
Dynamic Resource Caching in the IoT Application Layer for Smart
Cities

__

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

Citation:
X. Sun and N. Ansari, “Dynamic Resource Caching in the IoT Application Layer for
Smart Cities,” in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 606-613, April
2018, DOI: 10.1109/JIOT.2017.2764418

URL:
https://ieeexplore.ieee.org/document/8070939/

1

Dynamic Resource Caching in the IoT Application
Layer for Smart Cities

Xiang Sun, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—We propose to apply CoAP Publish/Subscribe to
cache popular IoT resources in a broker to reduce the energy
consumption of servers (which host these popular resources) and
the average delay for delivering the IoT resources’ contents to
the clients. We provide the smart parking application in smart
cities as an example to demonstrate the benefit for conducting
popular IoT resource caching. However, caching popular IoT
resources in the broker may not always be the optimal choice,
i.e., the broker may be congested by caching too many IoT
resources, and so the average delay for enabling the broker
to deliver contents of the IoT resources may be unbearable.
Thus, we propose a novel Energy Aware and latency guaranteed
dynamic reSourcE caching (EASE) strategy to enable the broker
to cache suitable popular resources such that the energy savings
from the servers are maximized, while the average delay for
publishing the contents of the resources to the corresponding
clients is minimized. We demonstrate the performances of EASE
via simulations as compared to other two baseline IoT resource
caching strategies.

Index Terms—Internet of things, caching, CoAP, CoAP Pub-
lish/Subscribe, broker

I. INTRODUCTION

Internet of Things (IoTs) enables sensors to transmit their
sensed data and actuators to be controlled so as to facilitate
users to understand and change the physical world. Basically,
the IoT architecture comprises three layers, i.e., the percep-
tion, network, and application layer [1], [2]. Specifically, the
perception layer represents the physical IoT devices, which
perform different functionalities directly related to the hard-
ware, e.g., temperature sensors capture current surrounding
temperature values and the switch automatically turns off the
light. The perception layer digitizes and transmits the data
to/from the network layer, which provides connectivity among
different IoT devices by applying different communications
technologies. The application layer provides various function-
alities (such as resource discovery and data management)
and interfaces to access different hardware resources and
provision smart services to customers. Currently, Constrained
Application Protocol (CoAP) and CoAP Publish/Subscribe
(CoAP Pub/Sub) are the most widely used IoT application
layer protocols.

CoAP [3] is originally designed for communications among
resource constrained devices. CoAP assumes two logical roles,
i.e., client and server. A client is a resource requester, which

X. Sun and N. Ansari are with Advanced Networking Lab., New
Jersey Institute of Technology, Newark, NJ 07102, USA. E-mail:{xs47,
nirwan.ansari}@njit.edu.
Copyright (c) 2012 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

sends a resource retrieval request to the server; a server is a
resource host, which maintains the resource and responds to
the resource retrieval request from the client. A resource refers
to a physical phenomenon sensed by a server. For instance, a
temperature sensor (i.e., a server) is to sense the temperature
value of Bob’s smart home and the current temperature value
is 30oC. Then, “the temperature value of Bob’s smart home”
is a resource hosted by the temperature sensor and “30oC” is
the related IoT content. As shown in Fig. 1, CoAP applies a
simple request/response model to manipulate resources.

Fig. 1: CoAP communications model.

CoAP Pub/Sub [4] plays three logical roles in communi-
cations, i.e., client, server, and broker. As shown in Fig. 2,
if a server prefers to cache its hosting resource, it can send
a resource caching request to a broker, which refers to an
intermediary node that is capable of caching resource; the
broker will cache the resource1 if it receives the request from
the server; consequently, the servers can update the contents of
their resources cached in the broker, which forwards the con-
tents to the clients upon requests. For instance, the temperature
sensor (i.e., the server) in Bob’s smart home can request to
cache the “temperature value of Bob’s smart home” (resource)
in a broker (e.g., the home gateway). After the resource has
been cached in the broker, the temperature sensor can publish
the up-to-date content of the resource (e.g., “30oC”) to the
resource cached in the broker, which will store and forward the
content to the clients (e.g., Bob’s mobile phone) upon requests.
Each physical entity with computing, communications, and
storage capabilities (such as a cloudlet [5], [6], a fog node
[7], etc.) could be a potential broker.

