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Abstract—Data redundancy elimination (DRE), also known as
data de-duplication, reduces the amount of data to be trans-
ferred or stored by identifying and eliminating both intra-object
and inter-object duplicated data elements with a reference or
pointer to the unique data copy. Large scale trace-driven studies
have showed that packet-level DRE techniques can achieve 15-
60% bandwidth savings when deployed at access links of the
service providers, up to almost 50% bandwidth savings in Wi-Fi
networks and as much as 60% mobile data volume reduction
in cellular networks. In this paper, we survey the state-of-
the-art protocol-independent redundancy elimination techniques.
We overview the system architecture and main processing of
protocol-independent DRE techniques, followed by discussion on
major mechanisms activated in protocol-independent DRE, in-
cluding the fingerprinting mechanism, cache management mech-
anism, chunk matching mechanism, and decoding error recovery
mechanism. We also present several redundancy elimination
systems deployed in wireline, wireless and cellular networks,
respectively. Several other techniques to enhance the DRE per-
formance are further discussed, such as DRE bypass techniques,
non-uniform sampling, and chunk overlap.

Index Terms—Data redundancy elimination (DRE), protocol-
independent DRE, data de-duplication, content delivery acceler-
ation, wide area network (WAN) optimization.

I. INTRODUCTION

A significant amount of redundant traffic has long been

observed over the communication networks [1–4]. The ob-

served redundancy in Internet traffic is typically in the range of

15-60%. Internet traffic redundancy stems naturally from the

distribution of highly-popular Internet contents and the large

number of Internet users. Some of the contents on the Internet

are highly popular objects which are requested and transferred

repeatedly across the network for a large number of users.

Moreover, this redundancy arises from common end-user

activities, e.g., repeatedly accessing, retrieving, distributing the

same or similar contents over the Internet several times a day.

As a result, a large amount of the same or similar contents

have been transferred repeatedly across the Internet in both

client-server and peer-to-peer applications.

Redundant traffic wastes network resources, worsens the

communication performance by saturating the network band-

width, and increases the economic costs if usage-based charges

are used. With the rapid growth of the Internet traffic [5],

redundancy elimination has attracted much attention in recent

years from the academia [1–4, 6–15] and industries, such as
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Cisco [16], Juniper [17], BlueCoat [18], and Riverbed [19].

A number of existing diverse systems and solutions have

been explored to improve the network efficiency and commu-

nication performance by eliminating the redundant transfers

in the network. It has been widely agreed that redundancy

elimination offers significant benefits in practice. The overall

benefit of data redundancy elimination is better network deliv-

ery performance in terms of higher network throughput, lower

response time and higher effective network utilization.

A majority of traditional redundant elimination solutions

operate at the application layer and object level, such as

data compression [20] (e.g., GZip) which can remove the

redundant content within one object efficiently, and object

caching, including web proxy caches [21] and peer-to-peer

media caches [22], which can be deployed to serve the

frequent and repeated requests from the cache instead of the

original source. However, object-compression and application-

layer object-level caching cannot eliminate all the redundant

contents alone [1]. Wolman et al. [23] estimated that at most

45% of the traffic transmitted from the web servers to the

clients to serve the web content requests can be eliminated

by using proxy caches based on the Squid [24] cacheability

rules. Moreover, neither object compression nor object-level

caching work well for contents that have been changed in

only minor ways. Delta encoding [25–27], which is based on

the differences between versions of a single document, can

help in this case by only transferring the changes. However,

this also limits the application of delta encoding because

both the sender and receiver have to share the same base

content, which is not applicable for general Internet traffic.

As a software application and network protocol, rsync [28]

provides fast files and/or directories synchronization from one

location to another, and reduces the bandwidth consumed

during file transfers. By default, rsync determines the files to

be synchronized by checking the modification time and size

of each file, and determines the chunks to be sent by using

delta encoding. Thus, rsync lowers the bandwidth consumption

during file transfers since only the new files and those parts

of the files which have changed will be transferred. Similar

to delta encoding, rsync is also not applicable for general

redundant Internet traffic elimination.

In order to eliminate the redundancy within individual

objects, such as packets, files, or web pages, as well as

across objects, protocol-independent redundancy elimination

techniques operating on individual packets [1, 3, 9–15] have

been explored and investigated recently. Data redundancy

elimination (DRE) [8, 29], also known as data de-duplication,

is a data reduction technique and a derivative of data com-
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Fig. 1: The classical packet-level data redundancy elimination.

pression. Data compression [20] reduces the file size by

eliminating redundant data contained within an object while

DRE can identify and eliminate both intra-object and inter-

object duplicated data elements, such as an entire file and a

data block, to reduce the amount of data to be transferred

or stored. The main idea of protocol-independent packet-level

redundancy elimination is to identify and eliminate redundant

chunks across different packets. When multiple instances of

the same data element are detected, only one single copy of

the data element is transferred or stored. The redundant data

element is replaced with a reference or pointer to the unique

data copy.

Protocol-independent redundancy elimination is becoming

increasingly popular. Pioneered by Spring et al. [1], protocol-

independent redundancy elimination techniques have been

deployed in wide-area network accelerator middle-boxes, and

many vendors, e.g., Cisco [16], Juniper [17], BlueCoat [18],

and Riverbed [19], offer such traffic redundancy elimination

middle-boxes to improve the network effective bandwidth.

Aggarwal et al. [3] proposed to deploy DRE at the end

hosts to maximize the single-link bandwidth savings, because

the amount of contents sent to the destination host can be

minimized even for encrypted traffic. Works reported in [9,

10, 30] further expand the benefits of deploying DRE network-

wide to eliminate both intra source-destination pair and inter

source-destination pairs redundant traffic. Furthermore, great

efforts have been explored for redundancy elimination in

wireless and mobile environments [31–34]. In addition, PACK

(Predictive ACKs) [35], an end-to-end redundancy elimination

scheme, has been designed for cloud computing applications.

Based on several tera-bytes of traffic traces collected at

different wireline network locations, a large scale trace-driven

study on the efficiency of packet-level protocol-independent

DRE [2] showed that protocol-independent DRE can achieve

average bandwidth savings of 15-60% when deployed at

access links of the service providers or between routers.

Experimental evaluations on various DRE technologies are

presented in [2, 3, 29]. The effects of protocol-independent

DRE on redundant traffic elimination in wireless and cellular

networks have also been explored by several studies [31, 32,

34, 36]. Based on real-world Wi-Fi and cellular network traces,

up to almost 50% bandwidth savings in Wi-Fi networks [31,

36] and as much as 60% mobile data volume reduction in

cellular networks [32, 34] can be achieved. All of these stud-

ies convinced us that protocol-independent DRE techniques

are effective to eliminate redundant traffic over networks.

However, it should also be noticed that DRE techniques

for identifying and eliminating redundant contents are very

expensive in terms of memory and processing capability. In

this paper, we provide a survey on the state of the art of

protocol-independent data redundancy elimination techniques,

including its system architecture and main processes, and

some techniques to enhance the DRE performance. We also

discuss several DRE systems deployed in wireline, wireless

and cellular networks, respectively, in terms of deployment

architectures, redundancy identification methods, and cache

management.

The rest of the survey is structured as follows. We detail

the system architecture of protocol-independent DRE and its

major processing mechanisms, including fingerprinting, cache

management, chunk matching, and decoding error recovery in

Section II. Then, we present several redundancy elimination

systems deployed in wireline, wireless and cellular networks

in Sections III and IV. In Section V, we discuss several

techniques to enhance the DRE performance, such as DRE

bypass techniques, non-uniform sampling, and chunk overlap.

Finally, Section VI concludes the paper. Unless otherwise

stated, DRE techniques discussed in the following sections

are restricted to protocol-independent DRE techniques.

II. COMPONENTS OF PROTOCOL-INDEPENDENT DRE

In this section, we provide a detailed overview on the

system architecture and the main processing procedures of

protocol-independent DRE techniques. We also discuss several
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major mechanisms activated in protocol-independent DRE,

including fingerprinting, cache management, chunk matching,

and decoding error recovery.

