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Enabling Mobile Traffic Offloading via
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Tao Han, Student Member, IEEE and Nirwan Ansari, Fellow, IEEE

Abstract—Green communications has received much attention
recently. For mobile networks, the base stations (BSs) account
for more than 50% of the energy consumption of the networks.
Therefore, reducing the power consumption of BSs is crucial
to greening mobile networks. In this paper, we propose a novel
energy spectrum trading (EST) scheme which enables the macro
BSs to offload their mobile traffic to Internet service providers’
(ISPs’) wireless access points by leveraging cognitive radio
techniques. Since the ISP’s wireless access points are usually
closer to the mobile users, the energy and spectral efficiency
of mobile networks are enhanced. However, in the EST scheme,
achieving optimal mobile traffic offloading in terms of minimizing
the energy consumption of the macro BSs is NP-hard. We thus
propose a heuristic algorithm to approximate the optimal solution
with low computation complexity. We have proved that the
energy savings achieved by the proposed heuristic algorithm
is at least 50% of that achieved by the brute-force search.
Simulation results demonstrate the performance and viability
of the proposed EST scheme and the heuristic algorithm.

Index Terms—Mobile traffic offloading, energy efficient wire-
less networks, green communications, cellular networks, WiFi
hotspots.

I. INTRODUCTION

OWING to the direct impact of greenhouse gases on the
earth environment and the climate change, the energy

consumption of Information and Communications Technology
(ICT) is becoming an environmental and thus social and
economic issue. Mobile networks are among the major energy
hoggers of communication networks. With the rapid develop-
ment of radio access techniques and mobile devices, a variety
of bandwidth-hungry applications and services such as web
browsing, video streaming and social networking are gradually
shifted to mobile networks, thus leading to an exponential
increase of data traffic in mobile networks. The mobile data
traffic surges result in a dramatic increase of energy con-
sumption of mobile networks for provisioning higher network
capacity [1]. Therefore, greening cellular networks is crucial
to reducing the carbon footprints of ICT [2].

Mobile traffic offloading, which is referred to as utilizing
complementary communication networks to deliver mobile
traffic, is a promising technique to improve the energy and
spectral efficiency of mobile networks [3]. In order to offload
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mobile traffic, mobile network operators usually deploy small
cell base stations (BSs), e.g., pico-BSs, femto-BSs and WiFi
hot spots, in the area where the mobile traffic intensity
is high. Such mobile network deployments, referred as to
heterogeneous mobile networks, can efficiently offload mobile
traffic from macro BSs, thus reducing the energy consumption
of mobile networks [4]. However, deploying small cell BSs
requires backhaul networks which connect the small cell BSs
and the mobile core networks. The energy consumption of the
backhaul networks may neutralize the increased energy effi-
ciency. Thus, the lack of cost-effective backhaul connections
for small cell BSs often impairs their performance in terms of
offloading mobile traffic and enhancing the energy efficiency
of mobile networks.

With strong revenue growth in wireless data markets, inter-
net service providers (ISPs) such as Comcast and Optimum are
densely deploying WiFi hot spots to provide WiFi connectivity
to their customers in urban and suburban areas [5]. Therefore,
it is desirable to utilize the hotspots deployed by ISPs to
offload mobile data traffic. However, since carrying mobile
traffic introduces additional operation cost to ISPs’ networks,
without proper incentives, the ISPs are not willing to open
their networks to mobile network subscribers.

In this paper, we propose a novel mobile traffic offloading
scheme by leveraging cognitive radio techniques referred to
as energy spectrum trading (EST). The EST scheme exploits
the merits of both mobile networks and ISPs’ networks. One
of the advantages of the mobile networks is that the networks
are operating on licensed spectrum, which are not accessed by
unlicensed users. Therefore, by proper spectrum management,
mobile networks are able to provide their subscribers a variety
of services with different QoS levels. However, as compared
with the hotspots deployed by ISPs, the BSs of mobile
networks are usually sparsely deployed. Such deployments are
not efficient in terms of the energy and spectral utilization.
One of the merits of ISPs’ hotspots is that they are densely
deployed, and are able to provide high speed data rates to
their subscribers. However, operating on unlicensed spectrum,
the (QoS) of data services may not be guaranteed. The EST
scheme enables mobile networks to offload data traffic to ISPs’
networks to improve energy and spectral efficiency, and allows
ISPs’ hotspots access to the licensed spectrum to provide ISPs’
data services with different QoS levels.

The proposed scheme is illustrated in Fig. 1, where the
primary BS (PBS) is defined as the macro BS owned by the
mobile network operator while the secondary BSs (SBSs) are
referred to as the hotspots owned by ISPs. We assume both the
PBS and SBSs are able to dynamically access the spectrum by
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Fig. 1. Illustration of the energy spectrum trading scheme.

leveraging cognitive radio techniques. There are two types of
users: primary users (PUs) and secondary users (SUs). PUs are
subscribers of the mobile networks while SUs are subscribers
of ISPs. Different SUs may subscribe to different ISPs. The
energy spectrum trading server manages the spectrum sharing
and mobile data offloading between the mobile networks and
ISPs’ networks.

The PBS has the exclusive access to the licensed band.
However, owing to the wireless channel fading between the
PBS and PUs, providing high data rates to the PUs, especially
to those located at the cell edge, is both bandwidth and power
consuming. As compared with the PBS, the SBSs which are
closer to the PUs may experience less wireless channel fading
and have higher spectral and energy efficiency in providing
data services to the PUs. In the EST scheme, the PBS shares
a certain amount of licensed bandwidth with SBSs while SBSs
provide data services to PUs within their coverage area using
the allocated bandwidth. Since SBSs are close to PUs, the
SBSs can satisfy PUs’ QoS requirements by utilizing only a
portion of the allocated bandwidth. The residual bandwidth
can be utilized to fulfill SUs’ data rate requirements. For
example, in Fig. 1, if PU 1 is associated with the PBS, the
PBS should allocate 2 MHz bandwidth to the PU to satisfy
its minimum data rate requirement. If associated with the SBS,
PU 1 may only require 1 MHz to ensure its minimum data
rate. If the PBS offloads PU 1 to the SBS and grants the SBS 2
MHz bandwidth, then the SBS spends 1 MHz bandwidth to
serve PU 1, and the other 1MHz bandwidth can be utilized to
enhance QoS of its SUs. Therefore, the EST scheme enables
the PBS to reduce its power consumption by offloading some
of the PUs to SBSs, and allows the SBSs to enhance their
QoSs to SUs by utilizing the licensed bandwidth. Since SBSs
usually have a low transmit power, the power consumption
and the spectrum usages of mobile networks in providing data

services to PUs is reduced. Thus, the EST scheme enhances
both the energy efficiency and the spectral efficiency of mobile
networks.