The initial motivation for designing CoAP Pub/Sub is to
facilitate clients to retrieve the content of a resource hosted
by a sleep-enabled server [4], i.e., the clients are still able to
access the resources via the broker when the servers (which
host those resources) are sleeping. Applying CoAP Pub/Sub
offers other unveiled benefits, i.e., applying CoAP Pub/Sub to

1“A broker is caching a resource” means that the broker is creating a URI
of the resource such that any operation on the resource can be performed
via the URI (e.g., the server accesses the URI to update the content of the
resource in the broker, and the clients access the URI to retrieve the content
of the resource in the broker).

2

Fig. 2: CoAP Pub/Sub communications model.

cache popular resources in the broker can reduce the energy
consumption of the corresponding servers and accelerate the
content delivery rate. In this paper, we are focusing on
analyzing the pros and cons of caching resources in the broker
and designing an optimal resource caching strategy in order
to determine which resources are suitable to be cached in
the broker. The contributions of the paper are summarized
as follows. 1) We propose to apply CoAP Pub/Sub to achieve
the IoT resource caching. To the best of our knowledge, this
is the first introduction of the resource caching in the IoT
application layer. 2) We demonstrate that caching the IoT
resources in the broker is not always the best choice to save
energy of the servers and reduce the average delay to publish
contents of the resources. 3) We propose a novel dynamic
resource caching strategy to maximize the energy savings
from servers and guarantee the minimum average delay for
publishing contents of the resources to the corresponding
clients. 4) We demonstrate the performance of the proposed
dynamic resource caching strategy via simulations.

The rest of paper is organized as follows. In Section II,
we explain the pros and cons for caching resources in the
broker, define the popular resource, and design a broker-side
resource caching strategy. In Section III, we demonstrate the
performance of the proposed resource caching strategy via
simulations. In Section IV, we briefly review the related works,
followed by conclusion in Section V.

II. RESOURCE CACHING IN IOT APPLICATION LAYER

Essentially, “a resource is cached in the broker” implies
that CoAP Pub/Sub is applied to enable the broker to deliver
the content of the resource to the clients; otherwise, CoAP
is applied to enable the server (which hosts the resource) to
deliver the content of the resource to the clients. We next
provide the smart parking use case to illustrate the pros and
cons for caching resources in the broker.

A. Use case

In smart cities, there are many street parking spots located
near a stadium. Each street parking spot is equipped with a
smart parking meter, which generates the parking spot status
indicating whether the parking spot is empty and when it will
become available if it is currently occupied. Assume there is
a broker located near the stadium and available for all the
street parking meters. If there is a football game hosted in the
stadium, as shown in Fig. 3, tens of thousands of smart cars
would look for the available parking spots near the stadium
before the game starts. Consequently, each parking meter
would receive a large number of resource retrieval requests
from smart cars and need to respond to them accordingly.

This would tremendously increase the energy consumption of
the parking meter, which may be powered by its battery.

Now, if each parking meter caches its resource in a broker
by periodically sending the up-to-date content of the resource
to the broker and let the broker respond to the resource
retrieval requests from the smart cars, the parking meter can
save a huge amount of energy by sending less amount of
data. The broker normally has abundant power supply and
powerful hardware. In other words, the transmission rate of the
broker should be much higher than that of a parking meter, and
thus caching the parking spot status resources in the broker
can reduce the average delay for delivering contents of the
resources to the clients.

Caching the resource in the broker may not always be the
optimal solution. Consider the case that the broker caches
many resources and needs to handle a huge number of resource
retrieval requests from the clients; consequently, the average
delay for the broker in delivering contents of the resources may
be unbearable. Consider another case when the football game
finishes, as shown in Fig. 4; smart cars are no longer interested
in the parking spot status resources and some parking spots
are still occupied. If these parking meters do not cache their
parking spot status resources in the broker, they do not need
to transmit any packet since nobody is interested in these
resources. Yet, if the parking meters cache their parking spot
status resources in the broker, these parking meters need to
transmit their up-to-date statuses to the broker. Therefore,
without caching the resource in the broker may consume less
energy in this scenario. Therefore, caching the resource in the
broker by applying CoAP Pub/Sub may not always benefit
the servers. It is necessary to determine whether to cache the
resources in the broker or not based on different scenarios.