A. Overview of Protocol-Independent DRE

The main idea of protocol-independent DRE is to encode

the outgoing packets by replacing identified redundant data

chunks with fixed-size meta-data. At the receiver end router,

the packets are reconstructed by replacing the encoded content

from the packet cache by using the pointer information carried

in the encoded packets. The packet-level DRE techniques

rely on deploying a fingerprint table and a packet cache at

each end of a network path. In general, the DRE algorithms

assume that the packet caches located at both ends are always

synchronized. Thus, the redundant chunks identified against

the packet-cache at the source-side router can be removed

from the packets since it can be recovered by the receiver-

side router.

A typical protocol-independent packet-level DRE imple-

mentation is shown in Fig. 1. For every incoming packet in a

particular direction, the DRE algorithm first computes a set

of fingerprints by applying a hash function to each chunk

of the packet, which is a sub-string of the packet’s payload.

Limited by the size of the fingerprint table, only a subset of

these fingerprints is selected as its representative fingerprints

in some way which will be discussed in Section II-B. Both

the representative fingerprints and pointers pointing to the

locations of the chunks in the packet cache used to calculate its

corresponding fingerprints are stored in the fingerprint table.

Each representative fingerprint is then checked against the

fingerprint table to find a matched data chunk in the packet

cache. If such a matched chunk in the packet cache is found,

the original data chunk in the packet is encoded with a meta-

data, which consists of sufficient information to reconstruct the

encoded data chunk at the receiver side, such as fingerprint

and the description of the matched chunk range, including

a count of redundant bytes before and after the data chunk

that is used to calculate the fingerprint. In practice, the size

of such meta-data is much smaller than that of the original

data chunk. In this example, two chunks are identified as

redundant data chunks and the packet is encoded by replacing

the original redundant data chunks with the corresponding

meta-data. When the other end router receives the encoded

packet, it will reconstruct the original packet following the

information carried in the meta-data by using the fingerprint

table and packet cache at the receiver side.

The main processing stages involved in redundancy elimina-

tion include fingerprinting, indexing and lookup, storing data,

and data encoding and decoding as shown in Fig. 2. Finger-

printing, also called chunk selection, facilitates the identifica-

tion of redundant chunks within and across the packets. For

every incoming packet in a particular direction, it calculates a

set of fingerprints for each packet by applying a hash function

to each chunk of the packet and selects a subset of these fin-

gerprints as the representative fingerprints. Each representative

fingerprint is then checked against the fingerprint table in the

processing stage of indexing and lookup. If one fingerprint

already exists in the fingerprint table, a redundant chunk is

then identified and its corresponding position of the matched

region in the packet cache is also located by using its location

information stored in the fingerprint table. Hence, the lookup

procedure in this stage involves two parts: fingerprint lookup in

the fingerprint table and redundant chunk lookup in the packet

store. If one or multiple redundant chunks have been identified

in an arriving packet, the packet will go through an encoding

procedure by replacing every identified redundant chunk by

its corresponding fingerprint description, which consists of the

fingerprint as well as the byte range for the matched region

in the packet cache. Finally, the new packet is inserted into

the packet store and its representative fingerprints are also

indexed and stored in the fingerprint table together with the

location information of the chunks used to calculate these

representative fingerprints in the packet cache. Data decoding

performs the reverse operations of data encoding and tries to

reconstruct the original packet from the compressed packet

by retrieving the chunks from the packet cache by using the

information carried in meta-data. The DRE decoder uses the

fingerprint value stored in the meta-data to check against the

fingerprint table. If such a fingerprint value is found in the

fingerprint table, the data chunk will be fetched from the

packet cache by using the pointer information stored in the

fingerprint table and the count of the redundant bytes before

and after the chunk used to calculate the fingerprint. Then,

the original packet is reconstructed by replacing the meta-data

with these fetched data chunks from the packet cache. If such

a fingerprint cannot be found in the fingerprint table at the

receiver end router, a decoding error occurs and a recovery

process will be activated, which will be discussed in Section

II-E. A rather detailed description of the basic operations of

DRE can be found in [37].

The main bottleneck limiting the processing throughput of

packet-level DRE is the memory access. Assume that the
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memory can be accessed R times per second at the maximum,

and F fingerprints are computed for each packet that has at

most k matches. In general, k ≤ F because the number of

matches can never be more than the number of calculated

fingerprints. The packet-level DRE encodings can be applied

to at most R/F packets per second because F random memory

accesses for each packet are required to check the matched

fingerprints and further processing is required to encode the

packet if one match is found, while the decoding operations

can be applied to at least R/k packets per second because

at most k matches can be found for each packet. Thus,

R/F ≤ R/k, implying that the decoding process is much

faster than the encoding process. Moreover, suppose that all

packets are assumed to be of the same size and the link

capacity is assumed to be P packets per second. If the DRE

encoding rate R/F packets per second is larger than the

link capacity P packets per second, the packets can be DRE

encoded up to P packets per second, meaning that line rate

DRE encoding and decoding are possible; otherwise, no more

than R/F packets can be encoded in every second to ensure

line-rate operation, and the decoding rate is also limited by

the encoding rate.

As described above, several mechanisms are activated in the

implementation of protocol-independent DRE. We will detail

these mechanisms in the following sub-sections.

B. Fingerprinting

The goal of protocol-independent DRE is to quickly identify

repeated chunks from a stream of packets. So, the first task

in protocol-independent DRE is to chunk the packets in

an efficient way for redundant content identification. It is

impractical to index every fingerprint calculated from each

packet in the fingerprint store because nearly every byte

in the packet generates one index fingerprint entry. Several

chunk selection mechanisms for protocol-independent DRE

have been proposed. The main purpose of chunk selection

is to generate the representative set of fingerprints for each

packet. This process incurs high processing cost and it may

also influence the DRE performance. We will review several

most popular ones in the following.

1) FIXED: As shown in Fig. 3(a), the FIXED mechanism

chunks every p bytes in a packet payload, calculates one fin-

gerprint for each p-byte chunk, and represents the correspond-

ing packet with these calculated fingerprints. By using the

FIXED chunking and sampling mechanism, the representative

chunks are selected based on position rather than the packet

content. It is computationally efficient, achieves exactly the

target sampling rate 1/p, and ensures non-overlapping chunk

selection, which means that there are no overlapping among

the chunks used to calculate the representative fingerprints

for each packet. However, FIXED is not robust against minor

modifications in the traffic data; even one word insertion in a

text document may fail identifying the redundant chunks. For

example, two identical non-overlapping chunks in a document

can be identified by the FIXED fingerprinting mechanism. If

one word is inserted anywhere between these two chunks, the

identification of the redundant chunk can be missed because

the redundant chunk could be divided into two different

chunks by the FIXED fingerprinting mechanism, thus resulting

in the different calculated fingerprints. Hence, the second

redundant chunk cannot be identified. Therefore, as shown in

[3], this deterministic approach is much less effective than

other content-dependent chunking and sampling mechanisms,

such as MODP, MAXP and SAMPLEBYTE.

2) MODP: Inspired by a technique developed for finding

similar files in a large file system [38, 39], MODP was first

applied to the DRE mechanism by Spring et al. [1] to

remove redundant content chunks across packets. This DRE

mechanism was named MODP due to the modular operations

and 1/p chunk selection rate in the chunking and sampling

procedure. The MODP mechanism is depicted in Fig. 3(b)

and a formal description of the MODP algorithm is shown in

Algorithm 1. For every packet arriving in a particular direction,

MODP first computes a set of Rabin fingerprints by applying

the Rabin-Karp hash [40] function over sliding windows of w
contiguous bytes of the packet’s payload (line 5 of Algorithm

1). Given a sequence of bytes [t1, t2, · · · , tw] of length w bytes,

a Rabin fingerprint can be calculated as:

RF (t1, t2, · · · , tw) = (t1p
w−1+ t2p

w−2+ · · ·+ tw) mod M
(1)

where p and M are constant integers.

Thus, for an S-byte packet (S ≥ w), a total of S − w +
1 fingerprints can be calculated using the above equation

with the substrings {[t1, t2, · · · , tw], [t2, t3, · · · , tw+1], · · · ,
[tS−w+1, tS−w+2, · · · , tS ]}. By observing the above equation,

the calculation for the next Rabin fingerprint can be simplified

by using the previous one as follows:

RF (ti+1,ti+2, · · · , ti+w) =
(RF (ti, · · · , ti+w−1)− ti × pw)× p+ ti+w mod M

(2)

Since p and w are constant, ti × pw can be precalculated and

stored in a table. With this fast Rabin fingerprint execution,

a subtraction, a multiplication, an addition and a modular

calculation are required to compute one fingerprint.