The EST between the PBS and SBSs can be either event
driven or traffic driven. For the event driven EST, the PBS
triggers an EST process when a cell edge user initiates data
service requests. For traffic driven EST, the PBS monitors its
traffic intensity from cell edge users. When the traffic intensity
is beyond a threshold, an EST process is triggered. In this
paper, assuming the PBS experiences heavy traffic load from
the cell edge users, we design algorithms to optimize the EST
between the PBS and SBSs to minimize the PBS’s energy
consumption when an EST process is triggered. However,
minimizing the energy consumption of the PBS in the EST
scheme is not trivial. On the one hand, in order to minimize
the power consumption, the PBS has to maximize the number
of users offloading to SBSs. Meanwhile, since the total amount
of licensed spectrum is limited, the PBS aims to minimize
the amount of bandwidth allocated to SBSs because the less
bandwidth allocated to SBSs, the more bandwidth is reserved
for the PUs associated with the PBS, and therefore the PBS
consumes less power. On the other hand, the PBS has to
give the SBS sufficient incentives in term of the amount
of licensed spectrum to incentivize SBSs to provide data
services to the PUs. Therefore, solving the power consumption
minimization (PCM) problem is to find user-BS associations
and bandwidth allocations to minimize the power consumption
of the PBSs while satisfying PUs’ minimum data rates and
SBS’s bandwidth requirements. In fact, the PCM problem is an
NP-hard problem. Therefore, we propose a heuristic algorithm
to approximate the optimal solution achieved by the brute-
force search. The heuristic algorithm first finds the PUs whose
user-BS associations are not determined, and then iteratively
associates the PU, whose power-bandwidth ratio is the largest,
with SBSs.

If the power consumption of the PBS is reduced, the PU is
associated with SBSs; otherwise, the PU is associated with the
PBS. As compared with the brute-force search, the heuristic
algorithm achieves at least 50% power consumption savings
when the PBS experiences heavy traffic load from cell edge
users.

The rest of the paper is organized as follows. In Section II,
we provide an overview on related research efforts. In Sec-
tion III, we define the system model. Section IV formulates
and analyzes the power consumption minimization problem.
Section V presents a heuristic algorithm to approximate the
optimal solution and analyzes the performance of the algo-
rithm. Section VI shows the simulation results, and concluding
remarks are presented in Section VII.

II. RELATED WORKS

In this section, we briefly overview the related research
on mobile traffic offloading and the solutions for user-BS
associations in heterogeneous mobile networks.

A. Mobile Traffic Offloading

Based on the network access mode, the mobile traffic
offloading schemes can be classified into infrastructure based
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traffic offloading and ad-hoc based traffic offloading. The
infrastructure based traffic offloading is most related to our
work. Therefore, we provide a brief overview of the infras-
tructure based traffic offloading. In the infrastructure based
mobile traffic offloading, mobile traffic can be offloaded to
small cell base stations (BSs), e.g., pico-BSs, femto-BSs and
WiFi hot spots [6]. Small cell BSs usually consume much
less power than the macro BSs. Therefore, offloading mobile
traffic to small cell BSs can significantly enhance the energy
efficiency of mobile networks [4]. On the other hand, in order
to reduce CO2 footprints, mobile traffic can be offloaded to
the BSs powered by green energy such as sustainable biofuels,
solar and wind energy [7]–[10]. In this way, the green energy
utilization is maximized, and thus the consumption of the on-
grid energy is minimized.

B. User-BS Associations in Heterogeneous Mobile Networks

Heterogeneous network is a promising network architecture
which may significantly enhance the spectral and energy effi-
ciency of mobile networks. One of the most important issues
in heterogeneous cellular networks is to properly associate
mobile users with the serving base stations (BSs), referred
to as the user-BS association problem. In heterogeneous
cellular networks, the transmit power of small cell BSs are
significantly lower than that of macro BSs. Thus, mobile users
are more likely associated with the macro BS based on the
strength of their received pilot signal. As a result, small cell
BSs may be lightly loaded, and do not contribute much on
traffic offloading. To address this issue, many user-BS associ-
ation algorithms have been proposed [11]–[13]. Kim et al. [11]
proposed a framework for the user-BS association in cellular
networks to achieve flow level load balancing under spatially
heterogeneous traffic distribution. Jo et al. [12] proposed cell
biasing algorithms to balance traffic loads among macro BSs
and small cell BSs. The cell biasing algorithms perform user-
BS association according to the biased measured pilot signal
strength, and enable the traffic to be offloaded from macro
BSs to small cell BSs. Corroy et al. [13] proposed a dynamic
user-BS association algorithm to maximize the sum rate of
the network and adopted cell biasing to balance the traffic
load among BSs. Fooladivanda et al. [14] studied the joint
resource allocation and user-BS association in heterogeneous
mobile networks. They investigated the problem under differ-
ent channel allocation strategies, and the proposed solution
achieved global proportional fairness among the users. Madan
et al. [15] studied the user-BS association and interference
coordination in heterogeneous mobile networks, and proposed
heuristic algorithms to maximize the sum utility of average
rates.

The existing mobile traffic offloading scheme does not con-
sider the traffic offloading among different service providers.
In addition, the available user-BS association algorithms in
heterogeneous networks usually assume that the macro BS and
small cell BSs belong to the same service provider. Therefore,
the existing traffic offloading scheme and user-BS association
algorithms are not enabling the traffic offloading between the
mobile network operators and ISPs.

III. SYSTEM MODEL

Consider an area consisting of one PBS and several SBSs
from various ISPs as shown in Fig. 1. The PUs are randomly
distributed in the area. Denote U and S as the set of PUs
and SBSs, respectively. The PBS provides data service to the
PUs within its coverage area via licensed spectrum. SBSs are
randomly deployed in the area. We assume that SBSs are
able to dynamically access the licensed spectrum by utilizing
cognitive radio techniques.

A. Communications Model

In the EST scheme, the PBS aims to offload data traffic
to SBSs to reduce its energy consumption, and is willing to
grant a portion of the licensed spectrum to incentivize SBSs
to allow PUs to access their networks. Meanwhile, SBSs aim
to dynamically utilize the licensed spectrum to enhance QoS
of data services to their subscribers. Thus, SBSs are willing to
allow PUs to access their networks in exchange for the access
of the licensed spectrum.

