Latency Aware Workload Offloading in the Cloudlet Network

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

Citation:

X. Sun and N. Ansari, “Latency Aware Workload Offloading in the Cloudlet
Network,” in IEEE Communications Letters, vol. 21, no. 7, pp. 1481-1484, July
2017, DOI: 10.1109/LCOMM.2017.2690678

URL:
https://ieeexplore.ieee.org/document/7892948/

Latency Aware Workload Offloading in the Cloudlet
Network

Xiang Sun, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—We propose a novel network architecture by leverag-
ing the cloudlet concept, the Software Defined Networking (SDN)
technology, and the cellular network infrastructure to bring the
computing resource to the mobile edge. In order to minimize the
average response time for Mobile Users (MUs) in offloading their
application workloads to the geographically distributed cloudlets,
we propose the Latency awarE workloAd offloaDing (LEAD)
strategy to allocate MUs’ application workloads into suitable
cloudlets. Simulation results demonstrate that LEAD incurs the
lowest average response time as compared to two other existing
strategies.

Index Terms—Cloudlet network, application workload offload-
ing, delay, software defined networking

I. INTRODUCTION

OBILE cloud computing is a promising paradigm to

meet the growing demand for computing intensive
applications and services from Mobile Users (MUs). However,
offloading the Mobile Cloud Computing (MCC) applications’
workloads from MUs to the remote cloud may significantly
degrade the Quality-of-Experience in terms of the response
time of MCC applications because the network delay between
MUs and the remote cloud may be too long to satisfy the
stringent requirement of MCC applications. In order to reduce
the application’s response time, a new framework, referred
to as the cloudlet network, has been proposed to bring the
computing resources from the remote cloud to the mobile
edge [1], [2]. As shown in Fig. 1, each Base Station (BS)
is connected to a cloudlet, which consists of a number
of interconnected physical machines. Each cloudlet provides
powerful computing resources to its local MUs. The placement
of cloudlets is flexible, i.e., a cloudlet can directly connect to a
BS via high speed fibers, or to an edge switch so that multiple
BSs can share the computing resources in the same cloudlet.
The Software Defined Networking (SDN) based cellular core
is introduced to establish an efficient routing path between two
BSs. The proposed architecture facilitates the MCC application
workload offloading process by enabling MUs to access the
computing resources with the low network delay.

One of the main objectives of the cloudlet network is
to improve the application response time in terms of the
delay for offloading the MCC application workloads to the
computing resources. The response time includes the network
delay by uploading the application workloads from an MU
to a cloudlet and downloading the results from the cloudlet
to the MU, the queueing delay, and processing delay for

X. Sun and N. Ansari are with Advanced Networking Lab., Department
of Electrical & Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA. E-mail:{xs47, nirwan.ansari } @njit.edu.

Mobile User) Access Switch

7
B Cloudiet é Base station
& Openflow Switch

SDN based

«— Wired data link
-~ Wireless data link
Wired control link

Fig. 1.

The cloudlet network architecture.

executing the application workloads in the cloudlet. Note that
the cloudlet delay reflects the queueing delay and processing
delay in the rest of the paper. MUs can associate with the
nearby cloudlet to offload their application workloads in order
to minimize the network delay; however, MUs are roaming
among different BSs’ coverage areas, and so it is beneficial to
adjust different cloudlets to serve MUs in order to reduce the
network delay. On the other hand, the computing resource of
each cloudlet is limited, and thus the cloudlet may not have
enough resources to handle the application workloads from its
local MUs; this can significantly increase the cloudlet delay for
the cloudlet to handle application requests, and thus increase
the application response time. Therefore, it is necessary to
re-assign the application workloads to another cloudlet if the
original cloudlet is overloaded.

