Available online at www.sciencedirect.com

ScienceDirect Computer

Networks

www.elsevier.com/locate/comnet

Computer Networks 51 (2007) 2677-2700

On deterministic packet marking

Andrey Belenky, Nirwan Ansari *

New Jersey Institute of Technology, Department of Electrical and Computer Engineering, 323 King Blvd., Newark, NJ 07102, United States

Received 23 June 2006; received in revised form 17 October 2006; accepted 25 November 2006
Available online 11 January 2007

Responsible Editor: Jelena Misic

Abstract

In this article, we present a novel approach to IP Traceback — deterministic packet marking (DPM).! DPM is based on
marking all packets at ingress interfaces. DPM is scalable, simple to implement, and introduces no bandwidth and prac-
tically no processing overhead on the network equipment. It is capable of tracing thousands of simultaneous attackers dur-
ing a DDoS attack. Given sufficient deployment on the Internet, DPM is capable of tracing back to the slaves responsible
for DDoS attacks that involve reflectors. In DPM, most of the processing required for traceback is done at the victim. The
traceback process can be performed post-mortem allowing for tracing the attacks that may not have been noticed initially,
or the attacks which would deny service to the victim so that traceback is impossible in real time. The involvement of the
Internet Service Providers (ISPs) is very limited, and changes to the infrastructure and operation required to deploy DPM
are minimal. DPM is capable of performing the traceback without revealing topology of the providers’ network, which is a
desirable quality of a traceback method.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Security; DDoS attacks; IP traceback

1. Introduction attacks. In anonymous attacks, the identity of
attacker(s) is not immediately available to the victim
since the Source Address (SA) field in the attack

packets is spoofed. (Distributed) Denial of Service

In recent years, much interest and consideration
have been paid to securing the Internet infrastruc-

ture that has become a medium for a broad range
of transactions. A number of approaches to security
have been proposed, each attempting to mitigate a
specific set of concerns. The specific threat, which
is the main focus of this article, is anonymous

* Corresponding author. Tel./fax: +1 973 596 3670.
E-mail address: Nirwan.Ansari@njit.edu (N. Ansari).
! Three U.S. Patent applications have been filed based on the
content of this work.

((D)DoS) attacks are anonymous attacks that pres-
ently attract a lot of attention because there is no
obvious way to prevent them or to trace them.
Currently, there are several ways of dealing with
anonymous attacks. They include source address fil-
tering, SYN Flood Protection, and implementing a
BlackHole Router server. Source address filtering,
introduced in [1], prevents packets with values of
the SA field outside the preset appropriate range
from entering the Internet. If deployed on every

1389-1286/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.11.020

mailto:Nirwan.Ansari@njit.edu

2678 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

ingress interface, this would drastically reduce the
number of anonymous packets in the Internet.
Unfortunately, source address filtering incurs high
overhead and administrative burden [2] and is inef-
fective, unless carried out on almost 100% of the
ingress routers [3]. SYN Flood Protection monitors
half-open TCP connections and does not allow
more than a certain number of such connections
to exist simultaneously. SYN Flood protection pre-
vents only SYN Flood type (D)DoS attacks and is
useless against other types of anonymous attacks.
Finally, ISPs can determine the interface, where
the DoS attack packets entered its network, by
“BlackHoling” a router on its network, if the
affected customer reports the attack [4]. This
method works only for the backscatter DOS
attacks, as discussed in [5]. It involves human inter-
action, must be performed while the attack is still in
progress, and is limited to the boundaries of a given
ISP. In summary, currently available methods for
preventing anonymous attacks are insufficient for
the Internet-wide prevention or traceback of
attacks: SYN Flood prevention deals with a very
limited set of attacks; access filtering is practically
impossible to implement, since it requires close to
100% deployment; and BlackHole router traceback
requires manual intervention and is limited to a sin-
gle administrative domain.

While it may be simply impossible to prevent
attackers from attempting to carry out an attack,
it might be possible to lessen, or even completely
mitigate, the effects of the attack by not allowing
the packets to reach the victim(s). This is the proac-
tive approach discussed in details in, for example,
[6]. However, prevention of all attacks on the Inter-
net is far from reality. When prevention fails, a
mechanism of identifying the source(s) of the attack
is needed to at least ensure accountability for these
attacks. This is the motivation for designing IP
Traceback techniques.

The rest of the paper is structured as follows. Sec-
tion 2 presents a brief description of related works;
Section 3 introduces the basic DPM approach; a
modification for handling multiple simultaneous
attackers is described in Section 4; Section 5
describes the modification to DPM to accommodate
fragmented traffic; Section 6 describes various types
of computer attacks and presents a unified trace-
back procedure for tracing all of them; Section 7
lists the items of future work and conclusions;
Appendix A provides the performance analysis of
DPM.

2. Related works

After several high-profile DDoS attacks on
major US Web sites in early 2000, numerous IP
traceback approaches have been suggested to iden-
tify the attacker(s) [7]. IP Traceback is defined in
[6] as identifying a source of any packet on the
Internet. Previously proposed methods can be cate-
gorized into four broad groups. Solutions in the first
group, where most of the research has concentrated
so far, rely on the routers in the network to send
their identities to the destinations of certain packets
passing through them, either by encoding this infor-
mation directly in rarely used fields of the IP header,
or by generating a new packet to the same destina-
tion [2,8-18].

In particular, the pioneering article on PPM [2]
proposed marking packets with identities of routers
along the path between the source and the destina-
tion. Subsequent works [11-13]improved on the per-
formance on the basic PPM by, among others,
enhanced encoding of marks, authenticating marks,
and making the map of possible attacks available to
the victim. Ref. [14] proposes a modification to the
PPM that ensures that the probability of receiving
the mark is equal to the original marking probabil-
ity. Ref. [15] proposes a method of encoding a path
identification by marking packets with path finger-
prints. In [16], further improvements to PPM such
as 1-bit distance encoding and construction of the
map using marks, as opposed to a priori knowledge,
are proposed. In [17], it was proposed to use rela-
tively large, randomized messages to encode router
information. In [18], it was proposed to encode the
AS information in such a way that ensures the down-
stream router to check its correctness, thus reducing
the impact of router subversion. Also belonging to
the first groups are traceback methods that require
routers to send an ICMP message containing the
routers’ identification information to the destination
of every nth packet [8-10]. These techniques operate
under the underlying assumption that the victim of a
flood based attack will receive these ICMP messages
and reconstruct the attack path.

Methods of the second group log some fields of
every packet, or the digest of every packet on all
the routers that these packets traverse [19-21].
During the traceback, all of the routers are polled
and the path of a given packet is reconstructed by
correlating the routers, which have stored the infor-
mation about this packet. Further improvements
where only a fraction of the packets are logged were

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2679

introduced in [22]. The solutions of this group are
not easily scalable, have relatively high ISP involve-
ment, and have no post-mortem traceback capabil-
ities [7]. Solutions of the third group involve
centralized management of the traceback process
and changing the routing in the network with the
tunneling to be able to identify the packets’ origin
[23-25]. The shortcomings of these schemes are high
ISP involvement and high bandwidth and process-
ing overhead associated with tunneling. The only
solution in the final fourth group is controlled flood-
ing described in [26]. Controlled flooding only
works for DoS attacks. The attack path is deter-
mined while the attack is still in progress by system-
atically loading different links on the network and
observing the effect on the victim. If increasing the
load of a particular link results in the drop in the
rate of the attack traffic, then this link is on the
attack path. Controlled flooding is limited to tracing
DoS attacks only, and it is manual. Also, it utilizes a
questionable approach of essentially inducing DoS
attacks for the purposes of traceback.

3. Basic DPM

The basic DPM is a packet marking algorithm,
which was first introduced in [27]. This section pro-
vides the general principle behind DPM and dis-
cusses its most basic implementation.

3.1. Assumptions

The assumptions in this section were largely bor-
rowed from [2]. The two key assumptions driving
this effort are:

e an attacker may generate any packet; and
¢ routers are both CPU and memory limited.

3.2. DPM principle

As mentioned above, DPM is a packet marking
algorithm. The 16-bit packet Identification (ID) field
and 1-bit Reserved Flag (RF) in the IP header is used
to mark packets. FEach packet is marked when it
enters the network. This mark remains unchanged
for as long as the packet traverses the network. This
automatically obviates the issue of mark spoofing
which other marking schemes have to account for.
The packet is marked by the interface closest to the
source of the packet on the edge ingress router, as

DPM Enabled

M Edge Routers

Fig. 1. Basic deterministic packet marking (DPM).

shown in Fig. 1. The routers with the engraved
“DPM” signify the routers with DPM-enabled inter-
faces, and the rubber-stamps signify the interfaces
on these routers that actually perform the marking.
The mark contains the partial address information
of this interface, and will be addressed later in Sec-
tion 3.3. The interface makes a distinction between
incoming and outgoing packets. Incoming packets
are marked; outgoing packets are not marked. This
ensures that the egress router will not overwrite the
mark in a packet placed by an ingress router.

For illustrative purposes, assume that the Inter-
net is a network with a single administration. In this
case, only interfaces closest to the customers on the
edge routers participate in packet marking. Once
again, every incoming packet is marked by the
ingress interface. Should an attacker attempt to
spoof the mark in order to deceive the victim, this
spoofed mark would be overwritten with a proper
mark by the very first router the packet traverses.

Ref. [28] describes the methodology of deploying
DPM on the Internet. Briefly, a continuous perime-
ter of DPM-enabled interfaces should be main-
tained. The deployment should start with the
largest, tier-1, ISPs and expand in concentric circles
until DPM is enabled on the ingress interfaces.
When a tier-2 ISP enables DPM on its ingress inter-
faces, it must inform its upstream tier-1 ISP(s),
which should disable DPM on the interfaces that
connect to the tier-2 ISP. In general, when DPM is
enabled on interfaces of an n-tier ISP, DPM must
be disabled on the interface of its upstream n — 1-tier
ISP. These guidelines require collaboration and
sharing information among ISPs. However, the

2680 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

sharing of information occurs between ISPs, which
already collaborate in sharing, among others, BGP
routing information. If these DPM deployment
guidelines are followed, then at any point in DPM
deployment the DPM-enabled interfaces will form
a continuous perimeter. However, if these guidelines
are not followed, or if DPM is enabled on one or
more interfaces inside the perimeter, the ability of
the victim to traceback will be undermined.

3.3. Procedure

A 32-bit IP address needs to be passed to the vic-
tim. A total of 17 bits are available to pass this
information: 16-bit ID field and 1-bit RF. Clearly,
a single packet would not be enough to carry the
whole IP address in the available 17 bits. Therefore,
it takes at least two packets to transfer the entire IP
address. The IP address is split into two segments,
16 bits each: segment 0 — bits 0 through 15, and seg-
ment 1 — bits 16 through 31. The marks are prepared
in advance to decrease the per-packet processing.
Each mark has two fields: Segment Number and
Address bits. With equal probability, one of the
two marks is inserted in the 17-bit field comprised
of the ID field and RF of each incoming packet.