It is impossible to store all fingerprints in the fingerprint

table, and only those fingerprints whose value is 0 mod
p are chosen as the representative fingerprints (line 6 of

Algorithm 1) and the fingerprint based on the selected chunk

will be stored in the fingerprint table (line 7 of Algorithm 1).

Thus, 1/p of the calculated fingerprints are sampled as the

representative fingerprints for every packet.

Algorithm 1 MODP Mechanism

1: //Assume len > w;

2: //RabinHash() computes Rabin hash over a w byte window

3: MODP(data,len)

4: for i = 1; i < len− w + 1;i++ do

5: fingerprint = RabinHash(data[i : i+ w − 1]);
6: if (fingerprint mod p == 0) then

7: Select data chunk data[i : i + w − 1] and store

fingerprint in the fingerprint table;

8: end if

9: end for
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Spring and Wetherall [1] investigated the impacts of pa-

rameters, sliding window size w and sampling period p,

on the redundancy elimination performance and computation

overhead. With a large sliding window size w, only large

redundant chunks can be identified that might degrade the

potential bandwidth savings on small redundant regions. With

the decrease of the sliding window size w, smaller redundant

regions can be identified, but the computational overhead also

increases since more fingerprints need to be calculated. The

sampling period p determines how frequent each packet is

sampled. A smaller parameter p can increase the probability

of finding redundant data chunks, but it also increases the size

of the fingerprint index greatly. According to the findings of

redundant match distribution [1, 2], small w and p are effective

in redundancy elimination, and w = 32 or w = 64 bytes and

p = 32 are suggested to maximize the effectiveness of DRE.

As compared to the FIXED mechanism, MODP selects the

representative fingerprints for each packet based on the packet

content rather than its position, and therefore MODP is robust

to small changes of packet payloads: the set of representative

fingerprints chosen for a packet remains mostly the same

when the packet has been changed slightly. The Rabin-hash

computation cost can be reduced greatly when p is a power

of 2. The main drawback of the MODP mechanism is the

unpredictability of its chunk selection. As reported in [4],

the inter-fingerprint distance distribution can have a long tail,

indicating that the selected representative fingerprints are not

uniformly distributed over the whole packet and large blocks

of data remain unselected for fingerprinting. Another short-

coming of the MODP mechanism is that a global parameter,

based on which the fingerprints are chosen, needs to be pre-

determined. In this case, the desired fingerprints sampling rate

can be better approximated over a large number of packets,

but the fingerprint sampling rate on a per-packet basis could

be significantly different from the desired rate.

3) WINN: In order to improve the DRE performance of the

MODP mechanism to guarantee a uniform distribution of cho-

sen fingerprints across a data stream, winnowing [41], which

was deployed to identify similar documents, has been adapted

to identify redundant chunks in Internet traffic. The basic idea

behind winnowing in redundancy elimination, as shown in

Fig. 3(c), is to track a sliding window over the calculated

fingerprint sequence and explicitly choose those fingerprints

that are local maxima or minima from the sliding window,

and thus winnowing ensures that at least one fingerprint is

selected over every specific packet segment. As reported in

[4], the distance between two adjacent selected fingerprints in

WINN is approximately uniform and always bounded, and

the predominating value is equal to the desired fingerprint

sampling period. One obvious drawback of WINN over MODP

is the required additional computation overhead in searching

for local maximum or minimum fingerprints, and thus WINN

is slower than MODP.

4) MAXP: As discussed above, a large fraction of cal-

culated fingerprints are not chosen to represent the packet

in MODP and WINN, thus incurring high computational

overhead required to compute Rabin fingerprints for every

packet. A more efficient algorithm, called MAXP [2], has been

proposed to improve computation efficiency in MODP and

WINN. Fig. 3(d) shows an example of the fingerprinting mech-

anism of MAXP. MAXP computes fingerprints only when

a data chunk has been selected for redundancy elimination.
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Algorithm 2 SAMPLEBYTE Mechanism

1: // Assume len ≥ w;

2: //LOOKUPTABLE[i] maps byte value i to either 0 or 1;

3: //JenkinsHash() computes hash over a w byte window;

4: SAMPLEBYTE(data,len)

5: for i = 0; i < len− w; i++ do

6: if (LOOKUPTABLE[data[i]] == 1) then

7: Data chunk data[i : i+ w − 1] is selected;

8: fingerprint = JenkinsHash(data[i : i+ w − 1]);
9: Store fingerprint in the fingerprint table;

10: i = i + p/2;

11: end if

12: end for

MAXP is also based on a local-maximum content-dependent

chunking approach which was designed for remote differential

compressions [42]. MAXP is quite similar to WINN, but

MAXP selects the local-maxima based on the data bytes of

chunk instead of among fingerprints as in WINN. Once the

local maximum bytes have been identified, the chunk between

two adjacent local maxima will be selected and a fingerprint

can be calculated based on the selected chunk with an efficient

hash function such as Jenkins Hash [43]. Hence, the fingerprint

computational overhead is reduced greatly since fingerprints

are not required to be calculated first before the local maxima

or minima computation as in MODP and WINN. Quite similar

to WINN, the selected chunks are distributed approximately

uniformly across the data stream [4]. The distance between

two adjacent selected chunks is always bounded, and the

predominating distance is equal to the desired sampling period.

By using the traffic traces from 11 enterprise networks of

different sizes and a large university, Anand et al. [2] reported

that MAXP outperforms MODP by at least 5% and up to 35%.

Their results confirmed the advantage of the uniform chunk

selection approach on DRE performance.

5) SAMPLEBYTE: Aggarwal et al. [3] proposed the SAM-

PLEBYTE mechanism which selects chunks based on packet

content with the computational efficiency of the FIXED mech-

anism. Fig. 3(e) depicts the SAMPLEBYTE fingerprinting

mechanism, and a formal description of the SAMPLEBYTE

algorithm is shown in Algorithm 2. The chunk selection of

SAMPLEBYTE is based on the most redundant characters in

the packet payload. In particular, it utilizes a static 256-entry

lookup table with a few specific predefined values, which are

generated by an offline, greedy algorithm with the training

data. The intuition behind SAMPLEBYTE is that the most

redundant characters should have higher opportunities to be

selected as chunk boundary markers. The greedy algorithm

sorts the characters in descending order of the appearance

frequency of the redundant content identified by MAXP. Then,

it selects entries of the table to be chunking boundary markers

by iteratively choosing the frequently appeared characters, one

by one, from the most frequently appeared one until the one

which may not yield bandwidth savings.

Similar to FIXED, SAMPLEBYTE scans the packet pay-

load byte-by-byte (line 5 of Algorithm 2). If the data byte

value is set in the lookup table (line 6 of Algorithm 2), this

byte of data will be identified as a chunk boundary marker.

Once a chunk boundary has been identified, a w bytes data

chunk will be selected beginning with the identified chunk

boundary marker (line 7 of Algorithm 2), and a fingerprint will

be calculated using Jenkins Hash [43] based on the selected

chunk (line 8 of Algorithm 2). The calculated fingerprint will

then be stored in the fingerprint table (line 9 of Algorithm

2). p/2 bytes of content are skipped (line 10 of Algorithm

2) after each chunk marker selection to avoid over-sampling

when the content data bytes are not uniformly distributed.

Since the chunk selection of SAMPLEBYTE is triggered by

the positions of those specified pre-determined byte values,

the distances between selected chunks are unpredictable. As

investigated in [3], SAMPLEBYTE can achieve almost the

same bandwidth savings as those of MAXP, but the execu-

tion of SAMPLEBYTE is even faster than MAXP because

it performs byte-by-byte scanning instead of local maxima

searching. Meanwhile, SAMPLEBYTE is robust to small

content changes, but one major drawback of SAMPLEBYTE

is the static lookup table, and thus an online dynamic adaption

of the lookup table is required; this inspires an extension work

of SAMPLEBYTE, called DYNABYTE [44, 45].

6) DYNABYTE: In SAMPLEBYTE, the lookup table is

static and requires pre-configuration based on the training

data. As an extension of SAMPLEBYTE, Halepovic et al.