Current research focuses on how to offload the application
workloads from MUs to cloudlets. Some try to design an
offloading decision mechanism to determine whether to locally
execute the application or offload the application workloads of
an MU to a nearby cloudlet or the remote cloud in order to
minimize the energy consumption of the MU and/or minimize
the latency [3], [4]. Sun and Ansari [5] proposed the comput-
ing resources assignment algorithm in the cloudlet network
to minimize the network delay, but they did not consider the
cloudlet delay. Jia et al. [6] designed an application workload
assignment algorithm to balance the workloads among geo-
distributed cloudlets, but they did not consider the network
delay. Elgazzar et al. [7] proposed the Follow-Me-Provider
selection scheme to choose a suitable resource provider (i.e.,
a local mobile device, a nearby mobile cloud, a cloudlet, or
the remote cloud) for executing an application task based on
the context information (such as computational capacity of
the resource provider, the available bandwidth for the com-
munications, etc.); however, they did not consider the network
delay either. To our best knowledge, how to optimally select a
cloudlet in the cloudlet network to handle an MU’s application

workloads in order to minimize the average response time (i.e.,
by both considering the network delay and the cloudlet delay)
for all MUs remains a challenging problem.

In this letter, we introduce a Latency awarE workloAd
offloaDing (LEAD) strategy in the context of the proposed
cloudlet network architecture to minimize the average appli-
cation response time among MUs. The main contributions are
listed as follows: 1. We propose a novel cloudlet network
architecture to enable MUs to offload their application work-
loads to nearby cloudlets. 2. We formulate the problem of
minimizing the average response time by offloading MUs’
application workloads to suitable cloudlets and prove the
problem to be NP-hard. 3. We design the novel LEAD strategy
to solve the problem and demonstrate the performance of
LEAD via simulations.

II. AVERAGE RESPONSE TIME

In order to estimate the average response time for each MU,
we will analyze the average network delay and the average
cloudlet delay in this section.

A. Average network delay

The network delay of offloading an MU’s application re-
quest to a cloudlet, denoted as 77!, comprises: 1) Th&"s o
the transmission delay for uploading the application request
from the MU to its associated BS, 2) Th% ., . uae:: the
network delay for transmitting the request from the MU’s
BS to the MU’s cloudlet (which is assigned to serve the
MU)!, 3) Tnet . . 5 the network delay for transmitting
the results from the MU’s cloudlet to the MU’s BS, and 4)
TH&"™ i the transmission delay for downloading the results
from the MU’s BS to the MU. Thus, T"¢ = TH0" oo +
Tg‘;gZSJVIU =+ 7Wéqgjgclouallet’ where nggcloudlet is the Round
Trip Time (RTT) between the BS and the cloudlet, i.e.,
ngg;cloudlet = Tg?ﬁcloudlet + 175 loudlet—>BS Note that no
matter which cloudlet serves the MU, it will not affect the
values of 374" po + THE" si;- Thus, we will not consider
the transmission delay between the MU and its associated BS
in the rest of the paper, i.c., T7¢ = nggcloudlet

Denote Z, J, and KC as the set of MUs, BSs, and cloudlets,
respectively. Denote z;;, as a binary variable to indicate
whether the application workloads generated by MU i are
handled by cloudlet k& (z;; = 1) or not (z;; = 0). Denote
t;r as the RTT between BS j and cloudlet k. Note that the
value of ¢, (j # k) can be measured and recorded by the SDN
controller periodically [8]. Denote y;; as a binary indicator to
imply MU : being in BS j’s coverage area (y;; = 1) or not
(yi; = 0). Then, the average network delay of MU i is

Z Z YistikTik- (1

JET keEK

net __
T, =

B. Average cloudlet delay

As the MU’s application requests arrive in the MU’s
cloudlet, the cloudlet would assign the amount of computing

'We assume that each MU will be allocated the amount of resources in
only one cloudlet in a time slot. Allocating the resources in different cloudlets
during the same time slot will introduce extra overheads for the MU.

resources to process the MU’s application requests. Thus, we
model the processing of application requests from MUs by
each cloudlet as a queueing model and assume the application
request generations for MU 4 (where ¢ € Z) follow a Poisson
distribution with the average application generation rate equal
to \; [9]. Therefore, the application request arrivals to cloudlet
k (where k € K), which is the sum of the application
request generations of the MUs associated with cloudlet £,
also follows a Poisson distribution with the average application
arrival rate equal to Y \;x;z. Meanwhile, we assume the

service time of clouéleef k (where k € K) for executing
application requests from MUs is exponentially distributed
with the average service time equal to 1/uy, where uy is the
average service rate of cloudlet k. Note that we consider a
cloudlet as one entity to handle the application requests from
MUs. Although a cloudlet may comprise a number of inter-
connected Physical Machines (PMs) to process the incoming
application requests, we are focusing on the coarse-grained
workload offloading scheme in this letter, i.e., we try to allo-
cate the workloads among cloudlets. By considering a cloudlet
as an entity, it is therefore appropriate to model the processing
of application requests from MUs by a cloudlet as an M/M/1-
PS queueing model. Consequently, we can derive the average
cloudlet delay of MU ¢ by offloading its application requests
to cloudlet k as