B. The definition of a popular resource

Caching a resource in the broker can save energy of the
server iff the resource is popular. Thus, it is important to define
a popular resource.

Denote I as the set of resources in the network, i as the
index of resource, li as the average content size of resource
i, λ̄i as the average arrival rate of resource retrieval request
(i.e., the average number of resource retrieval requests per
second during a time slot) for resource i, η̄i as the average
content delivery rate of resource i (i.e., the number of times
that the server delivers the up-to-date content of resource i to
the broker per second during a time slot) when the resource is
cached in the broker, and ∆T as the duration of a time slot.

As shown in Fig. 5, if resource i is not cached in the broker,
the server needs to transmit liλ̄i∆T amount of data in order
to publish contents of resource i to the clients. On the other
hand, if resource i is cached in the broker, the server needs to
send liη̄i∆T amount of data to the broker and let the broker
publish contents of resource i to the clients. Apparently, if Eq.
1 is satisfied, the server may request to cache resource i in the
broker, and vice versa.

ϵili∆T
(
λ̄i − η̄i

)
> θ. (1)

3

Fig. 3: The use case of a street parking meter nearby a
stadium before a football game starts.

Fig. 4: The use case of a street parking meter nearby a
stadium after a football game.

Fig. 5: The amount of data sent by a server.

Here, ϵi is the energy coefficient of the server (which hosts
resource i) that maps transmitting one bit of data into energy
consumption and θ is a predefined energy threshold. Thus,
we define resources which satisfy Eq. 1 as popular resources
(i.e., J =

{
i|ϵili∆T

(
λ̄i − η̄i

)
> θ, i ∈ I

}
, where J is the

set of popular resources in the network) and define resources,
which do not satisfy Eq. 1, as unpopular resources. Note that
a server would send a resource caching request to the broker
if its resource becomes popular.

C. Resource caching strategy in the broker

The broker may be congested if it caches all the popular
resources such that the broker needs to transmit a huge
volume of data for delivering the cached resources’ contents.
Consequently, the average delay for enabling the broker to
deliver a content of a resource may be longer than the
average delay for enabling a server itself to deliver a content
of its hosting resource. Therefore, it is beneficial to design
a dynamic resource caching mechanism for the broker to
determine which popular resource should be cached in the
broker in order to maximize the total energy savings from
servers, while guaranteeing the average delay.

1) Average delay for the broker to deliver the content of
the popular resource: The broker should estimate the average
delay for publishing a popular resource’s content to respond
to the corresponding resource retrieval request. Denote j

as the index of these popular resources. Let xj to be the
binary variable indicating whether popular resource j should
be cached in broker (i.e., xj = 1) or not (i.e., xj = 0);
thus, X = {xj |j ∈ J } denotes the popular resource caching
strategy adopted by the broker. Meanwhile, we assume that the
content size of the popular resources, i.e., {lj |j ∈ J }, follows
a Poisson distribution and l̄ is the average content size among
all the popular resources. Consequently, the service rate of
the broker (the average number of resource retrieval requests
handled by the broker per second) also follows a Poisson
distribution and l̄

ub is the average service rate of the broker,
where ub is the average transmission rate of the broker. In
addition, assume that the resource retrieval request arrivals for
each resource during a time slot exhibits a Poisson distribution
and λ̄j is the average arrival rate of resource retrieval request
for resource j. Then, we can model the broker’s publishing
contents of the cached popular resources in response to the
resource retrieval requests from the clients as an M/M/1
queueing model, and so the average delay (i.e., the average
queueing delay plus the average transmission delay) for the
broker’s publishing a popular resource’s content in response
to the resource retrieval request can be expressed2:

tb =
1

ub

l̄
−
∑
j∈J

λjxj

. (2)

2) Average delay for the server to deliver the content of
the resource: The broker estimates the average delay if the
content of the popular resource is delivered by the server. If
the average delay to deliver the content of the resource by the
server is lower than that by the broker, this popular resource
is not suitable to be cached in the broker.