We assume the total amount of licensed spectrum is W
which can be split into orthogonal channels, e.g., OFDMA,
with variable amount of bandwidth to avoid interference.
Each channel is allocated to an individual PU as needed. For
simplicity, we assume both PUs and SUs experience frequency
flat fading. Therefore, we focus on the amount of bandwidth
allocated to PUs and SBSs instead of specifying which part
of the spectrum to be allocated. Users’ locations are assumed
to be static during an EST procedure. We assume the channel
fading changes slowly and can be considered as a constant
within the duration. Therefore, the wireless channel is modeled
as a slow-fading channel which reflects the large-scale fading
between BSs and users.

At the beginning of an EST procedure, the kth SBS calcu-
lates its bandwidth requirements, denoted as φk,i, for serving
the ith PU. The calculation of φk,i consists of two steps.
First, the kth SBS calculates the required bandwidth, φPk,i,
to satisfy the ith PU’s minimum data rate, rmini . Assuming
the kth SBS’s transmit power-spectral density is ps, and the
channel fading between the kth SBS and the ith PU is hsk,i,
φPk,i can be derived by solving

rmini = φPk,i log (1 +
ps|hsk,i|2

N0
). (1)

Second, the kth SBS calculates the required bandwidth, φSk,i,
to compensate for its cost in serving the ith PU. The kth SBS’s
cost includes the SBS’s energy consumption and backhaul
usages for serving the ith PU. The cost may be different for
different ISPs. For example, in Fig. 1, the second ISP utilizes
green energy powered access point, which may reduce the
energy cost. Thus, as compared with other ISPs, the second
ISP may incur a smaller cost in serving one PU. However,
how to calculate φSk,i is beyond the scope of the paper. We
assume φSk,i is a constant. Then,

φk,i = φPk,i + φSk,i. (2)

The energy spectrum trading server collects φk,i, ∀k ∈
S, ∀i ∈ U , and optimizes the user-BS associations and
bandwidth allocations to minimize the energy consumption
of the PBS.
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B. Energy Consumption Model

The PBS’s power consumption consists of two parts: the
static power consumption and the dynamic power consump-
tion [16]. The static power consumption is the power con-
sumption of a BS without any traffic load. The dynamic
power consumption refers to the additional power consump-
tion caused by traffic load on the BS. We consider the PBS’s
static power consumption, pfix, as a constant, and focus
on reducing the dynamic power consumption of a PBS by
offloading its traffic to SBSs. The dynamic power consumption
of a macro BS depends on the traffic load on the BS and can be
expressed as a linear function of the BS’s transmit power [17].
Therefore, we model the PBS’s power consumption as

C =
∑
i∈U

αμipiwi + pfix (3)

Here, α is a coefficient which reflects the relationship between
the PBS’s dynamic energy consumption and the summation of
the PBS’s transmit power toward its associated PUs. The value
of α depends on the characteristic of the BS [17]. μi is an
indicator function. If PU is associated with the PBS, μi = 1;
otherwise, μi = 0. wi is the amount of bandwidth allocated
to the ith PU, and pi is the transmit power-spectral density in
wi.

IV. PROBLEM FORMULATION AND ANALYSIS

In the EST scheme, the PBS aims to minimize its power
consumption by offloading data traffic to SBSs. Therefore,
the power consumption minimization (PCM) problem can be
formulated as follows:

min
(μi,βk,i,wi,pi)

∑
i∈U

αμipiwi + pfix (4)

subject to :
∑
i∈U

(μiwi +
∑
k∈S

βk,iφk,i) =W,

ri ≥ rmini , ∀i ∈ U ,
μipi ≤ pmax, ∀i ∈ U
μi +

∑
k∈S

βk,i = 1, ∀i ∈ U . (5)

Here, βk,i is an indicator function. If the ith PU is associated
with the kth SBS, βk,i = 1; otherwise, βk,i = 0. pmax is the
PBS’s maximum transmit power-spectral density. If a PU is
offloaded to a SBS, the SBS should satisfy the PU’s minimum
data rates. Thus, ri = rmini when μi = 0. Therefore,

ri =

{
wi log (1 +

pi|hp
i |2

N0
), μi = 1;

rmini , μi = 0.
(6)

Here, hPi is the channel fading between the PBS and the
ith PU. The PCM problem consists of four constraints. The
first constraint is that the sum of the allocated bandwidth
should not be larger than the total amount of bandwidth. The
second constraint is that the PU’s minimum data rate should
be satisfied. The third constraint is that the PBS’s transmit
power should not be larger than its maximum transmit power.
The fourth constraint is that a PU can only access either the
PBS or one of the SBSs.

When μi = 1,

pi =
N0(2

ri
wi − 1)

|hPi |2
. (7)

Given the amount of bandwidth, wi, the derivative of pi with
respect to ri can be expressed as

∂pi
∂ri

=
N02

ri/wi ln 2

wi|hPi |2
> 0. (8)

Since ∂pi
∂ri

> 0, given the amount of bandwidth, the power
consumption increases as the data rate increases. Therefore, to
minimize the PBS’s energy consumption, PUs are served at the
minimum data rate. Thus, ri = rmini in the PCM problem. If
the ith PU is associated with the PBS, the minimum required
bandwidth, wmini , is derived by solving

rmini = wmini log (1 +
pmax|hPi |2

N0
). (9)

Therefore, we replace the second and third constraints with
the minimum bandwidth constraint. In addition, since a PU
can be associated with at most one SBS, we select the SBS
with the smallest φk,i, ∀i ∈ U . Here, k = argminj∈S φj,i.
Thus, the PCM problem can be rewritten as

min
(μi,βk,i,wi)

∑
i∈U

αμipiwi + pfix (10)

subject to :
∑
i∈U

(μiwi + βk,iφk,i) =W,

μiwi ≥ μiw
min
i , ∀i ∈ U

μi + βk,i = 1, ∀i ∈ U . (11)

Lemma 1. The optimal solution to the problem in Eq. 10 is
the optimal solution to the PCM problem in Eq. 4.

Proof: The problem in Eq. 10 has the same objective
function as that in Eq. 4. For the constraints, the data rate
constraint and the transmit power constraint in Eq. 4 can
be translated to the minimum bandwidth constraint in Eq.
10. Thus, proving Lemma 1 is equivalent to prove that
k = argminj∈S φj,i is a necessary condition of the optimal
solution to the problem in Eq. 4. This can be proved by
contradiction. Assume the optimal solution to the problem
in Eq. 4 offloads the ith PU to the k∗th SBS and k∗ �=
argminj∈S φj,i. Let k = argminj∈S φj,i. In this case, since
the kth SBS requires less bandwidth from the PBS, offloading
the ith PU to the kth SBS increases the available bandwidth
in the PBS. According to the Shannon−Hartley theorem, to
achieve a given data rate, increasing the bandwidth reduces the
requirement of the transmitting power. Thus, offloading the ith
PU to the kth SBS can further reduce the power consumption
of the PBS. Therefore, offloading the ith PU to the k∗th SBS
is not the optimal solution to the problem in Eq. 4.