[44, 45] proposed an adaptive and self-configuring dynamic

algorithm called DYNABYTE (DYNAMIC SAMPLEBYTE).

DYNABYTE follows the same procedures as those of SAM-

PLEBYTE to remove the redundant chunks. Another problem

with SAMPLEBYTE is that the number of entries which is

set to “1” in the lookup table is fixed, which may cause

over-sampling or under-sampling if it is not set properly.

DYNABYTE differs from SAMPLEBYTE in that it utilizes a

dynamic and adaptive mechanism to update the lookup table

and it also ensures the desired sampling rate. In order to

update the lookup table dynamically and achieve the desired

sampling rate, two parameters are monitored by DYNABYTE.

One is the number of selected chunks, and another one is the

byte frequency. DYNABYTE periodically updates the lookup

table based on the byte frequencies, and tracks the actual

sampling rate. If DYNABYTE is over-sampling or under-

sampling more than a pre-defined threshold, two parameters,

the number of skipped bytes after one chunk boundary marker

has been identified and the number of entries set in the lookup

table, can be adjusted to regulate the actual sampling rate to

approach the desired value. DYNABYTE always adjusts the

number of skipped bytes first. If it cannot be adjusted further,

DYNABYTE then switches to adjust the number of entries set

in the lookup table.

7) Frequency Based Chunking (FBC): Content-based fin-

gerprinting methods such as MODP and MAXP divide the data

stream randomly according to the contents. Frequency based

chunking (FBC) [11], an enhancement to the content-based

fingerprinting method, explicitly utilizes the chunk frequency

information in the data stream to improve the DRE bandwidth

saving gains. FBC consists of two processing stages: chunk-

ing frequency estimation and chunking. At the first stage,
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TABLE I: Fingerprinting Mechanisms Comparison

Mechanisms Chunking Approach Inter-fingerprint Distance Computational Overhead

FIXED [3] Position-based Uniform distribution Lowest

MODP [1] Content-based Non-uniform distribution with long-tail High

WINN [2] Content-based Approximately uniform distribution and always bounded High

MAXP [2] Content-based Approximately uniform distribution and always bounded Middle

SAMPLEBYTE [3] Hybrid of position and content Unpredictable and the sampling rate is not ensured Low

DYNABYTE [44, 45] Hybrid of position and content Unpredictable, but the desired sampling rate is ensured Middle-low

FBC [11] Content-based Dependent High

MRC [46] Content-based Dependent High

PACK chunking [35, 47] Content-based Non-uniform distribution Low

FBC incorporates a statistical chunk frequency estimation

algorithm, consisting of prefiltering, parallel filtering, and

frequency counting to identify the fixed-size chunks with

high frequency. Prefiltering and parallel filtering eliminate

low frequency chunks as many as possible. In particular,

prefiltering applies a modulo-based distinct sampling while

parallel filtering utilizes parallel bloom filters to identify high-

frequency chunk candidates. Only those highly-duplicated

chunks can survive from these two filtering steps, and finally

their frequencies are estimated at the frequency counting step.

8) Multi-Resolution Chunking: Chunk size can directly

affect the bandwidth saving gains, storage performance and

memory pressure. Small chunks may achieve better bandwidth

savings at the cost of increasing the total number of chunks,

and consequently increase the fingerprint index entries, and

increase the memory pressure and storage seeks. Large chunks

can reduce the memory pressure and provide better storage

performance since more data can be read through one read, but

bandwidth saving gains might be degraded with large chunks

since fine-grained changes can be missed. To combine the ad-

vantages of fingerprinting with large and small chunks, Multi-

Resolution Chunking (MRC) [46] has been proposed to allow

multiple chunk sizes to co-exist in the redundancy elimination

system. MRC can achieve a high content compression rate

with low memory overhead and low storage seeks. MRC uses

larger chunk size to reduce the storage seeks and memory

pressure for large matching region, and uses smaller chunk

size to achieve higher bandwidth savings when relative small

redundant regions are missed with large chunks.

In order to avoid the chunk boundary overlap caused by

different chunk size fingerprinting, a MRC tree is constructed

with the largest chunk as the root and smaller chunks as

the leaves. All of the smaller chunks share boundaries with

some of their leaf chunks. The MRC tree is generated by

detecting all of the smallest boundaries first, and then matching

up different numbers of bits to generate larger chunks with

the same boundary detection constraint. With this single-

pass fingerprinting process, a cleaner chunk alignment can be

generated with less computational overhead.

9) PACK Chunking: Based on an XOR rolling function,

PACK chunking [35, 47] is a computationally efficient finger-

printing scheme. The PACK chunking algorithm is presented

in Algorithm 3. Its basic idea is that a chunk boundary marker

is found if the rolling bitwise XOR of at least 48 bytes is

equal to a predefined value (lines 6 and 7 of Algorithm 3).

Then, the representative fingerprints are calculated based on

the selected chunks with SHA-1. Fig. 3(f) shows the operations

of PACK chunking. The measurements in [35, 47] showed that

the execution speed of PACK chunking is even faster than

SAMPLEBYTE with 8 entries in the lookup table set.

10) Comparison: The fingerprinting mechanism plays a

critical role in the performance of DRE, and at the same time it

also incurs high processing costs. A comparison among all of

the discussed fingerprinting mechanisms above is summarized

in Table I in terms of the chunking approach, inter-fingerprint

distance, and computational overhead. FIXED is a simple

content-agnostic and position-based chunking mechanism. The

representative chunks are selected uniformly across the data

stream. However, any byte insertion or deletion in the data may

change all the data chunks, resulting in the failure of redundant

chunk identification and elimination. The chunk boundary

identification in FIXED does not involve any computation.

Thus, FIXED incurs the lowest computational overhead among

all of these fingerprinting mechanisms.

The chunking approaches in MODP, MAXP and WINN are

all content-based. Hence, they are robust to small data changes.

The inter-fingerprint distance is not uniformly distributed and

has a long tail, indicating that some large blocks of data remain

unselected for fingerprinting. WINN and MAXP improve the

chunk selections by ensuring one chunk is selected over

one local region. The inter-fingerprint distance distribution is

Algorithm 3 PACK chunking algorithm

1: mask ← 0x00008A3110583080 {48 bytes window; 8 KB

chunks}
2: longval← 0x0 {longval 64 bits length}
3: for all (byte ∈ stream) do

4: shift left longval by 1 bit {lsb← 0; drop msb}
5: longval← longval bitwise-xor byte
6: if (processed at least 48 bytes and longval bitwise-and

byte == mask) then

7: found an anchor;

8: end if

9: end for



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 8

approximately uniform to the desired sampling period and is

always bounded. Owing to the large amount of Rabin hashes

calculations, MODP leads to a high computational overhead,

while WINN deteriorates the conditions by local maximum or

minimum fingerprint searching. MAXP simplifies the calcula-

tions by local byte value maximum searching.

SAMPLEBYTE and DYNABYTE capitalize on the ro-

bustness of a content-based approach with the computational

efficiency of a position-based approach. The inter-fingerprint

distances are unpredictable with both mechanisms. The de-

sired sample rate is not ensured in SAMPLEBYTE, but is

improved in DYNABYTE. The computational overhead is

further reduced by byte scanning and comparison instead

of local maximum byte searching in MAXP. DYNABYTE

induces higher computational overhead than SAMPLEBYTE

in dynamic updates of the lookup table and the adjustment of

the actual sampling rate.

FBC, MRC and PACK chunking are all content-based fin-

gerprinting algorithms. Both FBC and MRC are enhancements

based on another content-based fingerprinting algorithm, and

therefore the inter-fingerprint distances are also dependent

on that particular fingerprinting algorithm. FBC and MRC

incur additional computational overhead to estimate chunk

frequencies and to generate MRC trees, respectively. A large

number of hash operations are especially incurred in the stage

parallel filtering of the FBC algorithm. The inter-fingerprint

distance with PACK chunking is not uniformly distributed. For

each byte in the data stream, only one bitwise XOR operation

is applied in PACK chunking, while multiple bitwise XOR

operations are required for SAMPLEBYTE fingerprinting to

compare the byte value with the entries set in the lookup table.

Therefore, more computational resources are required for the

PACK chunking algorithm.