Assume each server hosts one resource and denote us
j as the

average transmission rate of the server, which hosts popular
resource j. Since the content size of popular resource j, i.e.,
the value of lj , is normally fixed over time, the average service
rate for this server in handling the resource retrieval requests
is deterministic, which is

us
j

lj
. Meanwhile, since the resource

retrieval request arrival rate for popular resource j exhibits a
Poisson distribution with the average arrival rate of λ̄j , we
model the server in delivering the content of resource j to the

2The average delay of a broker is the average queueing delay of a resource’s
content waiting in the broker’s network queue plus the average transmission
delay of the broker in sending the content out of its network interface. The
propagation delay for transmitting the content to the client over the network
is not considered.

4

clients as an M/D/1 queueing model, and so the average delay
for the server in delivering resource j’s content to a client,
denoted as tsj , can be expressed:

tsj =
lj
2us

j

× λj
us
j

lj
− λj

. (3)

3) Problem formulation: We formulate the dynamic re-
source caching problem (i.e., P0) in the broker as follows:

P0 : argmax
xj

∑
j∈J

ϵili∆T
(
λ̄i − η̄i

)
xj , (4)

s.t. ∀j ∈ J ,
xj

ub

l̄
−
∑
j∈J

λjxj

≤ tsj , (5)

∑
j∈J

λjxj <
ub

l̄
, (6)

∀j ∈ J , xj ∈ {0, 1} . (7)

P0 is to minimize the energy consumption of servers. Con-
straint (5) is to guarantee tb ≤ tsj for all the resources cached
in the broker. Constraint (6) is to ensure the system is stable,
i.e., the average arrival rate should be less than the average
service rate in the broker to assure the queue does not overflow.
Constraint (7) imposes xj to be a binary variable.

Theorem 1. P0 is NP-hard.

Proof: By combining Constraints (5) and (6), P0 can be
transformed into:

P1 : F(X) = argmax
xj

∑
j∈J

ϵi∆T li
(
λ̄i − η̄i

)
xj ,

s.t. ∀j ∈ J ,
∑
j∈J

λjxj +
1

tsj
xj ≤

ub

l̄
, (8)

∀j ∈ J , xj ∈ {0, 1} .

Consider the case that Constraint (8) is equivalent to∑
j∈J

(∑
j∈J

λjxj+
1
ts
j
xj

)
≤
∑
j∈J

ub

l̄
, which is transformed into:

∑
j∈J

(
|J |λj +

1

tsj

)
xj ≤

|J |ub

l̄
. (9)

P1 can be transformed into:

P2 : argmax
xj

∑
j∈J

ϵili∆T
(
λ̄i − η̄i

)
xj ,

s.t. Constraints (7) and (9). (10)

Obviously, P2 is the 0-1 knapsack problem, where
ϵili∆T

(
λ̄i − η̄i

)
is the value of item j, |J |λj +

1
ts
j

is the

weight of item j, and |J |ub

l̄
is the weight capacity of the

knapsack. Note that the 0-1 knapsack problem is a well
known NP-hard problem. Therefore, we conclude that the
0-1 knapsack problem is reducible to the original dynamic
resource caching problem (i.e., P0), and so P0 is NP-hard.

4) Energy Aware and latency guaranteed dynamic reSourcE
caching (EASE): We propose EASE to solve P13. Specif-
ically, we relax Constraint (8) to construct the following
Lagrangian problem of P1:

L(W)=max
xj

∑
j∈J

ϵili∆T
(
λ̄i − η̄i

)
−λ̄j

∑
j∈J

ωj−
ωj

tsj

xj

+
(ub

l̄

)∑
j∈J

ωj , (11)

s.t. Constraint (7),

where W = {ωj ≥ 0|j ∈ J } are the Lagrangian multipliers.
Note that the above Lagrangian problem will have the optimal
solution X ∗ =

{
x∗
j |j ∈ J

}
, where:

x∗
j =


1, ϵili∆T

(
λ̄i−η̄i

)
−λ̄j

∑
j∈J

ωj− ωj

ts
j
>0.

0, ϵili∆T
(
λ̄i−η̄i

)
−λ̄j

∑
j∈J

ωj− ωj

ts
j
≤0.

(12)

Lemma 1. L(W) provides an upper bound on F(X).