As described in [27], the victim maintains a table
matching the source addresses to the ingress
addresses. When a marked packet arrives at the vic-
tim, the victim checks if the table entry for the source
address of this packet already exists, and if it does not
exist, one is created. Then, it writes address bits of the
segment into the corresponding bits of the ingress IP
address value. After both segments corresponding to
the same ingress address have arrived at the destina-
tion, the ingress address for the given source address
becomes available to the victim. The details of the
procedure are shown in Fig. 2.

Marking procedure at router R, edge interface A:
fory=0to 1
Marks[y].Seg_-Num := y
Marks[y].Abits := Aly]
for each incoming packet w
let = be a random integer from [0,1]
write Marks[z] into w.Mark

Ingress address reconstruction procedure at V:
for each attack packet w
IngressTbl[w.Mark.Seg_Num] := w.Mark.Seg_Num

Fig. 2. Pseudocode for the basic DPM.

For security reasons, passing the ingress IP
address may be undesirable for ISPs for security
reasons. DPM can perform as effectively if informa-
tion of other types is passed. For example, it is pos-
sible to pass Autonomous System (AS) numbers
instead of the ingress IP addresses. On one hand,
passing an AS number is simpler because it is a
16-bit number. On the other hand, the ISP would
need to either maintain internally or pass to the des-
tinations some other information to determine the
address of the interface closest to the attacker. For
example, arbitrary 16-bit numbers that are unre-
lated to the IP addresses may be assigned to ingress
interfaces and passed to the victim. Such marking
would accomplish the same task of identifying the
ingress interface without revealing its actual IP
address, while transferring 32 bits of information.

Another approach is to alter the actual ingress
address passed in the marks in a way that would
allow the potential victim to identify the ISP, and
in turn allow the ISP to identify the ingress inter-
face. For example, the last byte of the ingress
address inserted in the DPM marks may be changed
in a predetermined way known only to the ISP. The
victim would be able to determine the ISP based on
the first three bytes, but not the actual ingress
address of the marking interface, while the ISP
would be able to actually determine the interface
and take appropriate measures. Accordingly,
DPM is relatively simple to modify such that details
of the ISP topology are not revealed. For academic
purposes, however, the rest of the article focuses on
the actual IP address with the understanding that
other information can be used in its place without
loss of functionality.

4. Multiple attackers and IP source address
inconsistency

The limitation of the basic DPM in handling cer-
tain types of DDoS stems from the fact that the vic-
tim associates segments of the ingress address with
the source address of the attacker. However,
because source addresses may be spoofed, the Basic
DPM would be ineffective in many situations. For
example, there are two illustrative situations when
the reconstruction procedure of the basic DPM
would fail. First, two hosts with the same SA may
attack the victim. The ingress addresses correspond-
ing to these two attackers are 4, and 4,, respec-
tively. The victim would receive four address
segments: Ao[0], Ag[1], A1[0], and 4,[1]. The victim,

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2681

not being equipped to handle such an attack, would
eventually reconstruct four permutations that are
ultimately possible: Ag[0]. Ao[1], Ao[0]. A1[1], 44[0].
Ao[1], and A4,[0]. 4,[1], where ‘. denotes concatena-
tion. Only two of the four would be valid ingress
address.

A typical benchmark for evaluation of the trace-
back methods for DDoS attacks is the rate of false
positives or false positive rate. In the context of
DPM, a false positive is defined as an incorrectly
identified ingress address. The rate of false positives
refers to the ratio of the incorrectly identified ingress
addresses to the total number of identified ingress
addresses. In the above example, the false positive
rate is 50%. Clearly, the false positive rate would
increase even further if the number of attackers,
with the same SA, was even larger.

Second, (D)DoS attackers may simply change
the source address field for every packet they send.
The basic DPM is unable to reconstruct any valid
ingress addresses because none of the entries in the
IngressThl would have a complete ingress address.
The DPM methods described below builds on sim-
plicity of the basic DPM while mitigating its
deficiencies.

4.1. General principle of handling DDoS attacks

The general principle of handling (D)DoS
attacks of these types is to rely only on the informa-
tion transferred in the DPM mark [29]. The DPM
mark can be used to not only transfer bits of the
ingress address but also some other information.
This additional information should enable the desti-
nation to determine which ingress address segments
belong together to form a valid ingress address.

The reconstruction procedure utilizes the data
structure called Reconstruction Table (RecTbl).
The victim would first put the address segments in
RecThl, and then only after correctly identifying
the ingress address, out of the many possible
address segments permutations, would transfer it
to IngressTbl.

4.2. Single-digest modification to DPM

The traceback method described in this section
uses a hash function, H(") to produce digests or hash
values of the ingress address. It is assumed that the
hash function is generally known to everyone,
including all DPM-enabled interfaces, all destina-
tions which intend to utilize DPM marks for trace-

back, and the attackers. The constraint of 17 bits
still remains, and so inserting a longer digest in
packets would result in fewer bits of the actual
address transmitted in each mark, and conse-
quently, the higher number of packets required for
traceback.

4.2.1. Mark encoding

Recall that in the basic DPM, the ingress address
was divided into two segments. In this single-digest
modification, the ingress address is divided into k
segments. Therefore, the mark contains 32/k bits
of the address segment and log,(k) bits required to
identify a segment. The remaining bits are used
for the digest. Regardless of which segment of the
address is being sent to the victim, the digest portion
of the mark always remains the same for a given
DPM interface. This enables the victim to associate
the segments of the ingress address with each other
to reconstruct the complete address.

Fig. 3 shows the schematics of this approach. The
DPM mark consists of three fields: a-bit address seg-
ment field, where a = 32/k, d-bit digest field, and
s-bit segment number field, where s =17 — (a + d).
Some padding may be required so that the address
is split into segments of equal length.

At startup the DPM-enabled interface prepares k
marks for all segments of the address. A d-bit hash
value, or digest, of the ingress address is calculated
only once and then inserted in the digest field of
every mark. Each of the k marks have address bits
set to a different segment of the ingress address.
The segment number field is set to the appropriate
value. These operations are shown to the left of

|abn|ab-t|—|—> | ‘l

Random
| Selector [0..k-1]

H(x) ..:‘
| 32-bit Ingress IP Address F}M—P d-bit p=1/k

Fig. 3. Mark encoding for single-digest DDoS modification.

| a-bit | a-bit |

2682 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

the bold dotted line in Fig. 3, and are performed
only once. The processing required for every packet
is limited to generating a small random number
between 0 and k£ — 1 and inserting the correspond-
ing mark into the packet header.

4.2.2. Reconstruction by the victim

The reconstruction procedure of the single-digest
method consists of two separate processes: Mark
Recording and Ingress Address Recovery. The rea-
son for separating these two tasks is that the attack
packets may arrive at the destination faster than
they can be analyzed. The mark recording process
sets the appropriate bits in RecTb!/ to indicate which
marks have arrived at the destination. Address
recovery checks those bits, composes address seg-
ment permutations, and determines which ones are
valid ingress addresses.

RecThl is a 27 bit structure, where every possible

mark can be uniquely represented. It consists of 2¢

areas, each area consists of k segments, and each
segment consists of 2¢ bits. Fig. 4 shows an example
of RecThl, where k, d, and a are 8, 10 and 4, respec-
tively. When a marked packet arrives to the victim,
the mark recording process sets the corresponding
bit in the RecThl. For an exemplary attacker, the
ingress address can be possibly hashed into 29 digest
values. The digest is extracted from the mark and
the area where the bit is to be set is determined.
The segment number field in the mark indicates

the segment in the RecThl area, where the appropri-
ate bit is to be set. Finally, the value of the address
bits in the mark indicates the actual bit, which is set
to ‘1’. This process is repeated for every incoming
mark.

The address recovery process is a part of a larger
traceback procedure, discussed below. It analyzes
each area of the RecThl. Once again, it runs inde-
pendently from the mark recording process, thus
allowing post-mortem traceback. The value of a
bit in RecTbhl indicates that the corresponding mark
has arrived at the victim. For example, bit 12 in seg-
ment 3 of area 671 set to ‘1’ means that there is an
ingress address of interest, with digest of 671 having
segment 3 equal to ‘1100’, as shown in Fig. 4. This
segment has to be combined with other segments of
this area in order to create permutations of seg-
ments. Once one or more permutations are created,
hash function, H("), is applied to each of them. If the
result matches the area number, which is actually
the digest embedded in the marks (in this example
671), the recovery process concludes that this per-
mutation of segments is in fact a valid ingress
address.

4.2.3. Performance analysis

In this section, we present the summary of the
performance analysis for the single-digest modifica-
tion. The two important metrics are: (1) the number
of attackers, N, that this modified single-digest

Mark Recording l Address Recovery

17-bit mark

11001010011111011

Seg. 3
| [1100]

32-bit Permutation

v
01234567

,--
0
RecTbl A
o ! 2
0 ,,' 3
4
1) 5
/ 6
) 7
» 671 HHHHHH 8
-
N 9
\ 10
1022 N ’11
‘e P12
o
1023 D13
ey N 14
......................... < N\1s

Fig. 4. RecThl with k =8, d =10, a = 4; mark recording; address recovery.

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2683

Table 1
Relationship between selected k and a, s, d, Nmax, and E[D] for
the single-digest modification

k a K d Nmax ED]
2 16 1 0 1 3
4 8 2 7 26 9
8 4 3 10 108 22

16 2 4 11 45 55

32 1 5 11 45 130

DMP technique can traceback with the false posi-
tive rate limited to 1%, and (2) the expected num-
ber of datagrams, E[D], required to be marked by
a single DPM-enabled interface in order for the vic-
tim to be able to reconstruct its ingress. Table 1 pre-
sents this summary, showing the values of Nyax
and E[D] for selected values of k. The derivations
of these results is presented in detail in Appendix
Al

4.3. Multiple digest DDoS modification to DPM

In the single-digest DPM described in Section
4.2, a single hash function, H('), is used for identify-
ing segments of ingress addresses. While this allows
for identifying multiple ingress addresses of simulta-
neous attackers, this number is not sufficient for the
real attacks. In this section, a modification, requir-
ing a family of hash functions, is introduced.