C. Chunk Matching

In general, two chunk matching mechanisms can be used

for protocol-independent DRE techniques [3]. One is called

“Chunk-Match” and the other one is “Max-Match”. If one

matched representative fingerprint is found in the fingerprint

table, the w byte representative region used to compute this

representative fingerprint is identified as the redundant chunk

by the Chunk-Match. While in Max-Match, the matched

region is maximized by expanding to the left and right of the

representative region. Chunk-Match may miss some similar

redundant regions. Max-Match can overcome this problem,

but it suffers from excessive memory access induced by byte-

by-byte comparison.

In order to reduce the number of memory access and at the

same time maximize the matching region, CombiHeader [12]

uses a chunk aggregation technique to expand the matching

chunks and reduce the DRE encoding overhead penalties.

CombiHeader is based on the assumption of the spatial locality

property of popular chunks, i.e., consecutive popular chunks

have high probability of appearing together. In addition to

track the hit counts of each chunk, CombiHeader also main-

tains the link-hit counts between two adjacent chunk pair.

Based on the link hit counts between two adjacent chunks,

these two chunks may be merged into a new one if the link

hit counts exceed some threshold. Then, if the first chunk is

matched, CombiHeader will check the next chunk if it can be

matched or not; if so, CombiHeader encodes them together

instead of two separated chunks. In this way, the matching

region can be expanded and the encoding overhead penalty

can be reduced.

D. Cache Management

The packet store used to cache previously observed packets

for redundancy elimination is limited in size. Usually, First-In-

First-Out (FIFO) cache replacement policy is assumed. Two

bandwidth savings based cache replacement policies, namely,

Least Recently Used (LRU) and Least Savings with Aging

(LSA), have been proposed in [4]. LRU is inspired by the

observation that popular chunks exhibit temporal locality [2,

4]. The least recently used chunks will be removed from the

cache with the LRU cache replacement policy when space is

needed. As compared to FIFO, 5% more relative bandwidth

can be saved with LRU on average, but the execution time

also increases by up to 40%.

LSA is an extended policy of Least Frequently Used (LFU)

with aging. LSA considers the properties of popular chunks

[2]: popular chunks exhibit temporal locality, and the popu-

larity of chunks exhibits a Zipf-like power-law distribution.

Instead of using the cache hits, LSA uses the actual byte

volume contributed to bandwidth savings to rank the chunks,

and then LSA removes the chunk with the least bandwidth

savings when space is needed. Hence, the data chunks which

are more popular than others are kept in the cache for a

longer time. One problem with LRU is that some chunks

may stay too long in the cache and never get replaced.

Considering the temporal locality property of the popular

chunks, LSA purges the entire cache periodically as a form

of aging to avoid cache pollution by some data chunks. As

reported in [4], LSA performs better than FIFO and LRU. LSA

consistently produces higher bandwidth savings than FIFO

does. In addition, the execution time of LSA is comparable

to that of FIFO.

E. DRE Decoding Error Recovery

Packets could be lost due to congestions or transmission

errors, which may prevent DRE encoded packets from re-

constructing the original data packets. This is called DRE

decoding error recovery. Most of DRE techniques for wired

networks retransmit the lost packets [1] to recover the DRE de-

coding errors. Several DRE decoding error recovery schemes,

such as ACK Snooping [34], Informed Marking [34], and Post-

ACK caching [36], have been proposed to improve the DRE

performance in a high packet loss environment such as WLAN

and cellular networks.

1) Retransmission-based scheme: With the retransmission-

based decoding error recovery scheme, the receiver just simply

requests the retransmission of the missing packet from the

sender when a cache missing is hit. In a packet-loss envi-

ronment, the DRE with the retransmission-based decoding

error recovery scheme can achieve almost the same bandwidth
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Fig. 4: Wanax redundancy elimination system overview [46].

savings as that with no packet losses, but the retransmission-

based decoding error recovery scheme could waste significant

additional bandwidth, especially in a high-loss environment.

2) ACK Snooping: ACK Snooping [34] based decoding er-

ror recovery scheme relies on the feedback acknowledgements

of the correctly received packets of the transport protocols,

such as TCP. With ACK Snooping, the sender needs to

maintain a blacklist of packets that are not acknowledged for

some predetermined time period after they are transmitted.

ACK Snooping can quickly detect the lost packets and reduce

the DRE cache missing rate to 0 without introducing additional

feedback overhead. However, lost packets could be false

negatively estimated with delayed acknowledgements in ACK

Snooping, and it cannot work with transport protocols without

a feedback acknowledgement mechanism such as UDP, which

is common in wireless networks.

3) Informed Marking: The basic idea of Informed Marking

based decoding error recovery scheme [34] is that the receiver

informs the sender with the hash of the missing packet, and

the sender puts the corresponding packet into the blacklist

of the missing packets in the receiver’s cache and ignores

the redundant chunk matched to any blacklisted packet from

future DRE encodings. Informed Marking can reduce the

DRE decoding error rate to at most the network packet loss

rate since the lost packet can only have at most one time

opportunity to evoke the DRE decoding errors. Unlike ACK

Snooping, Informed Marking is more general and can work

with any type of transport protocols such as TCP and UDP,

and it does not introduce any unnecessary feedback overhead

from the receivers when there is no packet loss or when the

lost packets are not used in DRE encoding.

According to the study in [34], all of these three DRE

decoding error recovery schemes, namely, Retransmission-

based scheme, ACK Snooping, and Informed Marking, are

able to remove DRE decoding errors. Among these three

decoding error recovery schemes, Informed Marking is more

general and does not introduce any unnecessary feedback

overhead. As the study results shown in [34], more than 60%

of the bandwidth savings by applying DRE can be preserved

by the Informed Marking decoding error recovery scheme,

even in cases with high packet loss rates.

4) Post-ACK Caching: Post-ACK Caching [36], a MAC-

layer ACK based decoding error recovery scheme, has been

proposed for WLAN. In WLAN, a MAC-layer ACK will

feedback to the sender for every correctly received frame.

In the Post-ACK Caching scheme, all the MAC-layer frames

containing IP packets whose payloads are used for redundancy

elimination must be acknowledged by the receiver, in order to

ensure that all the packets used for redundancy elimination

have been received properly at the receiver. As reported

in [36], POST-ACK Caching can achieve more than 20%

better bandwidth savings in WLAN than black-listing based

decoding error recovery schemes, such as ACK Snooping and

Informed Marking, can.

III. DRE SYSTEMS FOR WIRED NETWORKS

A typical redundancy elimination middlebox implementa-

tion has been introduced in Section II-A. Several redundancy

elimination systems have been proposed. In this section,

we will discuss the implementations of several redundancy

elimination systems.

A. Wanax

Wanax [46] is a wide-area network acceleration middlebox,

designed for developing world deployments where storage and

WAN bandwidth are scarce. Three mechanisms are activated in

Wanax, namely, multi-resolution chunking (MRC), intelligent
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load shedding (ILS) and a mesh peering protocol, to achieve

high compression rate and high storage performance with

small memory pressure, to maximize effective bandwidth by

adjusting storage and WAN bandwidth usage, and to reduce

latency by fetching content from relatively higher-speed local

peers instead of over slow WAN links when the content is

available from other local peers, respectively. Wanax works

by removing redundant traffic between a pair of WAN accel-

eration middlebox, called S-Wanax and R-Wanax, which are

located near the source and destination, respectively.

Fig. 4 shows the system architecture of Wanax. S-Wanax

holds back from sending the original TCP stream to R-Wanax,

and instead sends the missed chunk signatures at R-Wanax

from the MRC tree, which is generated by the MRC process.

In order not to waste the bandwidth by sending the full MRC

trees to R-Wanax, S-Wanax maintains a hint table, which

contains recently-seen chunk names along with timestamps,

and prunes the MRC tree to avoid sending the sub-trees

below any un-stale chunk whose name is listed in the hint

table. By receiving the chunk signatures from S-Wanax, R-

Wanax incorporates a peering mechanism to fetch the missed

chunks. It checks chunks listed in the message from S-Wanax

in its local cache first. If a missing chunk hits, it sends a

chunk request message, including the missing chunk name

and the address of S-Wanax, to its responsible peer which is

determined by a variant of consistent hashing called Highest

Random Weight (HRW) [48] for a particular chunk. If the

missing chunk is found at the peer R-Wanax, it responds with a

chunk response message. Thus, incorporating with the peering

mechanism, R-Wanax can distribute the chunk fetching load

among the peers and utilize multiple chunk caches in parallel

to improve the effective bandwidth performance by deploying

the ILS mechanism, which exploits the structure of the MRC

tree and dynamically schedules chunk fetches based on the

estimated fetch latencies of network and storage queues.

