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ABSTRACT 

As a continuation of our study, this paper extends our 
research results of optimality-oriented stabilization from 
deterministic recurrent neural networks to stochastic recurrent 
neural networks, and presents a new approach to achieve 
optimally stochastic input-to-state stabilization in probability 
for stochastic recurrent neural networks driven by noise of 
unknown covariance. This approach is developed by using 
stochastic differential minimax game, Hamilton-Jacobi-Isaacs 
(HJI) equation, inverse optimality, and Lyapunov technique. A 
numerical example is given to demonstrate the effectiveness of 
the proposed approach. 
 
 
INTRODUCTION  

The past two decades have witnessed enormous 
advances in engineering and in computer science to build 
artificial computational systems [1], among which recurrent 
neural networks have been applied to many scientific and 
engineering fields, such as system identification and control, 
pattern recognition, image processing, and modeling 
biological sensor-motor systems. Therefore, theoretical 
studies on both stability and controllability of recurrent neural 
networks have been heavily investigated in the last few years 
[2] - [10]. However, these studies primarily focused on 
deterministic recurrent neural networks. In the mathematical 
models of these aforementioned networks, they do not consider 
the noise process that is fraught with signal transmission 
particularly in biological systems. 

On the other hand, Werbos [1] pointed out that in order to 
develop mathematical neural network specifications which 
have dual uses as models of intelligence in the brain, and as 
highly effective artificial intelligent systems when implemented 
in computers and chips, we must consider the stochastic 

environment. Unfortunately, with regard to the analysis of 
stochastic recurrent neural networks, there has been little work 
in the literature until the very recent years [11]. Hence, it is 
important to analytically explore the characteristics of 
stabilization and controllability for recurrent neural 
networks under the influence of stochastic perturbation. 

As a continuation of our study in [12], we present in this 
paper a theoretical analysis for stochastic recurrent neural 
networks to achieve stochastic input-to-state stabilization in 
probability under an optimal control strategy, and to attenuate 
incremental covariance of stochastic perturbation to a 
predefined level within stability margins. By applying the 
theory of differential minimax game to the stochastic networks, 
the approach is developed by considering the vector of external 
inputs as a player and the vector of stochastic disturbance as the 
opposing player. Therefore, a minimax equilibrium can be 
achieved by properly controlling stochastic recurrent neural 
networks. It should be pointed out that this paper develops a 
stochastic counterpart of the disturbance attenuation results of 
those in [12]. 
 
 
PROBLEM FORMULATION   

Based on the standard formulation of stochastic 
recurrent neural networks [13], we consider the following 
stochastic recurrent neural network, which is derived from 
the model of deterministic recurrent neural networks defined 
in [12] plus an additive white noise. Mathematically, it can be 
described by the following Ito-type compact form  
 

Ψ+++−= ddtuWxSWAxdx ))(( 21               (1) 
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where nRx ∈  is the state of stochastic recurrent neural 

network, mRu ∈  is the input, usually nm ≠ , 
nnRIdiagA ×∈λ−=λ−λ−= ),,( L  and 0>λ , =)(xS  

[ ] nT
n Rxsxs ∈)(,),( 1 L  is a vector function and its 

component )( ixs  is a sigmoidal function defined below, 
nn

1 RW ×∈ , mn
2 RW ×∈  are weight matrices describing the 

connections of hidden and output layers, and Ψ  is an n-
dimensional independent Wiener process with incremental 
covariance dt(t)(t) T∑ ∑ , i.e., ∑ ∑=ΨΨ dtttddE TT )()(}{  where 
∑ )(t  is an unknown bounded function taking values in the set 
of nonnegative definite matrices.  

We shall first introduce the following two definitions.  
Definition 1: Let us define a nonnegative bounded 

function as follows: 
 

nnT R(t)tt ×∈∑∑=∆ )()(  
 
The function )(t∆  will be used as a player to oppose the 
control signal in order to solve a stochastic differential game 
problem addressed in this paper. 