Theorem 1. The PCM problem is an NP-hard problem.

Proof: We prove the theorem by transforming a simplified
PCM (SPCM) problem into a knapsack problem which is an
NP-hard problem [18]. We simplify the PCM problem by
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setting pi = pmax, ∀i ∈ U . Then, the SPCM problem can
be expressed as

min
(μi,βk,i)

∑
i∈U

αμip
maxwmini + pfix (12)

subject to :
∑
i∈U

(μiw
min
i + βk,iφk,i) =W,

μi + βk,i = 1, ∀i ∈ U . (13)

Denote ΔW = W − ∑
i∈U w

min
i as the maximum amount

of bandwidth that can be utilized by the PBS as the in-
centives to SBSs for traffic offloading. Define Δφk,i =
max {φk,i − wmini , 0} as the required incentives for the kth
SBS to offloading the ith PU. The PBS’s power savings by
offloading the ith PU equals to pmaxwmini . The SPCM can
be transformed to

max
βk,i

∑
i∈U

βk,ip
maxwmini (14)

subject to :
∑
i∈U

βk,iΔφk,i ≤ ΔW. (15)

The above formulation is actually a knapsack problem. There-
fore, the SPCM problem can be transformed into a knapsack
problem which is an NP-hard problem. Thus, the PCM prob-
lem is an NP-hard problem.

V. A HEURISTIC POWER CONSUMPTION MINIMIZATION

ALGORITHM

In this section, we propose a heuristic power consumption
minimization (HPCM) algorithm to approximate the optimal
solution of the PCM problem with low computational com-
plexity, and prove that the maximum power savings achieved
by the HPCM algorithm is at least 50% of that achieved by
the brute force search.

A. The HPCM Algorithm

For the PCM problem, if user-BS associations are deter-
mined, then μi and βk,i are known. The amount of available
bandwidth in the PBS can be derived as

WP =W −
∑
i∈U

∑
k∈S

βk,iφk,i. (16)

Define UP = {i|μi = 1, ∀i ∈ U} as the set of PUs associated
with the PBS. Then, the PCM problem becomes a bandwidth
allocation (BA) problem as follows:

min
wi

∑
i∈UP

αpiwi + pfix (17)

subject to :
∑
i∈UP

wi =WP

wi ≥ wmini , ∀i ∈ UP . (18)

Let f(w) =
∑
i∈UP αpiwi + pfix and w =

(w1, w2, · · · , w|UP |). When w > 0,

d2f(w)

dw2
i

=
αN0μi(r

min
i )2(ln 2)22r

min
i /wi

|hPi |2w3
i

> 0. (19)

Thus, f(w) is a convex function of w. Therefore, the objective
function of the BA problem is convex. The constraints of the

BA problem satisfy the Slater’s conditions, and therefore the
Karush-Kuhn-Tucher (KKT) conditions provide necessary and
sufficient conditions for the optimality of the BA problem [19].
Hence, we can derive optimal bandwidth allocations by solv-
ing the KKT conditions of the BA problem.

The PCM problem, thus, can be solved in two steps. In
the first step, the user-BS associations are determined. Then,
the PCM problem is reduced to the BA problem. In the
second step, the BA algorithm is solved by solving its KKT
conditions. Since the BA problem can be easily solved, the
major difficulty of solving the PCM problem is to optimize
the user-BS associations.

When
∑

i∈U φk,i ≤ W and k = argminj∈S φj,i, then
all the PUs are offloaded to the SBSs, where the ith PU
is offloaded to the kth SBS. In this case, the PBS does
not provide data service to any PU, and its dynamic power
consumption is zero.

When
∑
i∈U φk,i > W and k = argminj∈S φj,i, not all

PUs can be offloaded to SBSs, and the user-BS associations
are to be optimized to minimize the PBS’s power consumption.
In this case, the PUs can be classified into three categories
based on their minimum data rates, their channel conditions
and the amount of compensating bandwidth required by the
SBSs.

The first category of PUs pertains to the PUs which can
only be associated with the PBS. For example, if the ith
PU is out of the coverage area of all SBSs or φk,i >
W, k = argminj∈S φj,i, then the ith PU can only be
associated with the PBS. The second category of PUs involves
the PUs which have to be associated with SBSs in order to
achieve the optimal solution. For example, if φk,i < wmini

and k = argminj∈S φj,i, the ith PU is associated with
SBSs because by such association, the ith PU consumes less
amount of bandwidth and zero dynamic power from the PBS.
The third category of PUs refers to the PUs whose user-BS
associations are to be determined. These PUs, if associated
with the SBSs, consume zero dynamic power from the PBS.
However, the PSB has to allocate more bandwidth to SBSs
in order to incentivize them to provide data services to these
PUs. This results in a reduction of the amount of bandwidth
that can be allocated to the PUs which are associated with
the PBS, and thus the overall power consumption on the PBS
may increase. Therefore, determining user-BS associations for
the third category of PUs is the essential task of the HPCM
algorithm. Thus, we first present the user filtering algorithm
which classifies PUs into three user sets, UP , US , and UT ,
which are denoted as the first, the second, and the third
category of PUs, respectively. The pseudo code is shown in
Algorithm 1.

The user-BS associations of the PUs belonging to UP
and US are associated with the PBS and SBSs, respectively.
The HPCM algorithm is to determine the user-BS associ-
ations for the PUs in UT . When

∑
i∈U φk,i > W and

k = argminj∈S φj,i, the PBS is unable to offload all the PUs
to SBSs. Thus, the HPCM algorithm is to iteratively offload
the PU, which consumes the largest amount of dynamic power
from the PBS, to SBSs.

Assuming the PUs belonging to UT are associated with the
PBS, the amount of bandwidth, wti , allocated to the ith PU,
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Algorithm 1: The User Filtering Algorithm

1 for i=1 to |U| do
2 if φk,i ≤ wmini , k = argminj∈S φj,i then
3 Assign the ith PU in the user set US ;

4 else if φk,i > W, k = argminj∈S φj,i then
5 Assign the ith PU in the user set UP ;

6 else
7 Assign the ith PU in the user set UT ;

8 Return UP , US , and UT .

i ∈ UT , can be derived by solving the BA problem. If wti ≥
φk,i and k = argminj∈S φj,i, it indicates that associating
the ith PU with SBSs does not require more bandwidth than
associating the PU with the PBS. Meanwhile, associating the
ith PU with SBSs reduces the dynamic power consumption
of the PBS. Therefore, the ith PU is associated with SBSs. If
wti < φk,i and k = argminj∈S φj,i, by associating the ith PU
with SBSs, the PBS reduces its dynamic power consumption.
However, the PBS has to allocate an additional amount of
bandwidth to SBSs to incentivize them to provide data services
to the ith PU. This reduces the amount of available bandwidth
for the PUs which are associated with the PBS, and may result
in an increment of the PBS’s dynamic power consumption in
serving these PUs.