4.3.1. Mark encoding

In this multiple digest DPM, a family of f hash
functions, Hy(-) through H, (-), is used to produce
fdigests of an ingress address. As in the single-digest
method described in Section 4.2.1, an address seg-
ment and a segment number will be transferred in
each mark. Instead of a single digest, however,
one of the several digests produced by each of the
f hash functions concatenated with the function
identifier is embedded in the mark. The d-bit field,
which was used solely for the digest in the single-
digest scheme, is split into two fields: log,(f)-bit long
field carrying the identifier of the hash function, and
d-bit field with the digest itself.

Fig. 5 illustrates the process of the mark encod-
ing. The process is very similar to the one described
in Section 4.2.1, but differs in that for every ingress

2 False positives rate of 1% presents the theoretical boundary,
typically used as a measure of performance for traceback
algorithms. It is noted that lower numbers of N produce lower
rate of false positives.

| a-bit | a-bit | [| a-bit | a-bit |—4

|
5

| 32-bit Ingress IP Address

Random Selector
[0..fk-1]

p = 1/fk

Fig. 5. Mark encoding for multiple digest DDoS modification.

address, not k, but fxk marks are created at
startup. The DPM-enabled interface selects one of
them for every packet. This does not affect the
DPM-enabled interface per-packet overhead, how-
ever, because the per-packet processing remains lim-
ited to generating a small random number and
overwriting the 17 bits in the header, just as for
the basic DPM or single-digest modification.

4.3.2. Reconstruction by the destination

Reconstruction by the destination is also similar
to that described in Section 4.2.2. The structure of
RecTbhl is changed slightly. To accommodate multi-
ple digests, the RecTb! consists of f parts. Each of
those parts has the structure identical to the RecThl
described in Section 4.2.2 (27 areas, k segments in
every area, and 2° bits in every segment). The mark
recording process first examines the hash function
identifier field. Then it proceeds to the correspond-
ing part of the RecThl. Having identified the part
in the RecThl, the area, and the segment, the corre-
sponding bit is set to ‘I1’, as in the single-digest
modification.

The address recovery process, shown in Fig. 6,
identifies the permutations that match the digest in
areas of Part0 of RecThl. Once a permutation is
validated by comparing its digest obtained by apply-
ing Hy(") to the area number, the rest of the hash
functions, H,() to Hy_,(-), are applied to it to pro-
duce f'— 1 digests. These digests are used to verify
whether this permutation exists in other parts of
RecTbhl. The process then checks other areas of the

2684 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

[

I 32-bit Segment Permutation I

_part0

0

1
TT T I1T
T
T
e

d.
e 2941

Part 1 Part f-1
0 0
1 1
SN uLhLH'=°
l—||_|_|<_? (BN

201

N
N
iy

Fig. 6. Address recovery for multiple digest DDoS modification.

remaining parts for the permutation in question. If
the permutation is present in the corresponding area
of every part of the RecThl, the process concludes
that the permutation is a valid ingress address.
Notice that the permutation does not have to be
verified in every part. It is known that the digest
obtained by applying H{-) to the permutation being
checked will match the area number since the area
was identified by this operation. Therefore, such
verification would be redundant and always pro-
duce a positive outcome. The pseudocode in Fig. 7
provides the details of the mark encoding, mark
recording, and address recovery processes.

4.3.3. Performance analysis

Table 2 provides the summary of multiple digest
modification performance metrics. In particular, it
shows the values of Nyax and E[D] for selected
combinations of f, a, k, and d. The derivations of
these values is presented in Appendix A.2.

As seen from Table 2, the multiple digest modifi-
cation is able to reconstruct significantly more
ingress addresses of simultaneous attackers than a
single-digest modification without increasing E[D]
substantially. The details of performance analysis
are provided in Appendix A.2.

5. Accommodating IP fragmentation

Fragmented traffic constitutes between 0.25%
and 0.5% of the total IP traffic according to [2,30].
Though the amount of fragmented traffic is small,
it still exists. The deterministic packet marking
(DPM) methods, discussed so far, did not differenti-
ate between fragmented and non-fragmented traffic.
The ID Field, which is by design used for fragmen-
tation, and RF of the IP header in every packet are

completely replaced with one of fx k marks chosen
at random. This prevents reconstruction of frag-
mented packets.

In this section, we explore why methods pre-
sented so far are a poor way to handle fragmented
traffic, and present a modification to DPM to miti-
gate problems related to fragmentation.

5.1. IP fragmentation background and terminology

Fragmentation is a feature of Internet Protocol
(IP) to enable transport of packets across the net-
works with different Maximum Transfer Unit
(MTU). Path MTU is the smallest MTU of all links
on the path from a source to a destination as
described in [31]. When a packet enters the network,
with MTU that is smaller than the packet length,
the packet has to wundergo a process of
fragmentation.

Fig. 8 illustrates this process and introduces sev-
eral important terms.’ The original datagram is an
IP datagram that is fragmented because its size
exceeds the MTU of the next link. A Packet Frag-
ment, or simply a fragment, refers to a packet con-
taining a portion of the payload of the original
datagram. While the terms datagram and packet
are colloquially used as synonymous, here they refer
to original datagram and packet fragment, respec-
tively. A fragment series, or simply a series, is an
ordered collection of fragments that results from a
single original datagram.

When fragmentation occurs, each fragment
becomes a valid IP packet. All fragments have their
own IP headers. Most of the fields of the IP header

* The figure and the terminology used to describe different
aspects of fragmentation is largely adopted from [30].

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

Marking procedure at router R, edge interface A:
for z=0to f—1
Digest:= H,(A)
fory=0to k—1
Marks[z x k + y].Hash.num := z
Marks|z x k + y].Digest := Digest
Marks|z x k + y].Seg Num := y
Marks[z x k + y].Abits := Aly]
for each incoming packet w
let be a random integer from [0, f x k)
write Marks[z] into w.Mark

Mark Recording procedure at victim V:
for each attack packet w
Part := w.Mark.Hash_num
Area := w.Mark.Digest
Seg = w.Mark.Seg_Num
Bit := w.Mark.A_bits
RecT'bl[Part, Area, Seg, Bit] := ‘1’

Address Recovery procedure at victim V:
for Area =0to 2¢ -1
for Bity =0 to 2° — 1
if RecTbl[0, Area, 0, Bitg] == ‘1’ then

if RecTVl|0, Area, k — 2, Bitj,_o] == ‘1’ then
for Bit,_; =0to 2% —1
if RecTVl|0, Area, k — 1, Bit,_] == ‘1’ then
Prm = Blto . Bltl e Bitk,1
Digest := Ho(Prm)
if Area == Digest then
for Part =0to f — 1
for Seg=0to k —1
if RecTbl[Part, Hpg(Prm), Seg, Bitse, # ‘1’ then
False flag =1’
if False flag # ‘1’ then
Prm = IngressTbl

Fig. 7. Pseudocode for the modified multiple digest DPM algorithm.

2685

Table 2
Relationship between f, k and a, s, d, N\ax, and E[D] for selected
combinations for multiple digest modification

f k a s d Nvax E[D]
4 8 4 3 8 2911 130
4 4 8 2 5 2296 55
8 4 8 2 4 2479 130

of the fragments are inherited from the original dat-
agram IP header. The fields of interest are ID field,
Flags, and Offset. ID field is copied from the origi-
nal datagram to all the fragments. The Source
Address (SA), Destination Address (DA), Protocol
(P), and ID, are used by the destination to distin-
guish the fragments of different series [32,33]. The
ID field of all fragments, which resulted from frag-
menting a single datagram, must have their ID field
in the IP header set to the same value for proper

reassembly. More Fragments (MF) flag is set to
‘1’ in every fragment except the last one. This flag
indicates that more fragments follow. The last frag-
ment has MF set to ‘0’ to indicate that it is the last
fragment in the series. Finally, the offset field of the
IP header is set to the position of the data in the
fragment with respect to the beginning of data in
the original datagram. The offset is measured in
the units of 8 bytes.

For successful reassembly, the destination has to
acquire all of the fragments of the original data-
gram. A tuple (SA, DA, P, ID) is used to determine
if the fragments belong to the same original data-
gram, MF is used to indicate the number of frag-
ments, and Offset is used to determine the correct
order of reassembly. Note that the fragments may
arrive out of order, but reassembly will still be suc-
cessful because the destination is able to determine

2686

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

~@¢—— Original Datagram —p»
IP
Data Header
Data Data Data Data P
t t t t
SegTen Seg;nen Segmen Seg:nen Header
Data IP Data P Data IP Data IP
Segment |jeader| | SegMent |Header| | SegmMent |Header| | Se9Ment |Header
4 3 2 1
Fragment 4 Fragment 3 Fragment 2 Fragment 1
- Fragment Series |

Fig. 8. IP fragmentation.

that a fragment belongs to a series, and its position
relative to other fragments.

DPM uses the ID field to transfer the mark and
that may cause reassembly failure.* We examine
the effects of DPM on IP reassembly and then intro-
duce a method to deal with these undesirable effects,
and analyze the performance of the methods in
terms of the probability of reassembly error.

5.2. Shortcomings of DPM related to fragmentation

Fragmentation can occur upstream or down-
stream relative to the point of marking according
to [2]. These two situations have to be considered
separately.

5.2.1. Upstream fragmentation

Upstream fragmentation is known to the DPM-
enabled interface. The DPM-enabled interface can
identify a packet to be a fragment by examining
its MF and Offset.

In case of upstream fragmentation, a datagram is
fragmented by a router or a host before it reaches
the DPM-enabled interface. When a series of frag-
ments of the original datagram reaches the DPM-
enabled interface, the ID and RF fields of all the
fragments is replaced with one of the fx k marks
picked at random. This will cause fragments to have
different ID fields when they arrive to the destina-

4 Other IP traceback schemes based on packet marking also
face the same problem, but most of them simply ignore the issue.

tion. Fragments with different ID fields will be con-
sidered to be parts of different datagrams by the
destination. The reassembly will eventually timeout
since the destination will never get all the fragments
necessary for the reassembly of what it considers to
be several different series. The probability of all
fragments in a series of even 2 fragments having
the same ID field after marking is 1; for a series
of three packets, #, etc. For f'x k=16, the proba-
bility of a series consisting of 2 fragments being cor-
rectly reassembled is 6.25%, for a series of 3
fragments — 0.4%, etc. Clearly, the rate of reassem-
bly errors caused by upstream fragmentation is
unacceptable. The ability of DPM-enabled interface
to recognize upstream fragmentation allows for a
different strategy for marking these packets
described in Section 5.3.

5.2.2. Downstream fragmentation

Downstream fragmentation is unknown to
DPM. The DPM-enabled interface has no knowl-
edge if the marked datagrams, are fragmented any-
where along the path. Therefore, the datagrams that
will be fragmented after the marking, cannot be
treated differently from the traffic which is not
fragmented.