Definition 2: The function of )( ixs possesses the 
following properties: 
(1) )( ixs  is bounded on R; 

(2) )( ixs  is piecewise analytic and strictly increasing on R, 

i.e., i
i

i M
dx

xds
<<

)(
0  and ∞<iM  for all Rxi ∈ ; 

(3) 0)( =ixs  when 0=ix . 
Remark: Based on Definition 2, it is important to point out 

that Model (1) is significantly different from most models 
reported in the literature. The activation function )( ixs  in this 
paper represents a class of general nonlinear function that does 
not have to be the widely used sigmoid 

function ceaxs ibx
i ++= − )1/()( . Therefore, Model (1) 

encompasses a much larger class of systems. 
 
 
DESIGN OF OPTIMALLY STOCHASTIC INPUT-TO-
STATE STABILIZATION 

We first rewrite the system of the stochastic recurrent 
neural network (1) as 
 

udtWddtxSWAxdx 21 ))(( +Ψ++−=            (2) 
 
Now let us consider a candidate stochastic Lyapunov 
function E , which is the same as the one given in [12] 

2

2
1

2
1 xxxE T ==                              (3) 

 
From [14], the infinitesimal generator of the stochastic 
differential equation (2) is given as  
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EEL f +−
∂
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Thus 
 

{ }∑∑+++λ−= )()(
2
1)( 21 ttTuWxxSWxxxLE T

r
TTT  (5) 

 
For the second term )(1 xSWxT , we can similarly apply the 
equation (7) in [12] here, and thus resulting in 
 

  x
WnM

xxSWx
2

TT
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
≤

2
1

)(
2

1
1                   (6) 

 
Substituting (6) into (5), we have 
                   

∑∑++
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We shall next discuss how to find an optimality-oriented 
control for the stochastic recurrent neural network (2) to 
achieve stochastic input-to-state stabilization in probability. 
From the concept of differential minimax game [15], [14], the 
following general stochastic nonlinear system affined in the 
noise Ψ  and control  u is well known  
 

udtxgdxgdtxfdx )()()( 21 +Ψ+=                  (8) 
 

If we pursue a differential game problem which uses )(t∆  
defined in Definition 2 as a player to oppose the control, and 
suppose that there exists a positive optimal value function 

)(tV , which satisfies the following HJI equation 
 

0)()(
4
1)()(

4
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2

2
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Then the following control 
 

 VLgxrxu T
2

1* )(
2
1)( −−=                           (10) 

 
is an optimal stabilizing control which minimizes the cost 
functional  
 

⎥
⎦

⎤
⎢
⎣

⎡
τ∆γ−++=∆ ∫∞→

duxruxqtxVEuJ Tt

t
))()(())((lim),( 22

0
 

(11) 
 
where 0>γ  is a design parameter, both 0)( ≥xq  and 

0)( >xr  for all x , and the worst case )(* t∆  is  
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We now take the infinitesimal generator of the stochastic 

differential equation (8) with the optimal value function 
)( xV : 
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For the model of the stochastic recurrent neural network, if we 
consider the Lyapunov function E  as the optimal value 
function )(xV , that is the solution V is given by (3), we then 
have the following equations 
 

)(1 xSWxxxVL TT
f +λ−=                      (14) 
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Then the substitution of the equation (3) into the HJI equation 
(10) yields the next relation  
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Based on the above, the inequality in (7) can be written as 
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From (18), we can set up 
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                            22 )( Wxx TT =Κ                           (20) 
 
Similar to [12], Let us define the following scalar function 
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22
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2
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Then a control signal can be determined as 
 

)()( 2 xxu Κφ−=  
 

with the assumption of 0)()( 22 ≠ΚΚ xxT .  
Using the equation (20), the control signal is equivalent to 
 

xWxu T
2)(φ−=  

VLx T
g2

)(φ−=                           (22) 