1
T('loudlet —) (2)

ug = Y NiTig
ieT
Thus, the average cloudlet delay of MU i is
_ Tploudlet i = L 3
Z ik Lik Zuk_z)\lek ()

kel kel icT

cloudlet
Ti

Based on Eq. 1 and Eq. 3, the average response time of MU
1, denoted as 7;, is

Z Zyzj]k)+

ke \jeET

Z N Tk 4)

i€l

III. PROBLEM FORMULATION

The main purpose of the cloudlet network is to minimize
the average response time for all the MUs in the network.
Thus, we formulate the problem, i.e., minimizing the average
response time by offloading MUs’ application requests to
suitable cloudlets, as follows:

PO : argmln |ZZ Zy”]k+ Z e Tik
i€ keK \jeJ = ik
(%)
st Yk ek, w,—Y N >0, 6)
i€T
VieT, Z Tip = 1, (7)
kex
Vi€ I,k €K, x4 € {0,1}, (8)

where the objective is to minimize the average response time
among MU in the network. Constraint (6) is to guarantee the

average service rate to be less than the average arrival rate for
each cloudlet in order to make the system stable. Constraint
(7) is to ensure that every MU is only served by one cloudlet.

Theorem 1. The problem of minimizing the average response
time by offloading MUs’ application requests to suitable
cloudlets (i.e., PO) is NP-hard.

Proof: In order to prove that PO is an NP-hard prob-
lem, we can demonstrate that its decision problem is NP-
complete. The decision problem of PO can be described as
follows: given a positive value b, is it possible to find a
feasible solution X = {z;|Vi € Z,Vk € K} such that

ﬁZZ Zyljﬂf_'_

€T kek \ jeT Ejk”“
straint (6), (7), and (8) are satlsﬁed as well?

In order to demonstrate the decision problem of PO
is NP-complete, only two cloudlets are considered in the
network and the average service rate of the two cloudlets
are the same, i.e, u; = us %Z \; + €, where ¢

=
is a very small value (i.e., ¢ < %/\min, where \™i =
min {\;|¢ € Z}). Meanwhile, assume that b — +oo, ie.,

DD

1€EL kel

r;r. < b and Con-

ot 1) i
jgy y”tjk—kurz pwell T2 < b is always
i€
satisfied for any solution of X. Then, the decision problem can
be transformed into a partition problem. That is whether all
the MUs can be partitioned into two sets such that the average
application request arrival rates of the two sets are the same,

ie., Z ATl = Z P — % Z ;. Therefore, the partition

€L €L i€L
problem is reducible to the decision problem of P0. Note that
the partition problem is a well-known NP-complete problem.
Consequently, the decision problem of PO is NP-complete,
and so PO is NP-hard.]

IV. LATENCY AWARE WORKLOAD OFFLOADING (LEAD)

We design the LEAD algorithm to efficiently solve the
problem, i.e., PO. The basic idea of LEAD is to iteratively
select a suitable MU ¢* (¢* € Z), which generates the
maximum workloads among other MUs that are currently not
allocated to any cloudlet, i.e.,

ka—OZEI} ©)

= argmam {
kel

Then, we assign the optimal cloudlet £* to serve MU * (i.e.,
ZT;+p+ = 1), which is determined by

Up > Z)\ Tik

i€l

k* =argmin Zy” jk—i—
ke jeda

Z)\xlk

i€l
(10)

That is, the optimal cloudlet corresponds to the one that cur-
rently incurs the minimum average response time for serving
MU :* among all the available cloudlets.