When wti < φk,i and k = argminj∈S φj,i, the PBS’s
dynamic power savings on offloading the ith PU to the kth
SBS depend on two factors. The first one is the PBS’s dynamic
power consumption in serving the ith PU. The second one is
the difference between wti and φk,i, k = argminj∈S φj,i. We
denote Δwti = φk,i − wti as the difference. A smaller Δwti
indicates that offloading traffic of the ith PU reduces a less
amount of bandwidth from the PBS’s total bandwidth, and
thus results in a less increment on the PBS’s dynamic power
consumption in serving the rest of PUs. The ratio between the
two factors is utilized by the HPCM algorithm to reflect the
amount of potential power savings that can be achieved by the
PBS in offloading the traffic of a PU to a SBS. The larger the
ratio, the more power savings may be achieved by the PBS. We
refer to this ratio as the power-bandwidth ratio (PBR). Denote
pti and wti as the PBS’s transmit power-spectrum density and
the corresponding bandwidth allocation toward the ith PU,
respectively. The PBR of the ith PU can be expressed as

ρi =
αptiw

t
i

�wti
(20)

The idea of the HPCM algorithm is to iteratively find a PU
with the largest PBR, and offload its traffic to SBSs if power
savings can be achieved by the PBS. The HPCM algorithm
terminates when the user set UT is empty.

At the beginning of each iteration, the HPCM algorithm
assumes all the PUs in UT are associated with the PBS,
and calculates the PBS’s total power consumption, C, its
transmit power-spectrum density toward the ith PU, pti, and
the corresponding bandwidth allocation, wti , ∀i ∈ UT . The
HPCM algorithm finds the largest ρi, i ∈ UT . Assuming
m = argmax ρi, i ∈ UT , the HPCM algorithm associates the

mth PU with the kth SBS. Here, k = argminj∈S φj,m. Then,
the HPCM algorithm calculates the total power consumption
of the PBS, which is denoted as Cm. If Cm < C, the HPCM
algorithm offloads the traffic of the mth PU to the kth SBS
and assigns C = Cm; otherwise, the mth PU is associated
with the PBS.

To ensure its performance, the HPCM algorithm, be-
fore the iteration begins, associates the mth PU, m =
argmaxi∈UT αptiw

t
i , with the kth SBS, k = argminj∈S φj,m.

Then, the HPCM algorithm calculates the total power con-
sumption of the PBS, Cmax. At the end, the algorithm
compares Cmax with C, and returns the user-BS associations
that achieve the minimum power consumption of the PBS.

The pseudo code of the HPCM algorithm, as described
above, is shown in Algorithm 2.

Algorithm 2: The HPCM Algorithm

1 Assign all PUs in U ;
2 Calculate φk,i and wmini , k = argminj∈S φj,m, ∀i ∈ U ;
3 if

∑
i∈U φk,i ≤W then

4 C = pfix, and all PUs are associated with SBSs;

5 else
6 (UP , US , UT ) = User Filter Alg. (φk,i, wmini );
7 Calculate WP and derive C, wti , and pti by solving

the BA problem with UP = UP ∪ UT ;
8 if φk,i ≤ wti , ∀i ∈ UP then
9 Assign the ith PU in US ;

10 Find m = argmaxi∈UT αptiw
t
i ;

11 Calculate Cmax by solving the BA problem with
UP = UP ∪ UT \ {m};

12 Assign UPmax = UP ∪ UT \ {m};
13 while UT is not empty do
14 Calculate C, wti , and pti by solving the BA

problem with UP = UP ∪ UT ;
15 Calculate ρi, ∀i ∈ UT ;
16 Find m = argmaxi∈UT ρi;
17 if

∑
i∈UP∪UT \{m} w

t
i +

∑
i∈US∪{m} φk,i ≤W

then
18 Calculate Cm by solving the BA problem

with UP = UP ∪ UT \ {m};
19 if Cm < C then
20 Offload the mth PU to US ;
21 Assign C = Cm;

22 else
23 Assign the mth PU into UP ;

24 else
25 Set primary user m in UP ;

26 Update UT = UT \ {m};

27 if Cmax < C then
28 Assign UP = UPmax, and US = U \ UP

29 Derive wi by solving the BA algorithm;
30 Return UP , US and wi, ∀i ∈ UP .
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B. Performance Analysis

Since the user-BS associations of PUs in both UP and
US are determined, the HPCM algorithm optimizes the user-
BS associations for the PUs in UT . If the brute-force search
is applied, the total number of possible combinations of
the user-BS associations for the PUs in UT is 2|U

T |. The
computation complexity of solving the KKT conditions of the
BA problem is O(|U|). Therefore, the computation complexity
of the brute-force search, in the worst case, is O(|U|2|UT |).
When |UT | is large, the brute-force search is very inefficient,
and is even impossible to solve the PCM problem within a
reasonable time. As compared with the brute-force search,
the HPCM algorithm incurs significantly less computational
complexity. The while loop at most requires |UT | iterations.
In the while loop, the finding the PU with the largest PBR
requires at most |UT | log |UT | iterations. The complexity of
solving the BA problem is O(|U|). Therefore, the worst
case computation complexity of the HPCM algorithm is
O(|UT |(|U| + |UT | log |UT |)).

Although with significantly less computation complexity,
the HPCM algorithm’s performance in terms of minimizing
the PBS’s power consumption is not compromised very much.
In fact, the PBS’s power savings achieved by the HPCM
algorithm is at least 50% of that achieved by the brute-force
search when the PBS experiences heavy traffic load from cell
edge users.

Lemma 2. If ρm > ρj , m, j ∈ UT , the mth PU’s user-
BS association does not depend on the jth PU’s user-BS
association.

Proof: The proof is presented in Appendix A.
Lemma (2) is important to guarantee the correctness of the

HPCM algorithm. According to the HPCM algorithm, when
ρm > ρj , the mth PU’s user-BS association is determined
prior to the jth PU’s. In this case, if the mth PU’s user-BS
association depends on the jth PU’s user-BS association, then
the HPCM algorithm cannot determine the mth PU’s user-BS
association before determining the jth PU’s, which contradicts
the procedure of the HPCM algorithm. However, Lemma (2)
proves that the mth PU’s user-BS association does not depend
on the jth PU’s, which ensures the correctness of the HPCM
algorithm.