 
By comparing (22) with (10) and using (16), (17) and (20), 
we obtain 
  

)(
2
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and  
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we can obtain the following theorem. 
Theorem: Given the system (1), there exist a positive-

definite function q(x) (24) and a strictly positive function r(x) 
(23) in which 0≠x , such that the feedback control law  
 

xWxruu T
2

1* )(
2
1 −−==                          (26) 

 
achieves both stochastic input-to-state stabilization and inverse 
optimality with respect to a meaningful cost functional  
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for the worst case )(t∆  
 

Itt 2
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2
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Proof: 
Step 1: Considering a positive-definite stochastic 

Lyapunov function V that is the same as (3), the infinitesimal 
generator of the stochastic differential equation (2) is given 
by 
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Substituting (6) into (29), we have 
 

{ }∑∑++
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
+λ−≤ )()(

2
1

2
1

2

2
1 ttTuWxx

WnM
xxxLV T

r
T

2
TT

)}({
2
1

2
3

2

2
1 tTxxuWxx

WnM
xxx r

TT
2

TT ∆+−+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
+λ−=   

(30) 
 

The substitution of the control law (26) into LV (30) yields 
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By the definition of (19), we obtain 
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Therefore 0≤LV  whenever )(tx ∆
λ

γ
≥  

By the definition of stochastic input-to-state stability [16], we 
know that the system described by (1) achieves stochastic 
input-to-state stabilization with the control law (26). 

Step 2:  Let us consider )(xq  and )(xr . 
By (24), we have 
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From (6), we have  
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Using the inequality (32) and relations (23), (21) and (25), the 
expression )(xq  given above can be written as     
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This means that )(xq  is positive definite, for all 0≠x , and is 
radially unbounded. 
Also, from (23), it can be seen that 0)( >xr  when 

0)()( 22 ≠ΚΚ xxT . That is 
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By using q(x) and r(x) in (24) and (23), LV can be written into 
the following form  
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According to Dynkin’s formula [14], we have 
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From the above equation, we know that the optimal control 

*uu =  is an optimal solution to J (27) for the worst 

disturbance *)()( tt ∆=∆  and  
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Therefore, by considering the control )(tu  as a player and the 
noise covariance )(t∆  as the opposing player, a minimax 

equilibrium ( )** , du  is achieved. This completes the proof.                                         
 
 
NUMERICAL EXAMPLE 

In order to effectively describe our results, we present the 
following second order stochastic recurrent neural network  
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2W , and 1Ψ , 2Ψ  are white noises 

(uniformly random) with the magnitude of 20=Ψi  (i = 1, 2).  
Fig. 1 shows the result of time responses of two states 

( )(1 tx  and )(2 tx ) for this stochastic recurrent neural network 
without any control inputs. Fig. 2 shows the result of time 
responses of two states with the implementation of the 
optimally stochastic input-to-state stabilizing control (26) at 

st 100= . It can be seen that the system achieves the 
expected performance which conforms to the theoretical 
analysis in Section III. 
 
 
CONCLUSIONS 

This paper has presented a new design to achieve optimally 
stochastic input-to-state stabilization in probability for 
stochastic recurrent neural networks driven by noise of 
unknown covariance. The proposed approach is developed by 
using stochastic differential minimax game, Hamilton-Jacobi-
Isaacs (HJI) equation, inverse optimality, and Lyapunov 
technique. With Definition 2, we have extended our previous 
research [17] to a much larger class of nonlinear stochastic 
systems. Due to the difficulty to solve the Hamilton-Jacobi-
Isaacs equation, for stochastic nonlinear systems, optimal 
stochastic stabilization seems to be an unachievable goal in 
feedback design. However, an alternative way has been 
proposed in this paper to solve the problem and obtain an 
optimal feedback controller with respect to a meaningful cost 
functional by using the knowledge of inverse optimality. It is 
believed that the new design presented in this paper would 
intensify the applications of stochastic recurrent neural 
networks. 
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FIGURE 1. SYSTEM RESPONSE ( u = 0 ) 
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FIGURE 2. SYSTEM RESPONSE ( u = (26) at t = 100 s ) 
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