Luckily, fragmentation downstream from the
DPM-enabled interface does not cause any prob-
lems for reassembly. The router that performs frag-
mentation, simply copies the content of the ID field
of the original datagram into every fragment. The
value of RF is also copied into every fragment as

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2687

specified in [34]. At the destination, reassembly will
be successful since the ID field will be the same for
every fragment in the series. The fact that the ID
field has been set by DPM, and the original value
set by the host has been replaced, is unknown to
the destination, and is irrelevant for the purposes
of reassembly.

5.3. Fragment-persistent DPM

In this section we introduce a modification
to the DPM marking procedure that eliminates
most potential reassembly failures associated with
upstream fragmentation. The simplest modification
is discussed first, followed by additional changes
resulting in the fragmentation-friendly marking
procedure.

5.3.1. Fundamentals of handling upstream
fragmentation with DPM

For proper reassembly, all fragments of the origi-
nal datagram must have the same ID field. The
basic DPM marks packets randomly chosen among
fxk marks. This randomness must be suspended
when processing fragments. In order to accomplish
this task, DPM has to keep track of the fragments,
which pass through. If a certain mark has been
inserted in the first fragment that DPM-enabled
interface encounters (which does not have to be
the fragment with offset 0), then the same mark
must be inserted in the rest of the fragments of this
series. The information about which mark is used
for which series has to be stored in a table, called
FragThl, at the DPM-enabled interface and checked
every time a new fragment arrives. To identify frag-
ments that belong to the same original datagram,
DPM should check if the four-field tuple (SA,
DA, P, ID) is the same as any other it marked
within the maximum reassembly timeout of 120 s.

5.3.2. Dealing with infinite series

Assuming that an attacker can generate any
packet, it is possible that he will utilize artificial
fragmentation to force the DPM-enabled interface
to send only a single mark to the destination. Arti-
ficial fragmentation is sending packets with MF
Flag set to ‘1’ or non-zero offset while fragmenta-
tion is not required for the proper reason of the dat-
agram exceeding the MTU size of a link. With
artificial fragmentation, the attacker may generate
infinitely many packets with the same SA, DA, P,
and ID fields, which would look like fragments of

one very long series to the DPM-enabled interface
or the destination. This is known as an infinite ser-
ies. Only when the destination would attempt to
reassemble the datagram, it would realize that frag-
ments are invalid, but for success of (D)DoS attacks
it would be enough that the invalid packets occupy
the resources of the victim. In this situation, the vic-
tim will never recover the full ingress address,
because only a single mark would be available.

To remedy this situation, another simple modifi-
cation in addition to the fragment persistence is
introduced. The modification is based on the obser-
vation based on real Internet traffic that the longest
series is 44-fragments [30]. DPM should recognize
the fact that if the number of fragments in the series
exceeds 44, it is, in all likelihood, an attack, or a
result of an error. In either case, such traffic is not
expected to be properly reassembled. So, after
DPM has persistently marked 44 fragments of a sin-
gle series with the same mark, subsequent fragments
from the same series are marked randomly. Accord-
ing to this modification, the FragThl, which DPM
has to keep for fragments, where the value of
ID+RF corresponding to (SA, DA, P, ID) is kept
also keeps a counter that is incremented for every
fragment when a given tuple is encountered. Once
this counter exceeds 44, marking persistence is sus-
pended and marking at random is resumed.

5.3.3. Practical compromise

The modification described in Section 5.3.2
accommodates all of the valid fragmented traffic.
However, artificial fragmentation may still be used
by the attacker to generate bogus 44-fragment series
directed to the victim. This allows the attacker to
increase the expected number of packets required
to be marked by a DPM-enabled interface for the
victim to reconstruct its ingress address, E[Pkt], by
the factor of 44. It is possible to modify the proce-
dure outlined in Section 5.3.2 to significantly reduce
this factor with minimal trade-off.

According to [30], about 99% of series are only 2
or 3 fragments long. This fact may be taken in con-
sideration when resuming randomness. Accord-
ingly, if the randomness in selecting a mark is
resumed after only 3 fragments have passed through
the DPM-enabled interface, 99% of fragmented dat-
agrams will be unaffected and will reassemble suc-
cessfully at the destination. To the attacker,
suspending randomness for only 3 fragments makes
sending series longer than 3 fragments to the victim
totally pointless. For example, sending a series of 45

2688 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

fragments will result in 3 fragments marked with the
same mark, and the remaining 42 fragments marked
randomly. The marks will be picked at random 43
times. Assuming /' x k = 16, approximately 15 differ-
ent marks will be sent to the victim, according to the
classical occupancy problem discussed in [35]. The
same number of packets may be sent to the victim
if the attacker sends 15 series, 3 fragments each.
All 3 fragments in every series are marked with
the same mark. Therefore, random mark will be
picked only 15 times, resulting in approximately
10 different marks sent to the victim. Clearly, send-
ing series of 3 fragments to the victim, becomes the
most sensible option for the attacker. While this
approach takes care of all 2- and 3-fragment series,
which is 99% of all fragmented traffic, the remaining
1% of valid series that contain more than 3 frag-
ments, practically speaking, will never get reassem-
bled at the destination.

The compromised approach presented in this sec-
tion accommodates these longer series. According
to this approach, when the DPM-enabled interface
encounters the first (not necessarily with offset equal
to 0) fragment in a series, it determines if the ran-
domness will be suspended for 3 fragments or for
44 fragments for this series. The probability p, with
which the randomness is suspended for 44 frag-
ments, should be selected in such a way that would
provide no advantage to the attacker in sending ser-
ies longer than 3 fragments.

Sending series of more than 44 fragments results
in no advantage to the attacker in either case,
because randomly selected marks are inserted in
the fragments after the 44th one in both cases. How-
ever, the attacker may send series of exactly 44 frag-
ments hoping that the number of marks sent in a
series of 44 packets is less than in a series of 3. If
the attacker generates a 44-fragment series, only a
single mark is inserted in all the fragments, with
probability p. Alternatively, only 3 first fragments
would have the same mark, and the rest 41 frag-
ments would have randomly picked marks with
probability 1 —p. Accordingly, 42 randomly
selected marks are transferred to the victim in the
fragments of this series with probability (1 — p).

We would like to find the value of p that would
make it impractical for the attacker to send series
of longer than 3 fragments. Denote D as the number
of datagrams being sent. In case of sending series of
3 fragments, the expected number of times marks
are randomly picked (different from the number of
marks acquired by the victim) is D, and the number

of packets sent to the victim is 3D. In case of send-
ing 44 fragment series, the expected number of ran-
domly chosen marks is D(42(1 — p) + p), and the
number of packets sent to the victim is 44D. The
ratio of number of packets to the number of gener-
ated marks is called a fragmentation coefficient C.
For these two possible ways of using artificial frag-
mentation, C must be the same, to ensure that the
attacker gains no advantage in sending long series

44D 3D
DA2(1-p)+p) D’
44

" 3
42(1 —p)+p

Solving for p results in the value of 2. It is important
that the number of datagrams sent by the given host
does not affect the value of p. This means that DPM
can suspend randomness in mark selection for 44
fragments in 2 out of every 3 datagrams. Approxi-
mately 33.3% of the datagrams fragmented into
more than 3 fragments upstream would still fail to
reassemble at the destination. However, considering
that the fragmented traffic is only 0.5% of the
overall traffic, only about 0.017% of the overall
traffic would be affected. The pseudocode of the
encoding procedure reflecting the practical compro-
mise is depicted in Fig. 9. Processing at the victim is
not affected by fragmentation accommodating
modification.

Marking procedure at router R, edge interface A:
for z=0to f—1
Digest:= H,(A)
fory=0to k—1
Marks|z x k + y|.Hash.num := 2z
Marks[z x k + y].Digest := Digest
Marks[z x k + y].Seg_Num := y
Marks[z x k + y].Abits := Aly]
for each incoming packet w
let « be a random integer from [0, f X k)
if w.MF == ‘1" OR w.offset # 0 then
if FragTbl[SA, DA, P,ID] == NIL then
create F'ragTbhl[SA, DA, P, ID]
let v be a random integer from set {3, 44, 44}
FragTbl[SA, DA, P,ID].Mark.num := z
FragTbl[SA, DA, P, I D].counter := 1
FragTbl[SA, DA, P,1D].Suspend := v
else
if (FragTbl[SA, DA, P,1D].counter <
— < FragTbl[SA, DA, P, ID].Suspend) then
x = FragTbl[SA, DA, P,I1D].Mark_num
FragTbl[SA, DA, P, ID].counter++
write Marks[z] into w.Mark

Fig. 9. Pseudocode for the fragment-persistent DPM.

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2689

5.4. Size of the FragTbhl

In this section, the size of memory required for
the FragThl is discussed. This is an important issues
because this memory overhead is actually incurred
by the routers, and as mentioned earlier the ISPs
involvement for traceback methods should be mini-
mal. The amount of memory required for the Frag-
Thl depends on the interface speed and will
therefore vary for different interfaces.

The size of FragTbhl is directly proportional to the
rate of the DPM-enabled interface, R. The inter-
faces with the higher rate are able to process more
packets per second. According to [30], approxi-
mately 0.5% of IP packets are fragmented. For
every series 12 bytes (4-Byte SA, 4-Byte DA, 2-Byte
ID, 1-Byte P, 4-bit fk value, and 1-bit required to
store two values of threshold for the number of
fragments to resume randomness) are allocated in
the FragThl and every entry should be held in the
FragThl for 120 s. Keeping the entry longer than
120 s is impractical, because the time of the reassem-
bly process at the destination is 120 s [36]. We con-
servatively consider the average packet size to be
1000 bits [19]. The recent traffic measurement stud-
ies suggest that the average packet size, however,
is closer to 400-600 Bytes [37,38]. It follows then,
that the size of the FragThl in Bytes is given by

R bits/s x 120 s x 0.005 x 12 Bytes
1000 bits
= (0.0072R MBytes.
Table 3 summarizes memory requirements of Frag-
Th! for various commonly used interfaces. The
interfaces, which are likely to be on the edges of

even a large ISP would not require more than
100 MB of RAM.

Table 3

Common interfaces, their rates and estimated FragTbhl sizes
Type Rate FragTh!
0OC-768 40 Gb/s 288 MB
0C-192 10 Gb/s 72 MB
10GigE 10 Gb/s 72 MB
0C-48 2.5 Gb/s 18 MB
GigE 1 Gb/s 7.2 MB
OC-12 622 Mb/s 4.5MB
0C-3 155 Mb/s 1.12 MB
FastE 100 Mb/s 0.72 MB
OC-1 51.84 Mb/s 0.37 MB
DS3 44.736 Mb/s 0.33 MB
DSI 1.544 Mb/s 11 KB
DSO0 64 Kb/s <1 KB

5.5. Alternative methods of handling fragmentation

Given the small overall percentage of the frag-
mented traffic on the Internet, it becomes question-
able whether it is a useful feature of just an
additional exploit available to the attacker. While
the practical compromise described above accom-
modates most of the fragmented traffic, it increases
E[Pkt] by a factor of 3. In this sub-section, we
briefly introduce some alternatives that may be
more practical in the actual deployment.