Naturally, Wanax incurs a three-way handshake latency for

non-cached data.

B. Network-wide Redundancy Elimination

The typical DRE middlebox implemented in commercial

WAN accelerators can eliminate redundancy over a single

end-to-end network link. Deploying redundancy elimination

on a single link can only remove intra source-destination pair

redundant traffic and cannot remove inter source-destination

pairs redundancy. Network-wide redundancy elimination [9,

10, 30] by traversing potentially duplicate packets onto com-

mon links can remove both kinds of redundancy.

Network-wide redundancy elimination was originally pro-

posed by Anand et al. [9]. Given the physical network topol-

ogy and traffic redundancy profiles, each of which consists

of a sequence of packets to be transmitted from a source

to a destination and the redundancy among all of these

packets, a linear optimization problem is formulated to find an

overlay network which routes the traffic among all the source-

destination pairs with the minimum cost of total network

resources when the redundancy elimination is enabled at all

routers. The proposed linear problem subjects to link capacity

Cache
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Cache

Cache

Cache
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Manifests

Routing Policy
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Profile
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Encoding
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Fig. 5: Schematic depiction of SmartRE [10].

and flow conservation constraints. As an extension to the work

proposed in [9], a greedy heuristic algorithm for redundancy-

aware routing with limited resources is proposed in [30]. The

proposed greedy algorithm iteratively reroutes the traffic for

each source-destination pair to maximize the network resource

cost reduction until the number of overlay nodes reaches its

maximum limit, or the traffic for all the source-destination

pairs has already been rerouted, or the network cost cannot

be reduced further. The proposed network-wide redundancy-

aware routing algorithm in [9] is somewhat similar to multicast

routing algorithms [49], with which content is delivered from

the source to a group of destinations simultaneously in a

single transmission. The main difference of the network-wide

redundancy-aware routing from multicast routing is that the

content distribution routing paths with the redundancy-aware

routing algorithm are influenced by destinations which have

observed significant redundant contents, while the multicast

routing algorithms consider simply the multicast participants.

Although network routes have been optimized to maximize

the redundant packets traversing through the common links,

the network-wide redundancy elimination in [9, 30] still oper-

ates in a hop-by-hop fashion. The redundancy elimination on

different routers along a network path works independently. A

coordinated network-wide redundancy elimination [10], called

SmartRE, has been proposed to leverage the memory resources

efficiently across multiple router hops in a path to improve the

DRE performance. As shown in Fig. 5, SmartRE redundancy

elimination consists of three key elements: ingress nodes,

interior nodes, and a central configuration module. The ingress

nodes and the interior nodes only store a subset of packets they

observe as instructed in the encoding manifests and caching

manifests generated by the network-wide optimization module.

A caching manifest specifies the caching responsibility of each

interior node in terms of a hash-range per path per node, while
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an encoding manifest specifies the total covered hash range of

the path. SmartRE incorporates ideas from cSamp [50] to split

caching responsibilities across multiple routers over a network

path. For each path, the central configuration module generates

a set of caching manifests by solving a linear programming

problem to optimize the network operator’s objectives by

using network-wide redundancy profiles, traffic matrix, routing

policies, and resource constraints. For each path, the ingress

node encodes packets and stores the packets whose hashes fall

in the total covered range of the path, while the interior node

decodes the packets and only stores the packets whose hashes

fall within the range assigned to it for the path. SmartRE

enables the coordination of the available resources at network

routers, and thus can improve the resource effective utilization

and magnify the overall network-wide DRE performance.

C. PACK

Measurements [35, 47] have shown that end-to-end DRE

solutions incur considerable computational and storage cost on

servers, which may eradicate the bandwidth savings achieved

by the DRE in cloud computing systems. Thus, DRE tech-

niques deployed for cloud computing are required to optimize

the bandwidth saving gains with the additional cost of com-

putations and storage incurred by DRE. In order to relieve

the cloud’s computational and storage cost induced by DRE,

Zohar et al. [35, 47] proposed a receiver-based end-to-end

DRE system, namely, PACK, for cloud computing. Unlike

the classical DRE technique, PACK off-loads the cloud-server

DRE computational effort from the cloud to a large group of

end-clients by using the power of prediction at the receiver

side to remove redundant traffic.

Fig. 6 illustrates the operations of redundancy elimination

procedures in PACK. During the initial TCP handshake, the

sender and the receiver can negotiate to enable the PACK

redundancy elimination by adding a “PACK permitted” flag

in the TCP’s options field. Then, the sender starts to send the

data in TCP segments. The receiver parses the received data

stream to a sequence of variable sized chunks using the “PACK

chunking” scheme discussed in Subsection II-B9, computes

the respective signature for each chunk using SHA-1, and

adds the parsed chunks and their associated meta-data to the

local chunk store in a “chain” scheme. The chunk’s meta-

data includes the chunk’s signature and a single pointer to the

successive chunk. With the newly parsed chunks’ signatures,

the receiver looks for a matched signature in its local chunk

store. If a matched signature is found, the receiver retrieves

a sequence of chunks’ signatures using the chunks’ pointers

Chunk Store

SYN ACK + PACK permitted

ACK + PRED (data range, hint, signature)

ReceiverSender

SYN ACK + PACK permitted

Data

SYN

Data + PRED ACK

Fig. 6: PACK redundancy elimination system [35, 47].

included in the chunk’s meta-data and sends a prediction,

including the range of the predicted data, the hint (e.g., the

last byte in the predicted data, or the checksum of all or part

of the predicted data) and the signature of the chunk, to the

sender for the subsequent data with a “PRED” message in

the TCP’s option filed. Upon receiving a “PRED” message

from the receiver, the sender determines the TCP sequence

range and verifies the hint for each prediction. If a hint

matches, the sender calculates and verifies the chunk signature

for the predicted data range; otherwise, this prediction fails.

If the signature is also matched, the sender replaces the

corresponding outgoing buffered data with a “PRED-ACK”

message to remove the redundant data.

The drawbacks of PACK are also rather obvious. First, re-

dundancy elimination is limited to TCP traffic only. Moreover,

additional traffic load is introduced by the “PRED” messages

from the receiver to the sender. Also, bandwidth saving gains

are only partial since there are always delays between the re-

dundancy detection at the receiver and redundancy elimination

performed at the sender. This delay is more than 100 ms in

general because cloud applications are deployed over a wide-

area network in current days.

D. Hybrid Chunk- and Object-level DRE

Traffic redundancy elimination can work on different gran-

ularity levels: object level or chunk level. Object-level cache

provides less bandwidth saving gains than chunk-level re-

dundancy elimination. However, chunk-level DRE techniques

have limitations in computational speed, memory and stor-

age overhead. Chunk-level DRE computational overhead may

become a bottleneck [52], especially in higher bandwidth

links. A hybrid chunk and object level redundancy elimination

technique has been proposed for web optimization in [51].

Fig. 7 shows the architecture of the proposed hybrid DRE

system. Two middleboxes, the encoding middlebox close to the

source and the decoding middlebox near the destination, work

cooperatively over a wide-area network (WAN) to remove

the redundant traffic. The encoding middlebox consists of a

scheduler, a chunk-level DRE module, an object-level proxy

cache module, a RAM memory module, a persistent storage

for chunk and object caching, and a bypass module. The

chunk-level DRE module and the object-level proxy cache

module share the memory and the persistent storage.

The functions for the main modules are summarized as

follows:

1) Scheduler: The scheduler determines which module the

data stream should flow through, the DRE module, the proxy

cache, or the bypass module. The scheduler tracks the traffic

with destination port 80, processes the HTTP headers and

classifies the applications to determine whether the object is

cacheable or not based on RFC 2616 [53]. All cacheable

objects will be flowed toward the proxy cache module and

all non-cacheable contents will be flowed through the DRE

module. The scheduler may direct the remaining TCP and

UDP traffic to the DRE module or the bypass module.