Let m = argmaxj∈UT ρj . Denote ρi and ρmi as the ith
PU’s PBR before and after determining the mth PU’s serving
BS, repetitively.

Lemma 3. When the PBS experiences heavy traffic from both
cell edge users and inner cell users, if ρi ≥ ρk, ∀i, k ∈ UT \
{m}, ρmi ≥ ρmk .

Proof: The proof is presented in Appendix B.

Theorem 2. When
∑

i∈U φk,i ≤W and k = argminj∈S φj,i,
both the HPCM algorithm and the brute-force search achieve
the same solution.

Proof: If
∑
i∈U φm,i ≤ W and m = argminj∈S φj,i,

then all the PUs can be offloaded to SBSs, and the PBS’s
dynamic power consumption is zero. For this scenario, both
the HPCM algorithm and the brute-force search achieve the
same solution.

Define a relaxed PCM problem where the PUs can be
partially associated with SBSs as the RPCM problem. In this
case, if the mth PU is partially associated with the kth SBS,
and γm percent of the mth PU’s data service is provided by
the kth SBS, and the other portion of data service is provided
by the PBS, then the kth SBS’s bandwidth requirement to
partially serve the mth PU is defined as φpm,k = γmφm,k. We
assume (m − 1) PUs are fully offloaded to SBSs. The mth
PU is defined as the PU with the largest PBR after offloading
the (m− 1) PUs to the SBS. Denote EP as the PBS’s power
savings. We assume that the mth PU is partially offloaded
to the SBS. Define the PBS’s power savings achieved by
solving the PCM problem with the brute-force search as EB .
We assume the PBS experiences heavy traffic load from cell
edge users and the SBS’s compensating bandwidth is properly
selected. In this case, there always exists a PU which can be
offloaded to the SBS, thus resulting in the reduction of energy
consumption of the PBS.

Lemma 4. When
∑

i∈U φk,i > W and k = argminj∈S φj,i,
EP >= EB .

Proof: Since the RPCM problem is a relaxed version of
the PCM problem, every solution for the PCM problem is
feasible for the RPCM problem. Since we assume the PBS
experiences heavy traffic load from the cell edge users and
the SBS’s compensating bandwidth is properly selected, there
always exists a PU which can be offloaded to the SBS, thus
resulting in the reduction of energy consumption of the PBS.
In other worlds, we assume that given the maximum transmit
power constraint is satisfied, offloading traffic load to the
SBS can reduce the PBS’s power consumption. Therefore,
EP >= EB .

Theorem 3. When
∑

i∈U φk,i > W and k = argminj∈S φj,i,
the maximum power savings achieved by the HPCM algorithm
is at least 50% of that achieved by the brute-force search.

Proof: When
∑

i∈U φk,i > W and k = argminj∈S φj,i,
not all the PUs can be offloaded to SBSs. In this case, we
show that the maximum power savings achieved by the HPCM
algorithm is at least 50% of that achieved by the brute-force
search.

Denote EH , EM , and Emaxas the PBS’s power savings
by offloading the first (m − 1)th PUs, the mth PU and
the PU with the maximum power consumption, respectively.
Then, the power saving achieved by the HPCM algorithm is
max{EH , Emax}. Since EP is the power savings by partially
offloading the mth PU, EH + EM ≥ EP .

max{EH , Emax}
EB

≥ max{EH , EM}
EP

≥ max{EH , EM}
EH + EM

≥ 0.5. (21)

VI. SIMULATION RESULTS

Two simulation scenarios are set up to evaluate the perfor-
mance of the proposed EST scheme and the HPCM algorithm.
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(a) Topology 1 (b) Topology 2

Fig. 2. The simulation topology.

In the simulations, we adopt COST 231 Walfisch-Ikegami
[20] as the propagation model with 9 dB rayleigh fading
and 5 dB shadowing fading for both the PBS and SBSs.
The carrier frequency is 2110 MHz, the antenna feeder loss
is 3 dB, the transmitter gain is 1 dB, the noise density is
10−10 w/Hz, and the receiver sensitivity is -97 dB. The total
amount of licensed bandwidth is 20 MHz and the PBS’s
maximum transmit power is 20 w (43dBm)[17]. Thus, the
PBS’s maximum transmit power-spectral density is 1 μw/Hz.
Based on the measurement results in [17], we set α = 25 and
pfix = 700 w. SBSs are assumed to have the same energy
consumption model as that of the PBS. The SBSs’ static power
consumption is 14 w, and the SBSs’ coefficient between the
dynamic power consumption and their transmit power is 2.
We assume the SBS’s transmit power-spectral density is 20
μw/kHz [21].

The simulation typologies are shown in Fig. 2. A radio cell,
which is covered by the PBS, is divided into three sectors.
The radius of the radio cell is 1.5 km, and the PBS is located
at the center of the radio cell. The PU’s minimum data rate
is 500 kbps. In the simulations, the energy efficiency (EE)
is calculated by dividing PUs’ total data rate by the sum of
the PBS’s power consumption and the SBSs’ dynamic power
consumption in serving PUs; the spectrum efficiency (SE) is
calculated by dividing PUs’ total data rate by the sum of the
bandwidth allocated to PUs by both the PBS and SBSs.

A. Simulation Scenario One

In this simulation scenario, we consider a radio cell with one
PBS and one SBS in each sector, as shown in Fig. 2(a). The
SBSs have the same operation parameters such as the transmit
spectral-power density, the per-PU compensating bandwidth,
and the distance between the SBS and the PBS. We define the
cell edge users as the users whose distances from the PBS are
larger than 0.9 km.

Fig. 3 shows the EE and SE of the network versus the
percentage of the cell edge users. In this simulation, the total
number of mobile users in each sector follows the Poisson
distribution with the mean equaling to 20. As the percentage
of the cell edge users increases, the EE of the traditional
scheme decreases because serving cell edge users usually
requires more energy consumption. The EE of the EST scheme
increases because more users are offloaded to the SBS. For the
same reason, the SE of the EST scheme also increases.
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Fig. 3. The performance of the EST v.s. the percentage of the cell edge
users (topology 1).
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Fig. 4. The performance of the EST v.s. the distance between the PBS the
SBSs (topology 1).

Since the EST scheme aims to offload the cell edge users to
enhance the network efficiency, in the following simulations,
we assume that PUs are randomly distributed at the edge of
each sector. The number of mobile users in each sector follows
Poisson distribution with the mean equaling to 20.