First, DPM-enabled interfaces may simply drop
all fragmented traffic. While being a crude alterna-
tive, it may actually eliminate applications that still
rely on IP fragmentation. As a result, hosts will not
need to have fragmentation and reassembly mod-
ules, which would completely obviate the need for
looking into DF, MF, and Offset fields, which in
turn would allow the use of those fields for other
purposes, such as transfer of traceback-related
information, as proposed for example in [18].

Second, DPM may not mark fragmented traffic.
This creates an open invitation for attackers to use
artificially fragmented traffic for DDoS attacks.
To prevent such attacks, routers on the Internet,
as well as hosts, may implement a flow control
mechanism that would give the lowest priority to
the fragmented traffic and drop fragmented traffic
in case of a flooding. This alternative ensures that
non-attack fragmented traffic would be properly
reassembled at the destination while decreasing the
possibility of a DDoS attack using the fragmented
traffic.

6. Traceback

In this section, we discuss different types of
attacks and introduce the traceback for various
types of attacks. We then discuss the conditions
for traceability for each type.

6.1. Types of cyber attacks

In [39], cyber attacks are divided into four clas-
ses: reconnaissance, informational, access, and
denial of service. The first three classes can be com-
bined into one in the context of the DPM traceback
and can be called intrusions. An important charac-
teristic of an intrusion is that the attacker is
interested in receiving some information from the
victim. The attacker is thus forced to use a stable

2690 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

IP address in order to receive the replies from the
victim, and the traceback of such attacks is trivial.

Denial-of-service attacks have become very pop-
ular recently. Currently, there is no complete com-
prehensive defense against these attacks, which is
why the traceback of these attacks becomes even
more important. The common goal of all denial-
of-service attacks is to render the victim unable to
provide services to the customers. This is usually
accomplished by exhausting physical or logical
resources on the victim’s servers and networks or
the ISP uplink.

A required feature of a DDoS attack is a collec-
tion of slaves. The slaves are the hosts on the Inter-
net that the attacker has compromised by using
common vulnerabilities and bugs in the operating
systems [40]. When the attacker compromises a host
and gains full or partial control, he installs special
software for sending packets, called a flood server
on the host, thus making it a slave. Since the
attacker controls the slaves, it is possible to have
the slaves generate any packet, in particular, packets
with spoofed SA and artificially fragmented data-
grams. The DDoS attack may also involve reflec-
tors, which are uncompromised hosts with opened
services (such as www), which are used to reflect
the traffic from the slaves to the victim. A typical
reflection works as follows. The slaves spoof the
source address in the packet directed to the reflec-
tors with the victim’s IP address. As a result, the vic-
tim is being flooded by replies, which were

No DPM |
Logging ——

)

Pkt 2

SA: V

Mark: M-S-2

/< | Mark: M-S-1

Rep 1

originated by reflectors in response to the requests.
Note that the attacker has no control over the
reflectors, and therefore the reflectors can only gen-
erate valid packets. That is, the SA field will have
the reflector’s IP address, and the artificial fragmen-
tation cannot be orchestrated by the reflectors.

In the most general case of a DDoS attack, called
a mixed DDoS attack in this article, the attacker
may instruct the slaves to flood the victim directly
and send packets to reflectors, from which packets
are reflected to the victim. In Fig. 10, slave S sends
packets 1 and 2 to reflectors R1 and R2, respec-
tively. The SA of these packets are spoofed with
the address of the victim V. The generated replies
1 and 2 are then directed to V. Note that SA fields
of the replies 1 and 2 are not spoofed and contain
valid source addresses of R1 and R2. Also, S sends
packet 3, with a spoofed SA for some random value
R3, directly to V. The fact that S sends the packets
to both V and R’s constitutes a mixed DDoS. A
major attack would involve hundreds or even thou-
sands of slaves and up to a million of reflectors [40].

There are well known special cases of the mixed
DDoS attacks. One special case is a reflector-based
DDoS attack, which occurs when slaves send pack-
ets only to reflectors, and the victim is flooded by
the replies from the reflectors only. Another special
case is a slave-based DDoS attack, which occurs
when slaves send packets only to the victim. The
reflectors are not engaged in a slave-based attack.
A special case of a slave-based DDoS attack is a

SA: Ri

Mark: M-R1-1

Pkt 3

SA: R3

Mark: M-S-3

Fig. 10. Composition of (D)DoS attacks.

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2691

DoS attack, which occurs when only a single slave
participates in a slave-based attack.

6.2. Traceback data structures

As a stream of packets enters the victim’s net-
work, the SA field and the mark of every packet
must be logged. Logging is already performed by
most Web servers. Logging accomplishes two tasks:
(1) it enables tracing slaves from reflectors as dis-
cussed in Section 6.4, and (2) it enables post-mortem
traceback. During traceback, the DPM Traceback
Procedure creates an instance of a TraceTbl that
consists of RecThls. Each RecTbhl is associated with
a source address (SA) of one of the attack packets.
In addition, there is a StatThl, a data structure iden-
tical to TraceThl, that is associated with the Trace-
Thl and is used for analysis of the marks. Finally,
there is a common RecTbhl, where final address
reconstruction occurs. The ingress addresses may
be recovered in StatThl or the common RecTbl,
and so they can be copied to IngressThl from either
data structure. Fig. 11 illustrates the data structures
involved.

6.3. Traceback procedure
A single procedure must be able to handle all

types of attacks discussed in Section 6.1. Every
attack packet that arrives to the victim has a mark.

The victim sets the appropriate bit in the RecThl
associated with the SA address of the attack packet
in the TraceThl to ‘1°, as described in Section 4.

At predetermined time intervals or once the
attack is over, the content of the TraceThl is copied
into StatThl, which is used for the statistical analysis
of the marks. The recording of marks is not per-
formed in StatThl, although while the StatThl is
analyzed, the incoming marks continue to be
recorded in the TraceThl. The StatThl is used only
to analyze the SAs and associated RecTblis.

It is beneficial to examine how receiving marked
packets from a reflector affects a corresponding
RecThl. A single area of every part would have
exactly k bits set to ‘1’. Furthermore, none of the
bits set to ‘1’ can be within the same segment. We
define a proper RecTbhl to be a RecThl that has
exactly one bit set to ‘1’ for every segment. A proper
RecTh! therefore resembles a RecThl that would
result for a SA, when a reflector sends packets to
the victim. It is entirely possible, of course, for a
slave to spoof the SA field in its packet directed to
the victim in such a way that would result in a
proper RecThl. Therefore, the victim cannot auto-
matically assume that marks in a proper RecTbl
are from a reflector’s ingress address. The analysis
of a slave being able to fake a proper RecTb! is pro-
vided below.

The procedure relies on the observation that a
reflector sending packets to the victim results in

Packets * >
106 > DS
TraceTbl StatTbl
SAO SA 0
N RecTbl N RecTbl [|| c’gg%yln
. L 5 .

v

RecTbl

\i\A\\z§ RecTbl (| IngressTbl
N

Fig. 11. DPM traceback data structures.

2692 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

creation of a proper RecTh! (provided it sends
enough packets) due to the fact that the reflector
cannot change the SA-mark association. An
attacker may want to pollute proper RecTbls to
make reconstruction more difficult. For example,
the attacker may pollute the proper RecTh! by
directing its slaves to send packets with the SA of
the reflector directly to the victim. By doing so,
however, the attacker increases the number of
marks associated with the slaves ingress addresses
to be sent to the victim.

The procedure applies the address recovery pro-
cess on every individual RecTbh! in the StatTble.
Any ingress addresses, which are reconstructed,
are stored in the IngressThl. Moreover, if the RecThl
is proper, it is removed from the StatThl. Refer to
Sections 6.4.1 and 6.4.2 for further discussion on
proper RecThls and mark deletion.

After applying the address recovery process to
the individual RecTbhls, the victim has determined
the addresses of reflectors, and possibly some slaves
that have not effectively spoofed their SAs, so that
all £ marks from one slave happened to be associ-
ated with a single SA.

The number of potential marks from slaves’
ingress addresses identified by the victim should
not exceed Mg. My is the expected number of
marks, which the victim would collect if attacked
by Nmax attackers simultaneously, and is given by
the equation below

. d a _ na _lﬁ
Mg = fx2°x k|2 =21 %a)

where E[H]is given by Eq. (1) in Appendix A. For
f=4and k =4, Mg is 32,038.° Keeping the number
of marks analyzed by the victim under Mg, ensures
that the rate of false positives will not exceed 1%.

Depending on the attack profile, some marks
that remained in the StatThl at this point may be
from the slaves’ ingress addresses while others may
be from the reflectors’ ingress addresses stored in
improper RecThls. A certain number of these
remaining marks should be selected to be copied
to the common RecThl. The total number of marks
in the common RecThl should not exceed M.

> This result was also supported by the following simulation.
Nmax 32-bit numbers were generated and divided into segments;
the corresponding marks were created; the number of unique
marks Mg; was calculated; Mg, was computed by averaging M,
over multiple experiments.

We define a mark occurrence as the number of
RecTbls in which that mark appears. In other
words, if a given mark arrived multiple times in
the packets with the same SA, only one occurrence
is counted. However, if a mark appears in packets
with different SAs, then such mark has the number
of occurrences corresponding to the number of the
unique SA’s. For its final analysis, the victim selects
marks with the highest number of occurrences to be
copied to the common RecThl. Assuming that the
marks are distributed uniformly in the interval of
[0,2'7), the only reason for a mark to have a higher
number of occurrence is that a slave has sent pack-
ets to the victim with different SAs. This leads to the
situation when the same marks appear in the
RecTbls associated with different SAs, and thus its
number of occurrence is higher than for other
marks. Therefore, marks with a higher number of
occurrence are more likely to be from the slaves’
ingress addresses.

Once Mg most frequently occurred marks
are copied to the common RecThl, the address
recovery process is applied to the common RecThl!
and the ingress addresses are reconstructed. The
reconstructed addresses are ingress addresses of
slaves that sent packets to the victim directly,
but cannot be reflectors addresses because they
would have been constructed in the corresponding
RecTbls in the StatThl, or in the alternative if they
would not have been reconstructed, the marks of
those ingress addresses would not be most fre-
quently occurring.

6.4. Tracing slaves from reflectors

As discussed above, potential victims log attack
packets. Information from the logs kept on reflec-
tors may be used by the victim to collect marks with
ingress addresses of slaves.