LEAD is summarized in Algorithm 1. Specifically, we first
initialize the workload offloading assignment matrix X (i.e.,
Stepl) to be a zero matrix and sort all the MUs in descending

order based on their workloads in terms of their average
application request generation rates (i.e., Step2). Second, we
sequentially select an MU from the sorted MU set and assign
the optimal cloudlet to serve the MU based on Eq. 10 (i.e.,
Step3—-Step8). The algorithm terminates when all the MUs are
served by corresponding cloudlets. The complexity of LEAD
is O (|Z|log|K|), where |Z]| is the total number of iterations
incurred in Algorithm 1 and log |/C| is the complexity for find-
ing the optimal cloudlet (which incurs the minimum response
time) in each iteration.

Algorithm 1 The LEAD algorithm

Input: 1) The location matrix Y = {y;li€Z,j € .7}
2) The average RTT time matrix 7T =
{tjx|lj € T,k € K}. 3) The vector of the average

application request generation rate A = {\;|i € T}.
4) The vector of the average service rate,
U = {uilk € K}.

Output: The workload offloading assignment matrix for all
the UEs X = {x;|i € T,k € K}.

1: Initialize X = 0.
2: Sort all the MUs in descending order based on their
average application request generation rates.
=1
while i* < |Z| do
Find the optimal cloudlet for MU ¢* based on Eq. 10;
Set g = 1;
=9+ 1
end while
return X.

R e A A

V. SIMULATION RESULTS

We will evaluate the performance of LEAD by comparing it
with two other application workload assignment strategies, i.e.,
the Location awarE workloAd offloadiNg (LEAN) strategy and
the remote data center offloading (remoteDC) strategy. The
basic idea of LEAN is to offload an MU’s requests to the
available cloudlet, which is the closest to the MU (i.e., the
RTT is the minimum between the MU and the cloudlet). In
other words, LEAN only considers the network delay without
taking the processing delay into account. On the other hand,
remoteDC is to offload all the MUs’ requests to the remote
data center, which is considered to have sufficient resources.
In other words, remoteDC only considers the processing delay
without focusing on the network delay.

We apply the MU movement trace provided by the Every-

. Ware Lab. The trace provides the MUs’ movement in the road

network of Milan. The whole road network size is 17x28.64
km. There are a total of 100,000 MUs in the area and the
location of each MU is monitored for every 20 seconds.
Parameters of the MU movement trace are detailed in [10].
We assume the whole area is fully covered by BSs and the
coverage size of each BS is 1 km?; meanwhile, each user
will associate with its closest BS for communications and
each BS is connected with a dedicated cloudlet for application

1204

Il Average RTT I 1000 : LEAD‘
BB Average Cloudlet Delay
99.55447 LEAN

—v— RemoteDC

=
3

6009 | | |

800

——LEAD
LEAN
—— RemoteDC

=
3

84.99064

%
3
I

IS
3
3

600

N
3
I

400

300

IS
8
]

Average Response Time (ms)

25.19915 200

©
S
S

Average Response Time (ms)

Average Response Time (ms)

w2
S
!

6.02

lo—4
1>
o

24, + +
7

T
1.74 1.76

RemoteDC

Fig. 2. t
duing the monitoring period (A
1000, « = 5, 8 = 22.3).

The average response time among MUs
1.76,u

workload offloading. In addition, we assume that there is a data
center deployed in the northeast point of the area. By applying
the mentioned MU movement trace, the value of the location
matrix for all the MUs, i.e., Y, is obtained.

Each MU’s application request generations follow a Poisson
distribution, and thus we randomly select the average appli-
cation request generation rate of each MU between 0 and A
in each time slot. Meanwhile, we randomly select the average
service rate of each cloudlet between 0 and %. Moreover, we
assume the RTT between two different nodes (i.e., a BS and a
cloudlet) is a linear function of the distance between the two
nodes, i.e., t;, = a x d 4 B, where d is the distance between
BS j and cloudlet k, and « and [are the coefficients.

The length of each time slot is 5 minutes and we monitor
the response time of the offloading process for each MU for
two hours. Fig. 2 shows the average response time for all the
MUs during the period. Obviously, LEAD produces the lowest
average response time than the others. Specifically, LEAN and
LEAD generates the similar average RTT, but LEAN always
assign MUs’ application workloads to their closest available
cloudlets, which may be heavily loaded. Thus, LEAN incurs
higher average processing delay than LEAD. On the other
hand, remoteDC has sufficient computing resources, and so the
average cloudlet delay is negligible; however, remoteDC incurs
higher average RTT, which results in its average response time
much worse than LEAD.