Proof: Assume X̂ = {x̂j |j ∈ J } is a feasible solution
of F(X). Thus, ∀j ∈ J ,

∑
j∈J

(
λj x̂j

)
+ 1

ts
j
x̂j − ub

l̄
≤ 0. Since

∀j ∈ J , ωj ≥ 0, we can derive:

∑
j∈J

ωj

∑
j∈J

(
λj x̂j

)
+

1

tsj
x̂j−

ub

l̄

 ≤ 0,

i.e.,

∑
j∈J

ϵili∆T
(
λ̄i − η̄i

)
x̂j−

∑
j∈J

ωj

∑
j∈J

(
λj x̂j

)
+

1

tsj
x̂j−

ub

l̄


≥
∑
j∈J

ϵili∆T
(
λ̄i − η̄i

)
x̂j ,

which implies that L(W) ≥ F(X̂).
Since L(W) is an upper bound on F(X), the next step is to

select suitable values of W such that the gap between L(W)
and F(X) is as small as possible. We apply the subgradient
method to iteratively select the values of W in order to find
the minimum gap. Specifically, we first select the initial values
of W , denoted as W(0) =

{
ω
(0)
j ≥ 0|j ∈ J

}
. Then, W are

updated in each iteration based on the following equation:

∀j ∈ J , ω
(k+1)
j = ω

(k)
j − α(k) ∂L(W(k))

∂ω
(k)
j

=ω
(k)
j +α(k)

∑
j∈J

(
λjx

∗(k)
j

)
+

1

tsj
x
∗(k)
j − ub

l̄

, (13)

where ω
(k)
j is the value of ωj in the kth iteration; x∗(k)

j , which
is calculated based on Eq. 12, is the optimal solution of the
Lagrangian problem in the kth iteration (note that x∗(k)

j may
not be the feasible solution of P1 since x

∗(k)
j may not satisfy

3As mentioned previously, P1 is equivalent to P0. Thus, we will try to
solve P1 in the remaining paper.

5

Constraint(8); thus, we have to map the optimal solution of
the Lagrangian problem into the feasible solution of P1, i.e.,
x̂
(k)
j = M(x

∗(k)
j), where x̂

(k)
j is the feasible solution of P1

in the kth iteration and M (·) specifies the mapping); α(k) is
the step size adopted in the kth iteration [8]:

α(k) = β
L
(
W(k)

)
−Fmax

∑
j∈J

(∑
j∈J

(
λj x̂

(k)
j

)
+ 1

ts
j
x̂
(k)
j − ub

l̄

)2 , (14)

where β is a decreasing adaption parameter with 0 < β < 2
and Fmax is the maximum objective value for P1 found
so far, i.e., Fmax = max

{
F(X̂

(1)
),F(X̂

(2)
), ...,F(X̂

(k)
)
}

(where X̂
(k)

=
{
x̂
(k)
j |j ∈ J

}
is the feasible solution calcu-

lated in the kth iteration and F(X̂
(k)

) is the corresponding
objective value for P1).

The values of W continue to be updated until the gap
between the Lagrangian problem and the maximum objective
value for P1, i.e., L

(
W(k)

)
−Fmax, does not change over

iterations. EASE is summarized in Algorithm 1.

Algorithm 1 The EASE algorithm

1: Calculate T s =
{
tsj |j ∈ J

}
based on Eq. 3.

2: Initialize W = 0.
3: Calculate X ∗ =

{
x∗
j |j ∈ J

}
based on Eq. 12.

4: Calculate X̂ = {x̂j |j ∈ J }, where X̂ = M (X ∗).
5: Initialize Fmax = F(X̂) and X = X̂ .
6: Calculate the value of L (W) based on Eq. 11.
7: while L (W)−Fmax changes over the iterations do
8: Update the step size α based on Eq. 14;
9: Update the values of W based on Eq. 13;

10: Update the values of X ∗ based on Eq. 12;
11: Calculate the values of X̂ , where X̂ = M (X ∗).
12: if F(X̂) > Fmax then
13: Fmax = F(X̂) and X = X̂ .
14: end if
15: end while
16: return X .