Recall that the attacker engages a reflector in the
attack by sending a packet to the reflector from a
slave with the SA spoofed for the address of the vic-
tim. The reply to this packet, whatever it might be,
is directed to the victim. Even though the attacker
may change the SA of the packets sent by slaves,
the DPM marks cannot be changed. Therefore,
the marks of the packets to a reflector with the SA
of the victim may be used to reconstruct the ingress
address of the slave(s), which sent the packets to this
reflector. The marks obtained from reflectors may
be used in the traceback procedure to identify the
ingress addresses of slaves.

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2693

The protocol of obtaining the logs is beyond the
scope of this work. It should be noted that the pro-
tocol itself may be exploited by the attackers. To
mitigate this, the protocol may implement a new
or presently existing security mechanism such as
IPSec. Also, in this article the authors would like
to emphasize the principles of being able to trace
the slaves from the victim by obtaining marks from
reflectors, not the actual implementation.

A given reflector may have DPM logging enabled
or disabled. When the victim makes a request to the
reflector for the marks from the logs, the victim’s
address and the approximate time of packet arrival
are supplied to the reflector. Three responses are
possible:

e Error (or no response), if the logging is not
enabled on a given reflector;

¢ Positive response, with the list of marks matching
the specified parameters returned to the request-
ing victim; and

e Negative response, if the logging on the reflector
is enabled, but none of the logged entries
matched the specified parameters.

Fig. 12 shows three reflectors. R2 and R3 have
DPM logging enabled and R1 does not. When V per-
forms the traceback, the addresses of R1, R2, R3 will
be available to V. At this point, V has no knowledge
that the packet with the spoofed SA of R3 was sent
from slaves. V sends log requests to each of the
received addresses. Fig. 12 illustrates three possible
responses to the log requests. When the log request

R2 DPM Log
Relevant Entries

No DPM
Logging ==

is sent to R1, error (or no response at all — depending
on the implementation) is returned, since the logging
was not enabled. R2 had logging enabled and had a
record of the packet with the SA of V. The marks (in
this case only one) are sent to V. R3 also has logging
enabled; however, it did not receive any packets with
the SA of V, and so the response is negative. Both
positive and negative responses are useful to the vic-
tim as will be seen in Section 6.3.

The traceback procedure may be modified as fol-
lows to take advantage of reflectors’ logs. First, the
traceback procedure makes log requests to potential
reflectors. SAs which have RecThls associated with
them would be used to determine addresses of those
reflectors. In case of a positive response from a
reflector, the victim obtains a list of marks associ-
ated with the ingress addresses of one or more
slaves. It is certain that those marks are from the
ingress interface of one or more slaves since they
came in the packets that had the victim’s SA, and
so the marks received in the response are copied
to the common RecThl. A reflector could perform
the traceback based on these marks by itself. How-
ever, the number of attack packets, which it would
receive may not be enough to recognize the attack,
and even if the attack was recognized, the marks,
which a single reflector would obtain, may not be
enough for the traceback. In particular, the attacker
may send only a few packets to a reflector from all
its slaves, thus preventing the reflector from identi-
fying slaves by itself.

In case of a negative response, the traceback pro-
cedure on the victim concludes that every mark in

Fig. 12. Tllustration of reflector log requests and responses.

2694

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

SAR1

..I_

Common RecTbl

P SAR2

C (M-s-2) 2

NEGATIVE
Uy

\—2H—T4

Fig. 13. The victim’s processing of log responses.

the RecTbhl associated with that SA came from the
ingress interface of one or more slaves. A negative
response means that the reflector indicates that it
did not send packets to the victim. Therefore, the
marks associated with the reflector’s SA must be
from slaves. These marks should also be copied to
the common RecTbhl. The RecTbhls associated with
spoofed SAs should be removed from the StatThl
and should not be considered for further analysis.
Only in the case of no response, the procedure can-
not make any determination as to the nature of the
marks and has to move on to the next SA in the
StatThl. These alternatives and the corresponding
actions are depicted in Fig. 13.

Finally, the marks with the highest number of
occurrence are copied to the common RecThl to
bring the number of marks in it to Mg, and the
reconstruction process is executed. A formal
description of the procedure is presented in Fig. 14.

6.4.1. On proper RecTbls and hiding of marks

In this section, a concept of a proper RecThl is
analyzed. Recall that one of the steps of the proce-
dure discussed above is to remove the proper RecThl
from the StatThl. As a part of the mixed DDoS, the
attacker may attempt to send a packet from a slave
with the SA of the reflector that sent enough packets
for the victim to collect a complete set of marks to
reconstruct its ingress interface. The attacker may
try to make a mark in its packet the same as the
one already received by the victim from a reflector.
The attacker may attempt to select a slave in such
a way that one or more marks of slaves ingress
addresses are the same as one or more reflectors
marks, thus having the slaves marks deleted once
the victim establishes that the RecTbl is proper.

Intuitively, the chances of this situation occurring
are very low. The attacker may find a few slaves’
ingress addresses with one or even two segments

Traceback procedure at victim V:
for each SA in StatTbl
send Log_Request(SA,V,time £ §)
if Log-Response # NI1L then
read Marks[| of Log Response
record Marks[] = com. RecTbl
if Log_Response == NIL then
read Marks|| of SA.RecTbl
record Marks|] = com. RecTbl
delete SA.RecT'bl from StatTbl
for each SA in StatTbl
run Address_Recovery(SA.RecTbl)
if proper(SA.RecTbl) == TRUE then
delete SA.RecTbl from StatTbl
for each SA in StatTbl
read Marks|| of SA.RecTbl
for each Mark in Marks]]
Occ_Structure[Mark).Value := Mark
Occ_Structure[Mark].Occurrence ++
Num_Select := Mg, — n(com. RecTbl)
sort Occ_Structure[] by Occurrence
for = := 0 to Num_Select
record Occ_Structure|z].Value = com. RecT'bl
run Address_Recovery(com. RecT'bl)

Fig. 14. Pseudocode for the traceback procedure.

matching the corresponding segments of the ingress
address of one of the reflectors. The probability that
at least one of the digests is the same multiplied by
the probability that this digest and that segment are
picked in the only mark sent to the victim is very
low. Accordingly, such attempts by the attacker
are not an effective way to hide the slaves marks.

6.4.2. On deleting marks from RecTbl

If the victim undergoes a mixed attack, the
attacker could instruct the slaves to send packets with
the SA of the reflectors, thus making sure that the
marks will be recorded in RecTbh! associated with at
least some SAs of reflectors. By having additional
marks in those RecThls, the attacker ensures that
the marks from reflectors do not get deleted from
the StatThl. Why the marks which were used in

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2695

reconstruction of a valid ingress address are not
removed in the presence of other marks in the
RecTh!? If the attacker came into possession of many
slaves, it is possible to select reflectors in such a way
that at least one out of f'x k marks inserted by the
DPM interface of the reflector is the same as one of
the marks inserted by the DPM interface of the slave.
The attacker may instruct a slave to send packets to
the victim with the SA of reflectors. If the slave does
not send enough packets so that the victim collects all
the marks in the RecThl associated with the SA of the
reflector and the ingress address of that slave is recon-
structed, then the ingress address of the slave will
never be reconstructed if one of its marks is deleted.
Therefore, the marks may be deleted from the Stat-
Thl only if there is a high degree of certainty that only
the marks from a single reflector’s DPM interface are
recorded in the given RecThl, which occurs when the
RecTbl is proper.

6.5. Conditions for traceable and untraceable attacks

In this section, we analyze the attacks that can
and cannot be traced back with the procedure
described in Section 6.3. All attacks are analyzed
from the victim traceback procedure’s point of view.
Let S be the number of slaves involved in the attack,
L be the fraction of hosts on the Internet with
enabled DPM logging, and C be the fragmentation
coefficient.

We define marginally traceable attacks as the
attacks during which the number of packets received
by the victim, is less than the expected number of
packets required for traceback, E[Pkt]. Yet, that
number may be enough to collect all the marks nec-
essary for traceback. We also define untraceable
attacks as the attacks which can never be traced.
The difference between the two is that while margin-
ally traceable can still be traced with the probability
of success of below 50%, the untraceable attacks can-
not possibly be traced. For the marginally traceable
attacks with multiple hosts involved, such as DDoS
attacks, the victim may be able to trace back to some
of the hosts involved in the attack.

6.5.1. Intrusions

The intrusion cannot comprise packets with the
spoofed SA, and so theoretically even a single
packet would be enough to perform the traceback.
However, if an intruder engages in some elaborate
scheme in which he spoofs his address and is still
capable to get the desired information, the DPM

tracing procedure would have to be used. As men-
tioned above, artificial fragmentation would not
provide any benefit to the attacker in terms of
obstructing the traceback process, and therefore is
not likely to be used. The expected number of pack-
ets required for the traceback E[Pkt]is then equal to
E[D]. Therefore, the marginally traceable intrusion
with the spoofed SA would be the one which con-
tains up to E[D] — 1 packets. The untraceable attack
must consist of no more than fx k — 1 packets.

6.5.2. DoS attacks

The DoS attacks come from a single source, most
likely with spoofed SAs in the attack packets, since
the attacker is not interested in the replies from the
victim. The number of marks required to be received
would be f'x k as described in Section 4. The artificial
fragmentation could be used by the attacker to be
able to send more packets before the traceback
becomes possible. In order for the victim to be able
to trace the ingress addresses of the slaves participat-
ing in a DoS attack, Cx E[D] packets must be
received as mentioned in Section 5. Sending less dat-
agrams than E[D] and /% k would produce margin-
ally traceable and untraceable attacks, respectively.
The respective number of packets would be
Cx(E[D]— 1) and Cx (fxk — 1).

6.5.3. Slave-based DDoS attacks

A slave-based DDoS attack can be thought of as
a number of DoS attacks toward a single victim exe-
cuted simultaneously. The expected number of
packets required to be able to trace any of the
slaves’ ingress addresses is Cx E[D], as discussed
in Section 6.5.2. Therefore, the marginally traceable
slave-based DDoS attack may consist of up to
SX(Cx(E[D]— 1) packets. An untraceable attack
must consist of no more than SX(CX (fxk — 1))
packets because in order for the whole attack to
be untraceable, every slave must be untraceable.

6.5.4. Reflector-based DDoS attacks

The reflector-based DDoS attack currently
causes the most concern. The reflectors would be
identified in the initial stage of the DPM tracing
procedure. Identifying the reflectors is not the goal
of the traceback, however. The reflectors are just
the innocent servers with opened services used by
the attacker to generate traffic to the victim. The
number of packets that the collection of slaves
may send in order to remain marginally traceable
or untraceable depends on the fraction of hosts

2696 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

Sx(E[D]-1)
L

which perform DPM logging, and would be
and W, respectively.