Fig. 4 compares the EE and SE of the traditional scheme
and the EST scheme versus the distance between the PBS and
SBSs. Here, the traditional scheme refers to as the scheme in
which all PUs are served by the PBS. In this simulation, we
assume the distances between the PBS and three SBSs are the
same. For all the SBSs, the per-PU compensating bandwidth
is 100 kHz. As shown in Fig. 4, the EST scheme enhances the
EE and the SE by 43.60% and 38.79%, respectively. When the
distance between the PBS and SBS is 1.05 km or 1.125 km,
the EE and SE achieve the maximum values, respectively.
As shown in Fig. 5, as the distance between the PBS and
SBSs increases, the average distance between the mobile users
and the SBS decreases until reaching its minimum, and then
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Fig. 6. The performance of the EST v.s. the SBSs’ power-spectral density
(topology 1).

increases. When the average distance between the mobile users
and the SBS decreases, the SBSs may offload more PUs from
the PBS and may require less bandwidth for offloading the
same PU. Thus, both the EE and SE increase. After the EE
and SE reach their peaks, they decrease as the average distance
between the mobile users and the SBSs increases. The EE
decreases faster than the SE. As the average distance between
the mobile users and the SBS increases, for offloading the
same PU, the SBS requires more bandwidth. As a result, less
bandwidth is available in the PBS, which increases the PBS’s
power consumption.

Remark 1. This observation indicates that the location of
the SBS significantly impacts the performance of the mobile
network under the EST scheme in terms of the EE and SE.
For network planning, the locations of SBSs deployed by ISPs
may not be optimized for the purpose of enhancing the EE
and SE of mobile networks. However, if the EST scheme is
considered, in order to maximize their profits from utilizing
the licensed bandwidth, the ISPs are desired to maximize
their traffic loading by optimizing the locations of the SBSs.
Furthermore, if the EST scheme is considered, the mobile
network operators and ISPs can jointly optimize their network
planning to maximize their profits.

Fig. 6 shows the EE and the SE of the network versus the
SBS’s transmit power-spectral density. In this simulation, the
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Fig. 7. The performance of the EST v.s. the SBSs’ compensating bandwidth
(topology 1).

distance between the PBS and SBSs is 1.125 km, and the
SBS’s per-PU compensating bandwidth is 100 kHz. When
the SBS’s transmit power-spectral density increases, more PUs
fall into the coverage area of SBSs and the SBSs’ bandwidth
requirements in serving the PUs are reduced. As a result,
more PUs are offloaded to SBSs. Therefore, both the EE and
the SE improves as the SBSs’ transmit power-spectral density
increases.

Fig. 7 shows the performance of the EST versus the SBSs’
compensating bandwidth. In this simulation, the distance be-
tween the PBS and SBSs is 1.125 km, and the SBS’s transmit
power-spectral density is 20 μw/kHz. As the SBS’s per-PU
compensating bandwidth increases, the EE of the network
decreases because less PUs are offloaded to SBSs. When
the SBS’s per-PU compensating bandwidth increases, the SE
increases, peaks when the per-PU compensating bandwidth
equals to 280 kHz, and then decreases. This is because when
the SBS’s per-PU compensating bandwidth increases, although
the number of offloaded PUs decreases, the total amount of the
bandwidth obtained by SBSs increases due to the larger per-
PU compensating bandwidth. Thus, the SE shows the concav-
ity. This observation indicates that the per-PU compensating
bandwidth should be properly selected to optimize the trade-
off between the EE and the SE of the network. In addition,
when the SBSs’ compensating bandwidth equals to 360 kHz,
the EE of the network under the EST is only slightly larger
than that under the traditional scheme while the SE of the
network under the EST is significantly larger than that under
the traditional scheme. The improvement of the SE indicates
that some PUs are still offloaded to the SBSs even when
the compensating bandwidth is as large as 360 kHz. The
traditional scheme and the EST show the similar EE because
a large compensating bandwidth leads to a reduced available
bandwidth in the PBS. As a result, the PBS has to increase its
transmit power density to satisfy users’ data rate requirement.
Therefore, the PBS’s power consumption increases and the EE
of the network under the EST decreases. As the compensating
bandwidth increases, the EE of the network under the EST
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Fig. 8. The performance of the EST v.s. the SBSs’ compensating bandwidth
(topology 2).

keeps decreasing until converging to the EE of the traditional
scheme. When the traditional scheme and the EST have the
same EE, the performance of the SE reflects whether PUs are
offloaded to the SBS.

B. Simulation Scenario Two

As shown in Fig. 2(b), we consider only one sector of
the radio cell in this simulation scenario. PUs are randomly
distributed at the edge of each sector. The distances between
the PUs and the PBS are larger than 0.9 km. The number of
mobile users in the sector follows Poisson distribution with the
mean equaling to 40. Two SBSs are deployed in the sector.
The distance between the PBS and the SBSs is 1.125 km,
and the distance between the two SBSs is also 1.125 km. Both
the SBSs’ transmit power-spectral density is 20 μw/kHz. The
per-PU compensating bandwidth of one of the SBSs, SBS 1, is
set to 100 kHz. We vary the per-PU compensating bandwidth
of the other SBS to show the interactions among PBS and the
SBSs.

Fig. 8 show the network’s EE and SE when SBS 2 varies
its per-PU compensating bandwidth. When SBS 2 increases
its per-PU compensating bandwidth, the EE of the network
decreases because less PUs are being offloaded to SBSs.
Meanwhile, the SE of the network shows the concavity for
the same reason shown in Fig. 7.

Fig. 9 shows the interaction between two SBSs. As SBS 2’s
per-PU compensating bandwidth increases, its dynamic power
cost decreases because less PUs are offloaded to it. At the
same time, SBS 1’s power cost increases because more PUs
are associated with SBS 1. This indicates that as the SBS
2’s per-PU compensating bandwidth increases, the PUs, who
are originally offloaded to SBS 2, are associated with SBS
1. On the other hand, as the SBS 2’s per-PU compensating
bandwidth increases, the amount of bandwidth obtained by
SBS 1 increases because it serves more PUs. Meanwhile, the
amount of bandwidth obtained by SBS 2 shows the concavity
for the same reason as explained before. We can observe from
the simulation result that given SBS 1’s strategies in terms of
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Fig. 9. The SBSs’ power cost and obtained bandwidth v.s. the SBSs’
compensating bandwidth (topology 2).

transmit power-spectral density and the per-PU compensating
bandwidth, the profits of SBS 2 in terms of the amount of
obtained bandwidth and the power cost can be maximized by
selecting an optimal per-PU compensating bandwidth.