2) Proxy Cache Module: For a cacheable object, the proxy

cache module hashes its URL and stores the hash value in the
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RAM together with some other meta-data of the object. The

object is then stored in the persistent storage. When an object

is requested and is still valid in the proxy cache, it will be

retrieved from the cache, otherwise it will be fetched from the

source server.

3) DRE Module: The chunk-level redundancy elimination

is performed in the DRE module. All the selected chunks are

stored in the persistent storage while their corresponding fin-

gerprints generated in the DRE calculations and their pointers

point to the cache location where the actual content is stored

in the RAM.

With this hybrid architecture, the computational and mem-

ory overhead can be lowered because part of the data stream

is directed through the proxy cache module without hash

calculations over chunks and the corresponding representative

fingerprints storage in memory.

IV. DRE SYSTEMS FOR WIRELESS AND CELLULAR

NETWORKS

A majority of protocol-independent redundancy elimina-

tion techniques focus exclusively on fixed wireline networks.

Considering the high error rate of wireless channels and

bandwidth resource scarcity of radio spectrum, DRE emerges

as a promising way to save bandwidth and improve per-

formance in wireless environments. Leveraging redundancy

elimination in wireless and mobile environments has been

explored in several recent works [31–33]. In this section, we

will first explore the network traffic redundancy in wireless and

cellular networks. Then, we will discuss the challenges and

opportunities to leverage redundancy elimination in wireless

and cellular networks. Finally, we will detail the redundancy

elimination techniques proposed especially for wireless and

cellular networks.

A. Traffic Redundancy in Wireless and Cellular Networks

Previous works have shown that a considerably large

amount of redundant contents exist in wireline networks at

ISP access links, between routers, or between end-to-end hosts.

The traffic redundancy in wireless and cellular networks has

also been explored by several recent studies [31, 32, 34, 36].

Depending on the nature of redundancy, two types of redun-

dancy have been observed: intra-user temporal redundancy and

inter-user redundancy.

Based on real network traces of two Wi-Fi networks,

Zhuang and Sivakumar [31] explored both types of redun-

dancies. Up to 75% redundant traffic can be observed by

investigating one particular day’s traffic of one individual

user against the previous day’s traffic of the same individual

user. They also showed that eliminating inter-user redundancy

in Wi-Fi networks can improve bandwidth savings ranging

between 7% to 22%. Another redundancy analysis [36] of

wireless user traffic from a campus WLAN showed a wide

range of redundancy across traces: for some traces, up to

almost 50% bandwidth saving can be achieved, but quite low

redundancy as small as around 2% could also be observed for

some traces, which may simply waste resources in processing

and encoding overhead of DRE.

Using three large real-world cellular network traces,

Lumezanu et al. [34] reported that mobile users may save

as much as 60% traffic volume by deploying redundancy

elimination. An average of 46% intra-user individual temporal

redundancy in cellular web traffic has been estimated conser-

vatively by Zohar et al. [32] by using a 5-hour traffic trace

of a cellular gateway which connects 130 web sites to the

cellular networks. From the above studies, we can see that a

significant amount of redundant traffic exists in both wireless

and cellular networks.

B. Challenges and Opportunities of DRE in Wireless and

Cellular Networks

Given the error-prone nature of wireless channels and

bandwidth resource scarcity of radio spectrum, applying DRE

to wireless and cellular networks is promising in saving

bandwidth and improving network performance. However,

unlike wire networks, wireless and mobile environments ex-

hibit unique challenges and opportunities in the context of

redundancy elimination. The broadcast nature of wireless com-

munication makes it easier to eliminate inter-user redundancy

by traffic overhearing. On the other hand, high packet loss

rate, user mobility and some MAC layer characteristics could

impose severe challenges to DRE efficiency in the wireless

environment.

Halepovic et al. [36] explored the effectiveness of DRE in

wireless local area networks (WLANs) and they also explored

specific issues affecting DRE performance in WLAN. Their

results indicate that the effectiveness of DRE is lower than

that of Ethernet due to higher physical channel error rates

in WLANs than in Ethernet, smaller proportion of IP traffic,

and MAC-layer characteristics, such as longer MAC headers,

control and management frames, retransmission, and frame

drops.
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Packet loss in the wireless environment due to the trans-

mission error over the air interface, insufficient buffer sizes

or communication congestion are normal in wireless environ-

ments. The high packet loss rate makes it difficult to apply

DRE in wireless and cellular networks. The effects of packet

loss on redundancy elimination, in terms of bandwidth savings

and DRE decoding errors, in cellular wireless networks have

been explored in [34]. They reported that DRE could be

disrupted by losing only a few packets. Packet loss may

cause DRE decoding errors, which will prevent receivers from

reconstructing the original packets.

C. DRE Algorithms for Wireless and Cellular Networks

In this section, we will review most of DRE algorithms

deployed specially for wireless and cellular networks.

1) Wireless Memory AP-client DRE: Wireless Memory

(WM) [31], a two-ended access-point(AP)-client solution, was

proposed to explore traffic redundancy elimination in wireless

and mobile environments, especially in Wi-Fi (802.11b/g)

networks. Both Intra-user and inter-user traffic redundancy can

be removed by WM. As shown in Fig. 8, WM maintains

memory space in both AP and clients, and AP needs to

maintain separate memory for each of its clients when it com-

municates with multiple clients simultaneously. Certain WM-

related information, e.g., memory space size and delimitation

parameters, needs to be initialized when a WM-enabled client

is first associated to a WM-enabled AP. WM is designed

to be application transparent and works at the packet level

residing between the network layer and the link layer, and

thus no application needs to be changed. WM has two basic

complementary operations: Memory Referencing and Memory

De-referencing (MRD). Built with three sequentially invoked

components of Delimitation, Memory Lookup, and Packet

Composition, Memory Referencing eliminates the redundant

contents from the original data packet against the memory

and reconstructs the packet by replacing the redundant data

segments present in the memory with a code which represents

the memory entry, while Memory De-Referencing recovers the

original data packet through three complementary sequential

components of Packet De-composition, Memory Lookup, and

Packet Assembly.

WM can effectively remove intra-user redundancy through

MRD, and it can be enhanced with Memory Fidelity Enhance-

ment (MFE) to eliminate inter-user redundancy by overhearing

other clients’ traffic. MFE requires clients to actively overhear

other clients’ traffic whenever possible, and the overheard data

will be put into its memory for redundancy elimination. In

order to encode the traffic to one particular user with other

users’ traffic, AP needs to estimate which client’s traffic has

been overheard and decoded by this particular user based on

the fact that clients can always overhear and decode the traffic

that are sent with lower rates. As an example scenario shown

in Fig. 8, client Cj can overhear and decode the traffic of

client Ci while client Ck cannot since the data rate of Ci is

lower than that of client Cj and larger than that of client Ck.

Hence, the redundant segment D to client Cj can be replaced

by its reference d to the previous segment of client Ci while

Rj = 2 Mbps
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Fig. 8: Illustration of Wireless Memory [31].

client Ck cannot take advantage of this since its data rate is

lower than that of client Ci.

Overall, the operations of MRD and MFE complement

each other to improve DRE performance by removing both

intra-user and inter-user redundancies. When WM receives an

original data packet, MRD will replace the redundant segment

with a reference to a memory entry; when an encoded packet

is received, MRD extracts the codes and reconstructs them

back to the original packet. MFE requires clients to actively

overhear other clients’ traffic and put the overheard traffic into

its own memory for inter-user redundancy elimination.

2) Celleration gateway-to-mobile DRE: Celleration [32], a

loss-resilient gateway-to-mobile traffic redundancy elimination

system, was designed for data-intensive cellular networks as

shown in Fig. 9(a). It can remove a considerable amount

of redundant traffic at both the back-haul and the wireless

last-mile of the network while preserving handset battery

power. Celleration activates three mechanisms at the gateway,

namely, flow coding, ad-hoc learning of mobile devices, and

flow reduction, as illustrated in Fig. 9(b-d), respectively. A

Celleration-enabled gateway, located at the cellular network

Internet entry point, extracts similarities in repetitive chunk

flows across users with the flow coding mechanism, predicts

individual mobile user’s future data with ad-hoc learning

mechanism, and enables bandwidth savings for mobile end-

users with the flow reduction mechanism.