6.5.5. Mixed DDoS attacks

If L is sufficiently large, then using reflectors
becomes detrimental to the attacker’s goal to have
his slaves untraceable. The slave-based attack
allows the attacker to send more packets while
remaining marginally traceable or untraceable. If,
on the other hand, very few hosts on the Internet
implement DPM logging, and L is small, then the
reflector-based attack allows the attacker to attack
the victim with more packets while keeping slaves
marginally traceable or untraceable. Note that
reflector-based DDoS and slave-based DDoS
attacks are both special cases of mixed DDoS
attacks. The number of packets that allow the
attacker to wage marginally traceable attack is

s {S x (E[D] — 1)

17 ,SxCx(E[D]—l)},

and the number of packets for the largest untrace-
able attack is

maX{Sx(kal)

7 7S><C><(f><k—1)}.

Two observations can be made. First, we observe
that the number of reflectors is irrelevant for trace-
ability of the attack. Notice that it does not appear
in any of the expressions. Second, since C =3,
about 1/3 of hosts on the Internet must have
DPM logging enabled so that it becomes detrimen-
tal, in terms of the number of packets required for
traceability, to the attacker to engage reflectors.
Table 4 summarizes the findings of this section.

6.6. Storage requirements
16K Byte (2!7 bits) of storage has to be allocated

for every new SA involved in the attack. This num-
ber should be doubled since all RecThls are copied

to the StatThl for analysis. If millions of reflectors
and slaves are involved in the attack, the storage
requirements may be large. This may be an issue if
the storage facilities are not properly sized. Cur-
rently the storage is a commodity and there are
TByte hard drives available commercially [41]. The
organizations interested in DPM should plan the
storage capacity accordingly.

7. Conclusions and future work

In this article, we have presented DPM — a novel
traceback method which is secure, scalable and capa-
ble of tracing back most types of attacks. Further-
more, it provides the mechanism to tracing slaves in
various DDoS attacks. Unlike other marking-based
schemes, DPM can accommodate valid fragmented
traffic. Furthermore, unlike other traceback meth-
ods, DPM facilitates tracing slaves from reflectors.

As the work on DPM continues, we plan to
investigate effects on traceability of lossy conditions
on effectiveness of DPM. In particular, during a
(D)DoS attack a significant number of packets are
lost. Such loss may skew the distribution of marks
received by the destination, and therefore may
adversely affect the value of E[Pkt]. Additionally,
DPM is sensitive to router subversion because it is
critical that marks, once placed in packets, are not
overwritten. We plan to investigate the effects of
subversion of one or more routers in the various
Internet locations. Finally, it may be particularly
useful to integrate the traceback with IDS. Possible
ways of such integration and their benefits are
planned to be addressed in the future.

Appendix A. Performance analysis
A.1. Single hash function approach analysis

In this section, the number of attackers, N, that
the single-digest modification can traceback with

Table 4

Maximum number of packets for marginally traceable and untraceable attacks

Type of the attack Marginally traceable Untraceable
Instruction ED]-1 fxk—1

DosS attack Cx(E[D]-1) Cx(fxk—1)

Slave-based DDoS SxCx(ED]-1)

SxCx(E[D]-1)

Reflector-based DDoS T

Mixed DDoS

max (%s x C x (E[D] — 1))

SXCxX(fxk—1)

SxCx(fxk—1)
L

max (SCPAD g € (1 x k- 1))

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2697

the false positive rate limited to 1% is evaluated. Let
us examine the origin of false positives. If there is
only one ingress address with a given digest, there
will be no false positives; however, as N increases,
the chance of the digest repeated for another
address also increases. The expected number of
digests for a certain number of N can be thought
of as the expected number of the faces turning up
on a 2%sided die after N throws. This is a special
case of a classical occupancy problem [35]. The
expected number of different digests, E[H], is

E[H] =2 - 2"(1 —210,>N.

Therefore, the rate of false positives is 0 for the val-
ues of N, for which the expected number of digests,
E[H], equals to N, since every ingress address will
have a unique digest, assuming H(-) is a good hash
function.

Since there may be more than one address having
the same digest, each segment associated with a
given digest has a certain number of unique pat-
terns. For example, if two addresses have the same
digest, segment 0 in the area of the RecTbh! corre-
sponding to this digest could have either one or
two bits set to ‘1. If respective segment 0 of these
two addresses is the same, then there would be only
one bit set to ‘1’, and if segment 0 of the first address
is different from segment 0 of the second address,
then two bits will be set to ‘1’. The expected number
of unique patterns that a segment assumes can also
be thought of as the expected number of the faces
turning up on a 2%sided die after N, throws [35],
where N, is the number of ingress addresses having
the same digest. The expected number of unique
patterns the segment will assume is given by

a a 1 Nd
22 (1—2a> ,

for those areas, which have segments of more than
one ingress addresses, and 1 for those which have
segments of only a single ingress address. The ex-
pected number of all permutations of address seg-
ments for a given digest is

k
1 Na

20 2901 —-= .
(r)]

Recall that after a permutation of segments is ob-
tained, the hash function H(") is applied to the per-
mutation, and if the result does not match the
original digest, the permutation is considered to be

false. The expected number of permutations that re-
sult in a given digest for a given area of the RecTh! is

r-ra-9]
2 '

The number of false positives for a given area would
be the total number of permutations, less the num-
ber of valid ingress addresses, which match the di-
gest. For this modification, just a few areas, which
have segments of more than one ingress addresses,
will produce more than 0.01N of false positives.
We assume that for all those areas N;=2. The
number of such areas is given by N — E[H], and
the number of valid ingress addresses with segments
in those areas is 2(N — E[H]). The number of false
positives is given by

(v — B[2~ 2¢(1 -)] —2(v — Ef)

- 1)
This number has to be less than 1% of N. Therefore,
Eq. (1) has to be set to be less or equal to 0.01N, and
solved for N. Recall that a, d, and E[H] can be ex-
pressed in terms of k. Accordingly, the maximum
N, Nmax, which would satisfy this inequality, is dif-
ficult to express in terms of k. However, it is possible
to find Nyax by substitution. Table 5 (which is a
copy of Table 1 reproduced here for convenience)
provides the values of Nyax for selected k.

Another important consideration is the expected
number of datagrams required for reconstruction.
This number is related to k, the number of segments
into which the ingress address is split. The larger the
value of k, the more different packets it would be
required for the victim to receive in order to recon-
struct the ingress address. The expected number of
datagrams, E[D], required to be marked by a single
DPM-enabled interface in order for the victim to be
able to reconstruct its ingress address is given by the
Coupon Collector problem [35]:

Table 5
Relationship between selected k and a, s, d, Nmax, and E[D] for
the single-digest modification

k a K d Nmax E[D]
2 16 1 0 1 3
4 8 2 7 26 9
8 4 3 10 108 22

16 2 4 11 45 55

32 1 5 11 45 130

2698 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

1 1
E[D] :k<%+m+-~-+ l).
Table 5 provides the value of E[D] for selected val-
ues of k.

A.2. Multiple hash function approach analysis

The purpose of the analysis of this further mod-
ified method remains the same: to determine Nyax,
the maximum number of simultaneous attackers
that can be traced back with the false positive rate
not exceeding 1%. For the multiple digest method,
the number of false positives in one area of RecThl!
may be higher than in a single-digest modification
because the same false positive has to appear in
the appropriate areas of all other parts of RecThl!
for a given false positive to be identified as an
ingress address.

Recall, from Section A.1, that the expected num-
ber of permutations in a given digest is given by

k
1\
2¢ 241 ——
[(2a> ‘| ’

where N, is the number of ingress addresses having
this digest. Since in the multiple digest method, un-
like the single-digest method, the number of ingress
addresses with the same digest will be more than 2,
the following analysis is more suitable. The number
of ingress addresses having the same digest is %
The number of permutations having the same digest

is then given by

The number of false positives associated with this
digest is

p—yu—@ﬁr—N
2d

The number of false positives in a single part (for
example Part0) is given by

N 1k
E[H] 1\ 77
29 =211 — = —N
2 [(2“)]

For large values of N, E[H] approaches 29, and thus

% = 1. So the number of false positives in Part0

can therefore be approximated by

N 1k
29 -2°11 L\ N
24 ’

According to the multiple digest method, once the
permutation is identified as a possible ingress ad-
dress in Part0, the remaining digests are calculated.
Since we assume uniform distribution of addresses,
any permutation is as likely to appear as any other.
The probability of a random permutation to appear
is 2%2 The probability that the given permutation,
which is a false positive, occurs in the appropriate
area of Partl is

N 1k
- 21— 7]
232 .
Note that this expression is not divided by 27 be-
cause if the permutation in question is present in
the identified areas of all other parts, it must match
the appropriate digest per discussion at the end of
Section 4.3.2. The probability of a given permuta-

tion having occurred in the appropriate areas of
all parts of RecTbhl is

1
- 20 -p#"

232

Multiplying this expression by the number of false
positives in Part0 results in the number of false pos-
itives, after areas matching the digests 1 through
f—1 in all remaining parts of the RecTbl were
checked. This is the total number of false positives
for the RecThl. Setting it not to exceed 2 results
in the following inequality:

wk)/
{|:2a_2a(1 _%)E[lli| } N
932(/-1) S 100"

Recall once again that a, d, and E[H] can be ex-
pressed in terms of k. So, the whole inequality can
be expressed in terms of k and f. Similar to the sin-
gle-digest modification, Nyax can be found by
substitution.

The expected number of datagrams required to
reconstruct the ingress address is now given by

1 1
Y LN —

Table 6 (which is a copy of Table 2 reproduced here
for convenience) provides the values of Nyax and
E[D] for selected combinations of f, a, k, and d.

A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700 2699

Table 6
Relationship between f, k and a, s, d, Nmax, and E[D] for selected
combinations for multiple digest modification

f k a s d Nmax ED]
4 8 4 3 8 2911 130
4 4 8 2 5 2296 55
8 4 8 2 4 2479 130

As seen from Table 6, the multiple digest modifi-
cation is able to reconstruct more ingress addresses
of simultaneous attackers than a single-digest mod-
ification without increasing E[D].

References

[1] P. Ferguson, D. Senie, Network ingress filtering: defeating
denial of service attacks which employ IP source address
spoofing, RFC 2827, May 2000.

[2] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Network
support for IP traceback, IEEE/ACM Trans. Networking 9
(3) (2001) 226-237.

[3] K. Park, H. Lee, On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law
internets, in: Proc. of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, August, ACM Press, New York, NY,
USA, 2001, pp. 15-26.

[4] C. Morrow, B. Gemberling, How to track a DoS attack
(nanog post) [Online]. <http://www.secsup.org/Tracking/>.