We further analyze how the application workloads of MUs
affect the performance of the three strategies. Note that the
value of \ reflects the application workloads of MU, i.e.,
increasing the value of \ increases the application workloads
from all the MUs. As shown in Fig. 3, when \ becomes larger,
the average response time of LEAN increases exponentially
while the performances of LEAD and remoteDC are not
affected by . This is because LEAD can offload the MU’s
workloads to the lightly loaded cloudlet to minimize the total
delay. The data center is considered to have sufficient resources
to handle the workloads from MUs, and so increasing the ap-
plication workloads cannot significantly increase the response
time of remoteDC, which is mainly determined by the RTT
between MUs and the data center.

In addition, we analyze how the network traffic load affects
the performance of the three strategies. Note that if the

Fig. 3. The average response time delay with respect
to the value of A (u = 1000, = 5,3 = 22.3).

T
1.78 1.80
A (requests/s)

1.82 1.84

o (ms/km)

Fig. 4. The average response time with respect
to the value of @ (A = 1.82,u = 1000,8 =
22.3).

network traffic load is increasing, the average RTT between
two different nodes becomes longer. We use the value of « to
indicate the network traffic load, i.e., larger value of o means
one unit of distance is mapped into longer RRT. As shown
in Fig. 4, when the value of a becomes larger, the average
delay of remoteDC increases linearly. Yet, those of LEAD
and LEAN do not significantly change. This is because as the
network traffic load is increasing, LEAD and LEAN select the
closest available cloudlet to process the MU’s workloads.

VI. CONCLUSION

In this paper, we have proposed the cloudlet network to
bring the computing resource to the mobile edge. We have
also designed the LEAD strategy in the context of the cloudlet
network to allocate MUs’ application workloads into suitable
cloudlets such that the average response time of the application
workload offloading process among MUs is minimized.

REFERENCES

] X. Sun and N. Ansari, “EdgeloT: Mobile Edge Computing for the
Internet of Things,” IEEE Comm. Mag., vol. 54, no. 12, pp. 22-29,
Dec. 2016.

X. Sun, N. Ansari, and Q. Fan, “Green Energy Aware Avatar Migration
Strategy in Green Cloudlet Networks,” in I[EEE 7th Intl. Conf. on Cloud
Comp. Technology & Science, Vancouver, BC, 2015, pp. 139-146.

Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive Multi-Resource Allocation
for Cloudlet-Based Mobile Cloud Computing System,” IEEE Trans. on
Mobile Computing, vol. 15, no. 10, pp. 2398-2410, 2016.

A. Mukherjee, D. De, and D.G. Roy, “A Power and Latency Aware
Cloudlet Selection Strategy for Multi-Cloudlet Environment,” in IEEE
Trans. on Cloud Comp., doi: 10.1109/TCC.2016.2586061, early access.
X. Sun and N. Ansari,“"PRIMAL: PRoflt Maximization Avatar pLace-
ment for Mobile Edge Computing,” in Proc. 2016 IEEE Intl. Conf.
Comm., Kuala Lumpur, Malaysia, May 23-27, 2016, pp. 1-6.

M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in 35th Annual IEEE Intl. Conf.
on Comp. Comm., San Francisco, CA, 2016, pp. 1-9.

K. Elgazzar, P. Martin, and H. S. Hassanein, “Cloud-Assisted Compu-
tation Offloading to Support Mobile Services,” IEEE Trans. on Cloud
Computing, vol. 4, no. 3, pp. 279-292, July—Sept. 1 2016.

C. Yu, et al., “Software-Defined Latency Monitoring in Data Center
Networks,” in Intl Conf. on Passive and Active Measurement, New York
City, NY, Mar. 19-20, 2015. pp. 360-372.

T.G. Rodrigues, et al., “Hybrid Method for Minimizing Service Delay in
Edge Cloud Computing through VM Migration and Transmission Power
Control,” IEEE Trans. on Computers, doi: 10.1109/TC.2016.2620469,
early access.

User Movement Simulations Project.
http://everywarelab.di.unimi.it/Ibs-datasim.

—

[

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10] Available. [Online]:

	Post-cover
	FINAL VERSION (no_logo)