VII. CONCLUSION

In this paper, we have proposed a novel energy spectrum
trading (EST) scheme which enables the mobile traffic of-
floading between the mobile networks and the ISPs’ networks
by leveraging cognitive radio techniques. We have shown that
achieving optimal mobile traffic offloading is NP-hard. We
have proposed a heuristic power consumption minimization
(HPCM) algorithm to approximate the optimal solution with
low computation complexity. The HPCM algorithm enables
the mobile traffic offloading, and significantly enhances the
energy and spectral efficiency of mobile networks.

APPENDIX A
PROOF OF LEMMA 2

Based on the HPCM algorithm, when ρm > ρj , m, j ∈ UT ,
the mth PU’s user-BS association is determined prior to the
jth PU’s. On the one hand, if the mth PU is associated with a
SBS by the HPCM algorithm, the jth PU’s user-BS association
does not change the mth PU’s user-BS association. On the
other hand, if the mth PU is not associated with a SBS by the
HPCM algorithm, it is because either 1)

∑
i∈UP∪UT \{m}w

t
i+∑

i∈US∪{m} φk,i > W , k = argminj∈S φj,i, or 2) offloading
the mth PU increases the PBS’s dynamic power consumption.

For the first case, if the jth PU is associated with the
kth SBS, because φk,j − wtj > 0,

∑
i∈UP∪UT \{m, j} w

t
i +∑

i∈US∪{m} φk,i + φk,j − wtj > W . Therefore, the mth PU
still cannot be associated with a SBS.

For the second case, the jth PU’s user-BS association does
not change the fact that the PBS’ power savings in offloading
the mth PU to the SBS is negative. Given user-BS associ-
ations, in order to minimize the PBS’s power consumption,
the bandwidth allocations are optimized by solving the BA
problem. Therefore, any bandwidth allocation solution which
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is different from the solution obtained by solving the BA
problem will not reduce the PBS’s power consumption. Based
on this observation, we can prove that even if the jth PU is
associated with a SBS, the PBS’s power savings in offloading
the mth PU to the SBS is still negative.

Assume both the mth PU and the jth PU are associated with
the PBS. Let W 0 = W −∑

i∈US φk,i, k = argminj∈S φj,i.
Denote w0

i and p0i as the bandwidth allocation and the PBS’s
transmit power density for the ith PU, i ∈ UP∪UT , derived by
solving the BA problem with WP =W 0 and UP = UP ∪UT .
Define C0

m =
∑

i∈UP∪UT αw0
i p

0
i + pfix;

When the mth PU is associated with the kth SBS and
the jth PU is associated with the PBS, the total amount of
bandwidth available for the PUs in UP ∪UT \{m} is reduced
by Δw0

m = φk,m − w0
m. The bandwidth reduction results

in an increase of the PBS’s dynamic power consumption in
serving its associated PUs. Denote w1

i and p1i as the bandwidth
allocation and the PBS’s transmit power density for the ith
PU, i ∈ UP ∪ UT \ {m}, derived by solving the BA problem
with WP = W 0 − Δw0

m and UP = UP ∪ UT \ {m}.
Define C1

m =
∑
i∈UP∪UT αw1

i p
1
i + pfix; since both w1

i and
p1i are derived by solving the BA problem, C1

m is minimized.
Denote ΔC = C1

m−C0
m as the increased power consumption

owing to offloading the mth PU to the SBS. In the process
of the minimization, if the bandwidth allocation and the
transmit power density toward the jth PU do not change, the
power consumption increases do not come from the jth PU.
Therefore, whether the jth PU is offloaded to the SBS does
not change the mth PU’s user-BS association. On the other
hand, if the jth PU’s power consumption increases owing to
the bandwidth reduction, the bandwidth reduction is derived
by solving the BA problem to minimize the overall energy
consumption. In other words, in this case, if we keep the
jth PU’s power consumption unchanged during the process
of solving the BA algorithm, the PBS’s power consumption
will be larger than C1

m. As a result, even if the jth PU is
offloaded to the SBS, the mth PU still cannot be offloaded to
SBSs.

APPENDIX B
PROOF OF LEMMA 3

Proving Lemma 3 is to prove the order of PBRs of users in
UT do not change during the iterations. φk,i is determined
by the channel condition between the ith PU and the kth
SBS, the ith PU’s data rate requirement, and the kth SBS’s
compensating bandwidth. These parameters do not change
during the iterations. Thus, ρi is determined by pti and wti ,
which are derived by solving the BA problem. The BA
problem is solved by solving its KKT conditions. Then, wti
can be derived by solving the following equation array.

⎧⎪⎪⎨
⎪⎪⎩
α(2ri/w

∗
i − 1− ri

w∗
i

2ri/w
∗
i ln2)

N0

|hPi |2
= ν∗∑

i∈UP

w∗
i =WP .

(22)

Here, w∗
i and ν∗ are the primal and dual optimal points

for the BA problem, respectively. Although there is no close
form solution for the above equation array, we can derive the

structure of the optimal solutions based on which we prove
the lemma. Let

ψ(wi) = α(2ri/wi − 1− ri
wi

2ri/wi ln2)
N0

|hPi |2
. (23)

Since wi ≥ wmini and dψ(w)
dw > 0, ψ(wmini ) = minwi ψ(wi).

Based on the first equation in the equation array, w∗
i can be

expressed as a function of ν∗.

w∗
i =

{
ϕ(ri, |hPi |2, ν∗), ν∗ > ψ(wmini )

wmini , ν∗ ≤ ψ(wmini ).
(24)

Here, ϕ(ri, |hPi |2, ν∗) is derived based on the first equation

in equation array (22). Since ri = wmini log(1 +
pmax|hP

i |2
N0

),
ψ(wmini ) can be expressed as

ψ(wmini ) = α(pmax−log(1+p
max|hPi |2

N0
)(

N0

|hPi |2
+pmax)ln2)

(25)
ψ(wmini ) can be considered as a function of |hPi |2. When

pmax|hPi |2 	 N0, dψ(wmin
i )

d|hP
i |2 < 0. Therefore, a small |hPi |2

leads to a large ψ(wmini ). When the PBS experiences heavy
traffic from both cell edge users and inner cell users, the
optimal bandwidth allocations toward cell edge users equal
to their minimum required bandwidths. When the proposed
scheme is applied to offload cell edge users, it is reasonable to
assume that the users in UT are the cell edge users. For these
users, their optimal bandwidth allocations derived by solving
the BA problem are their minimum required bandwidths which
do not change during each iteration. Hence, the order of PBR
of users in UT does not change during the iterations.
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