[5] D. Moore, G.M. Voelker, S. Savage, Inferring Internet
denial of service activity, in: Proc. 10th USENIX Security
Symposium, 2001, pp. 9-22.

[6] R.K.C. Chang, Defending against flooding-based distributed
denial-of-service attacks: a tutorial, IEEE Commun. Mag. 40
(10) (2002) 42-51.

[7] A. Belenky, N. Ansari, On IP traceback, IEEE Commun.
Mag. 41 (7) (2003) 142-153.

[8] S.M. Bellovin, ICMP traceback messages, IETF Draft,
March 2000.

[9] S.F. Wu, L. Zhang, D. Massey, A. Mankin, Intention-driven
ICMP trace-back, IETF Draft, February 2001 [Online].
<http://www.silicondefense.com/research/itrex/archive/trac-
ing-papers/draft-wu-itrace-intention-00.txt>.

[10] S.F. Wu, L. Zhang, D. Massey, A. Mankin, On design and
evaluation of intention-driven ICMP traceback, in: Proc.
10th Inter. Conf. on Computer Comm. and Networks,
October 2001, pp. 159-165.

[11] D. Dean, M. Franklin, A. Stubblefield, An algebraic
approach to ip traceback, ACM Trans. Inform. Syst.
Security (TISSEC) 5 (2) (2002) 119-137.

[12] D.X. Song, A. Perrig, Advanced and authenticated marking
schemes for IP traceback, in: Proc. INFOCOM 2001, April
2001, vol. 2, pp. 878-886.

[13] T.W. Doeppner, P.N. Klein, A. Koyfman, Using router
stamping to identify the source of IP packets, in: Proc. of 7th
ACM Inter. Conf. on Computer Comm. and Networks,
November, ACM Press, New York, NY, USA, 2000, pp.
184-189.

[14] Y.K. Tseng, H.H.C.W.S. Hsieh, Probabilistic packet parking
with non-preemptive compensation, [IEEE Commun. Lett. 8
(6) (2004) 359-361.

[15] A. Yaar, A. Perrig, D. Song, Pi: a path identification
mechanism to defend against DDoS attacks, in: Proc. 2003
Symposium on Security and Privacy, 2003, May 2003, pp.
93-107.

[16] A. Yaar, A. Perrig, D. Song, FIT: fast Internet traceback, in:
INFOCOM 2005, March 2005, vol. 2, pp. 1395-1406.

[17] M.T. Goodrich, Efficient packet marking for large-scale 1P
traceback, in: CCS’02: Proc. of the 9th ACM Conf. on
Comp. and Comm. Sec., November 2002, pp. 117-126.

[18] Z. Gao, N. Ansari, A practical and robust inter-domain
marking scheme for IP traceback, Computer Networks 51
(3) (2007) 732-750.

[19] A.C. Snoeren et al., Single-packet IP traceback, IEEE/ACM
Trans. Networking 10 (6) (2002) 721-734.

[20] T. Baba, S. Matsuda, Tracing network attacks to their
sources, IEEE Internet Comput. 6 (2) (2002) 20-26.

[21] S. Matsuda, T. Baba, A. Hayakawa, T. Nakamura, Design
and implementation of unauthorized access tracing system,
in: Proc. of the 2002 Symposium on Applications and the
Internet, 2002 (SAINT 2002), January/February 2002, pp.
74-81.

[22]J. Li, M. Sung, J. Xu, L. Li, Large-scale IP traceback in high-
speed Internet: practical techniques and theoretical founda-
tion, in: Proc. 2004 IEEE Symposium on Security and
Privacy, May 2004, pp. 115-129.

[23] R. Stone, Centertrack: an IP overlay network for tracking
DoS floods, in: Proc. of 9th USENIX Security Symposium,
August 2000.

[24] H. Chang et al., Deciduous: decentralized source identifica-
tion for network-based intrusions, in: Proc. of 6th IFIP/
IEEE International Symposium on Integrated Net. Man-
agement, May 1999, pp. 701-714.

[25] H. Chang et al., Design and implementation of a real-time
decentralized source identification system for untrusted ip
packets, in: Proc. of the DARPA Information Survivabil-
ity Conference & Exposition, January 2000, vol. 2, pp. 100—
111.

[26] H. Burch, B. Cheswick, Tracing anonymous packets to their
approximate source, in: Proc. of 2000 USENIX LISA
Conference, December 2000, pp. 319-327.

[27] A. Belenky, N. Ansari, IP traceback with deterministic
packet marking, IEEE Commun. Lett. 7 (4) (2003) 162-164.

[28] A. Belenky, IP Traceback with Deterministic Packet Mark-
ing (DPM), Ph.D. dissertation, NJIT, Newark, August 2003.

[29] A. Belenky, N. Ansari, Tracing multiple attackers with
deterministic packet marking (DPM), in: Proc. of IEEE
PacRim, August 2003, vol. 1, pp. 49-52.

[30] C. Shannon, D. Moore, K.C. Claffy, Beyond folklore:
observations on fragmented traffic, IEEE/ACM Trans.
Networking 10 (6) (2002) 709-720.

[31]J. Mogul, S. Deering, Path MTU discovery, RFC 1191,
November 1990.

[32] J. Postel, Internet protocol, RFC 791, September 1981.

[33] D.D. Clark, IP datagram reassembly algorithms, RFC 815,
July 1982.

[34] F. Baker, Requirements for IP version 4 routers, RFC 1812,
June 1995.

[35] W. Feller, An Introduction to Probability Theory and Its
Applications, John Wiley & Sons, Inc., 1968.

http://www.secsup.org/Tracking/
http://www.silicondefense.com/research/itrex/archive/tracing-papers/draft-wu-itrace-intention-00.txt
http://www.silicondefense.com/research/itrex/archive/tracing-papers/draft-wu-itrace-intention-00.txt

2700 A. Belenky, N. Ansari | Computer Networks 51 (2007) 2677-2700

[36] R. Braden, Requirements for Internet hosts — communica-
tion layers, RFC 1122, October 1989.

[37] S. McCreary, C.K. Claffy, Trends in wide area IP traffic
patterns, in: ITC Specialist Seminar, CAIDA, 2000.

[38] S. Bhattacharyya, C. Diot, J. Jetcheva, Pop-level and access-
link-level traffic dynamics in a tier-1 POP, in: Proc. of the
First ACM SIGCOMM Workshop on Internet Measure-
ment Workshop, ACM Press, New York, NY, USA, 2001,
pp. 39-53.

[39] E. Carter, Cisco Secure Intrusion Detection Systems, 1st ed.,
Cisco Press, Indianapolis, IN, 2001.

[40] V. Paxson, An analysis of using reflectors for distributed
denial-of-service attacks, Comput. Commun. Rev. 31 (3)
(2001) 38-47.

[41] IBM TotalStorage Product Guide, IBM Systems Group,
October 2006 [Online]. <http://www.ibm.com/totalstorage>.

Andrey Belenky received the
B.S.Comp.E. degree (summa cum laude)
and M.S. in Telecommunication Net-
works from Polytechnic University,
Brooklyn, NY in 1998, He has recently
received the Ph.D. degree from New
Jersey Institute of Technology (NJIT),
Newark, NJ. The main focus of his
research was Distributed Denial of Ser-
vice Attacks and IP Traceback. Prior to
receiving the Ph.D. degree, he worked in
Telcordia Technologies (formerly Bellcore) as a network
engineer.

Nirwan Ansari received the B.S.E.E.
degree (summa cum laude) from the New
Jersey Institute of Technology (NJIT),
Newark, NJ, in 1982, the M.S.E.E.
degree from the University of Michigan,
Ann Arbor, M1, in 1983, and the Ph.D.
degree from Purdue University, West
Lafayette, IN, in 1988.

He joined the Department of Electri-
cal and Computer Engineering, NJIT, as
an Assistant Professor in 1988, and has
been a Full Professor since 1997. He is also the Associate Dean

for Research and Graduate Studies at the Newark College of
Engineering at NJIT. He authored Computational Intelligence for
Optimization (Kluwer, 1997) with E.S.H. Hou, and co-edited
Neural Networks in Telecommunications (Kluwer, 1994) with
B. Yuhas. He is a Senior Technical Editor of the JEEE Com-
munications Magazine, and also serves on the editorial board of
Computer Communications, the ETRI Journal, and the Journal of
Computing and Information Technology. His current research
focuses on various aspects of broadband networks and multi-
media communications. He has also contributed 100 refereed
journal articles, plus numerous conference papers and book
chapters.

He initiated (as the General Chair) the First IEEE Interna-
tional Conference on Information Technology: Research and
Education (ITRE2003), was instrumental, while serving as its
Chapter Chair, in rejuvenating the North Jersey Chapter of the
IEEE Communications Society which received the 1996 Chapter
of the Year Award and a 2003 Chapter Achievement Award,
served as Chair of the IEEE North Jersey Section and in the
IEEE Region 1 Board of Governors during 2001-2002, and has
been serving in various IEEE committees such as Vice-Chair of
COMSOC Technical Committee on Ad Hoc and Sensor Net-
works, and (TPC) Chair/Vice-chair of several conferences. He
was the 1998 recipient of the NJIT Excellence Teaching Award in
Graduate Instruction, and a 1999 IEEE Region 1 Award. He is
frequently invited to deliver keynote addresses, tutorials, and
talks. He has been selected as an IEEE Communications Society
Distinguished Lecturer (2006-2007).

http://www.ibm.com/totalstorage

	On deterministic packet marking
	Introduction
	Related works
	Basic DPM
	Assumptions
	DPM principle
	Procedure

	Multiple attackers and IP source address inconsistency
	General principle of handling DDoS attacks
	Single-digest modification to DPM
	Mark encoding
	Reconstruction by the victim
	Performance analysis

	Multiple digest DDoS modification to DPM
	Mark encoding
	Reconstruction by the destination
	Performance analysis

	Accommodating IP fragmentation
	IP fragmentation background and terminology
	Shortcomings of DPM related to fragmentation
	Upstream fragmentation
	Downstream fragmentation

	Fragment-persistent DPM
	Fundamentals of handling upstream fragmentation with DPM
	Dealing with infinite series
	Practical compromise

	Size of the FragTbl
	Alternative methods of handling fragmentation

	Traceback
	Types of cyber attacks
	Traceback data structures
	Traceback procedure
	Tracing slaves from reflectors
	On proper RecTbls and hiding of marks
	On deleting marks from RecTbl

	Conditions for traceable and untraceable attacks
	Intrusions
	DoS attacks
	Slave-based DDoS attacks
	Reflector-based DDoS attacks
	Mixed DDoS attacks

	Storage requirements

	Conclusions and future work
	Performance analysis
	Single hash function approach analysis
	Multiple hash function approach analysis

	References

