Kluwer, 1997) with E.S.H. Hou

and translated into Chinese in 2000, and coedited Neural Networks in Telecom-
munications (Norwell, MA: Kluwer, 1994) with B. Yuhas. He is a Senior Tech-
nical Editor of the IEEE Communications Magazine, and also serves on the edi-
torial board of Computer Communications, the ETRI Journal, and the Journal of
Computing and Information Technology. His current research focuses on various
aspects of broadband networks and multimedia communications. He has also
contributed approximately 100 refereed journal articles, plus numerous confer-
ence papers and book chapters.

Dr. Ansari initiated (as the General Chair) the First IEEE International Con-
ference on Information Technology: Research and Education (ITRE’03), was
instrumental, while serving as its Chapter Chair, in rejuvenating the North Jersey
Chapter of the IEEE Communications Society, which received the 1996 Chapter
of the Year Award and a 2003 Chapter Achievement Award, served as Chair of
the IEEE North Jersey Section and in the IEEE Region 1 Board of Governors
during 2001–2002, and has been serving in various IEEE committees, such as
TPC Chair/Vice Chair of several conferences. He was the 1998 recipient of the
NJIT Excellence Teaching Award in Graduate Instruction, and a 1999 IEEE Re-
gion 1 Award. He is frequently invited to deliver keynote addresses, tutorials,
and talks. He has been selected as an IEEE Communications Society Distin-
guished Lecturer (2006–2007).

Li Zhu received the B.S. and M.S. degrees in
physics from Nanjing University, Nanjing, China,
in 1994 and 1997, respectively, the M.S. degree in
electrical engineer from Georgia Institute of Tech-
nology, Atlanta, in 2001, and the Ph.D. degree in
electrical engineering from the New Jersey Institute
of Technology, Newark, in 2006.

He is currently with Voicenet Inc., Philadelphia,
PA, as a Senior Network Engineer. His current re-
search interests include QoS in the Internet, overlay
networks, and ad hoc networks.