In the flow coding mechanism as outlined in Fig. 9(b), the

gateway enabled with the flow coding mechanism continu-

ously parses the crossing flow to a sequence of variable sized,

content-based chunks, which will be signed by using SHA-1.

The chunks’ signature sequences will be stored in the gate-

way’s local cross-user signature store. At the same time, these
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Fig. 9: Celleration redundancy elimination system.

chunks’ signature sequences together with their corresponding

chunks’ size information are sent as meta-data to the mobile

device to save the computation overhead involved in DRE

chunking and signing. Celleration can recognize a crossing

flow by its chunks’ signatures, which will also be used to look

up the potential future data in the cross-user signature store.

Once a crossing flow has been recognized, the ad hoc learning

between the gateway and the mobile device, the operations as

described in Fig. 9(c) will be activated. The gateway sends a

list of predicted future chunks’ signatures to the mobile end

user by using the previous flows of all users stored in the

cross-user signature store. The mobile end device will respond

with a list of time-limited approvals by checking whether the

corresponding data of the predicted chunks’ signatures are in

its local cache or not. If the ad-hoc learning indicates that

some predicted data chunks already exist in the cache of the

mobile device, the flow reduction mechanism of Celleration

as illustrated in Fig. 9(d) will be activated by refraining the

gateway from forwarding the approved chunks to the mobile

device as they arrive at the gateway. Thus, the redundant traffic

over the transmission path between the gateway and the mobile

device can be removed.

3) REfactor: Previous efforts on leveraging the broadcast

nature of the wireless environment in redundancy elimination

focused on overhearing entire packets, which may limit the

benefits of fully leveraging opportunistic overhearing. By de-

ploying opportunistic overhearing over sub-packet level packet

content, REfactfor [33] can improve the IP-layer redundancy

elimination performance. REfactor uses the MAXP algorithm

with Chunk-Match for data fingerprinting. As an improvement,

it incorporates a self-addressing mechanism wherein a chunk

can identify its storage location in the cache based on the

chunk content, and a removed chunk can be identified by its

location in the cache. Thus, the encoder can only maintain

the chunk hashes in a hash table and the decoder can only

maintains the chunks in a FIFO cache. Based on the fact that

overhearing probabilities are time-varying and are different for

different clients, REfactor introduces a reception probability

vector for each chunk entry stored in the hash table at the AP.

By using this reception probability vector, REfactor estimates

the expected benefit, which is measured as the reduction

in transmission time by eliminating a redundant chunk. If

the expected benefit exceeds some predefined threshold, the

redundant chunk will be removed. The retransmission-based

decoding error recovery scheme is deployed in REfactor. If a

cache miss hit occurs at the receiver, the receiver requests a

chunk retransmission from the sender.

V. OTHER TECHNIQUES TO ENHANCE REDUNDANCY

ELIMINATION PERFORMANCE

Several techniques [4, 37, 54–56], such as DRE bypass tech-

niques and content-aware chunk selection, have been proposed

to enhance the DRE performance in terms of computational

overhead, execution time and bandwidth savings. In this

section, we investigate the effects of these techniques on the

performance of DRE.

A. Bypass Techniques

The goal of DRE bypass techniques is to save the resource

overhead including computation, memory and storage, induced

by DRE operations for processing the traffic which has no

or little contribution to redundancy elimination. Several DRE

bypass techniques [4, 51, 55, 57] based on the packet size,

port number, or traffic type have been proposed to enhance

redundancy elimination performance.

Motivated by the observation of bimodal distribution of

Internet packet size [58], a size-based bypass technique [4]

has been investigated to improve the DRE performance in

terms of execution time and bandwidth savings. Execution

time can be reduced since fewer packets will be processed

by the sized-based bypass enabled DRE technique. However,

bandwidth saving gains might be degraded with improperly

set bypass packet-size since too many data are unprocessed

for redundancy elimination. Therefore, a threshold needs to

be setup for size-based bypass technique. 96 bytes in transport

packet payload are suggested for size-based bypass threshold,
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and this setting seems to offer significant improvement in

execution time and slightly higher bandwidth savings.

Secure web traffic (port 443) should not be processed for

redundancy elimination since the packet payload is encrypted

and shows little redundancy [1, 2]. Actually, the hybrid chunk-

and object-level DRE middlebox [51] discussed in section

III-D also incorporates a kind of DRE bypass technique based

on port number and content type. With a hybrid chunk- and

object-level DRE middlebox, only the un-cacheable contents

over TCP transport protocol will be directed to the DRE

module, while the cacheable contents over TCP are offloaded

to the proxy cache module, and the remaining TCP and UDP

traffic could be bypassed without any processing.

As reported in [59, 60], typical binary files such as video,

audio, binary executable, and compressed files match with

each other partially with a very low probability. Moreover,

these binary files comprise the biggest portion of the total

amount of traffic in the Internet [61]. Considering these two

Internet traffic properties, a traffic-type based bypass technique

[55, 57] was proposed to reduce the computational overhead

incurred by DRE while keeping the comparable bandwidth

saving gains with the bypass technique disabled. This traffic-

type based bypass technique incorporates deep packet inspec-

tion (DPI). The bypass module tracks the traffic types of each

flow by parsing the HTTP header for the “mime-type” header

field, and marks any flow as “binary-flow” whose content

has been identified as “audio”, “video”, or “application” in

the header field of “mime-type”. All of the flows marked as

“binary-flow” are passed without any redundancy elimination

processing. By applying this traffic-type based DRE bypass

technique to the traffic load mixed with text and binary

files, the CPU processing load can be reduced greatly while

achieving the comparable bandwidth saving gains with this

bypass technique disabled. At the same time, the total numbers

of memory and storage access are also decreased since fewer

data are processed for redundancy elimination.

B. Non-uniform sampling

The non-uniform chunk popularity [60] enables a non-

uniform sampling technique to improve DRE performance.

The chunks with high-redundant contents are preferred for

redundancy elimination than the chunks with low-redundant

contents. Thus, DRE performance can be improved by in-

troducing multiple sampling rates and adjusting the sampling

rate according to the chunk content rather than with a single

sampling rate. In general, text data is more redundant than non-

text data [59, 60]. In [4], a non-uniform sampling approach

was proposed based on the proportion of plain-text characters

within a data chunk: higher sampling rate is applied to the

data content that has higher proportion of text characters.

C. Overlap

As investigated in [4], allowing chunk overlap can improve

bandwidth savings by 9-14% with relative cost in execution

time. Allowing any overlap may result in unacceptable execu-

tion time; hence, half-chunk overlap is suggested as a threshold

for chunk overlapping.

VI. CONCLUSION

In this paper, we have reviewed current state of the art

of protocol-independent redundancy elimination. We have de-

tailed the system architecture and main processing procedures

incurred in protocol-independent DRE techniques. The major

mechanisms involved in DRE techniques, including finger-

printing, cache management, chunk matching, and decoding

error recovery, have been discussed. For each mechanism, dif-

ferent approaches have been reviewed. We have also presented

several redundancy elimination systems deployed in wireline,

wireless and cellular networks, respectively. Moreover, some

other techniques to enhance the DRE performance such as

DRE bypass techniques, non-uniform sampling, and chunk

overlap, have been discussed. This survey enables researchers

and practitioners to jump-start their DRE projects. Fast and

efficient redundant content identification methods to reduce

the computational cost involved in identifying the redundant

contents and to improve the redundant content elimination

efficiency are extremely critical and still hot topics for DRE

research. Also, the balance between the computational cost

and redundant content elimination efficiency has not been

sufficiently addressed in the previous works and needs further

studies. In Reference [62], a redundancy elimination method

has been proposed to remove duplicated contents at the block

level by applying aspects of several techniques, including

duplicate block elimination, delta encoding and data compres-

sion. Particularly, it first suppresses the identical blocks, and

then performs delta encoding on similar blocks with sufficient

redundancy, and finally compresses the remaining blocks that

do not benefit from the delta encoding. The performance of

the proposed redundancy elimination method was, however,

not provided in [62]. While individual redundancy elimination

techniques such as compression, delta encoding, caching and

DRE techniques may be proven to be effective within their

respective application scenarios, further investigation is needed

to collectively incorporate and exploit multiple techniques in

building a complete system.
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