As mentioned previously, the mapping function M (·)
involved in Algorithm 1 is to convert the optimal solution of
the Lagrangian problem (i.e., X ∗) into the feasible solution of
the primal problem (i.e., P1) such that Constraint 8 is satisfied
by all j ∈ J . The basic idea is that the broker iteratively drops
a suitable popular resource (i.e., the popular resource is not
selected to be cached by the broker) among all the popular
resources that are currently cached by the broker (which are
calculated by Eq. 12) until Constraint 8 is satisfied by all
j ∈ J . The suitable popular resource, denoted as j

′
, is defined

as the popular resource that incurs the minimum average delay
(for enabling its server to deliver the content of the resource)
among all the currently cached popular resources, i.e.,

j
′
= argmax

j

{
tsj |x∗

j = 1, j ∈ J
}
. (15)

The mapping function is summarized in Algorithm 2.

Algorithm 2 The mapping function X̂ = M (X ∗).

1: Obtain the popular resource set J
′
=
{
j|x∗

j =1, j ∈ J
}

.
2: Find the suitable resource j

′
based on Eq.15.

3: while ∀j∈J ,
∑
j∈J

λjx
∗
j+

1
ts
j
x∗
j ≤ ub

l̄
cannot be satisfied do

4: x∗
j′

= 0;

5: Remove j
′

from resource set J
′
;

6: Find the suitable resource j
′

based on Eq.15;
7: end while
8: return X̂ = X ∗.

III. EVALUATIONS

Consider the scenario with N = 100 servers deployed in
an area covered by a Base Station (BS), which is attached to
a broker. As shown in Fig. 6, each server can communicate
with the broker via the BS based on different kinds of
communications technologies [9], [10] and clients retrieve the
contents of resources (from the broker or the servers) via the
BS. Meanwhile, each server hosts one IoT resource and the
content size of each resource is generated from a Poisson
distribution with mean l̄ = 500 Kb. In addition, the average
transmission rate of each server is obtained from a Poisson
distribution with the average value of 8 Mbps. If the resource
is cached in the broker, the server should deliver the up-to-date
resource content to the broker and we assume that the average
content delivery rate is the same among all the resources
during a time slot, i.e., η̄i = 0.01 update/sec. Moreover, the
average transmission rate of the broker is ub = 350 Mbps.
The energy coefficients of all the servers in the network are the
same, i.e., ϵi = 1 unit/bit. The average arrival rate of resource
retrieval requests for a resource is randomly selected between
0 and 0.1 request/sec during a time slot, i.e., λ̄i = U (0, 0.1).
θ is set to be 0 and the duration of a time slot is 10 mins.

Fig. 6: The simulation setup.

We compare the performance of EASE with other two
baseline strategies, i.e., Caching Preferred (CP) and Caching
Non-Preferred (CNP). The idea of CP is that each popular
resource j is preferred to be cached in the broker until the
broker is overflowed4. Meanwhile, the intuition of CNP is that
each popular resource j is not preferred to be cached in the

4The broker is overflowed if the average arrival rate of resource retrieval
requests of the broker is no less than the average service rate of the broker,
i.e.,
∑
i∈I

λixi ≥ ub

l̄
.

6

broker if its server can still handle the corresponding resource
retrieval requests (i.e., lj

us
j
> λj). Note that if the server cannot

handle the resource retrieval requests (i.e., lj
us
j
≤ λj), this

resource has to be cached in the broker in CNP. Note that each
server would send the resource caching request to the broker as
long as its resource becomes popular in each time slot and the
broker determines whether to cache these popular resources
in each time slot. The total simulation period is 100 time
slots and the Monte Carlo results are generated to measure
the performance of the three caching strategies.

A. Overall Performance

As shown in Fig. 7, EASE and CP save a similar amount
of energy from servers, which is much more than the one
saved by CNP because CNP does not prefer to cache popular
resources in the broker, and so servers need to transmit
contents of their resources by themselves. Fig. 8 shows the
number of popular resources that are cached in the broker.
CNP has the fewest number of resources cached in the broker;
this is why CNP saves the least energy from servers.

As shown in Fig. 7, although EASE and CP generate similar
energy savings, EASE incurs much lower average overall
delay5 for publishing a content of a resource as compared
to CP. To explain this, we analyze the average delay among
the servers6 and the average delay of the broker7 with respect
to the three strategies. As shown in Fig. 9, CP incurs much
higher average delay of the broker than EASE and CNP
because CP only tries to maximize the energy savings by
enabling the broker to cache as many popular IoT reosurces
as possible. This would result in the broker being congested,
thus incurring high average delay of the broker in delivering
the content of a resource. Accordingly, high average delay
of the broker causes high average overall delay for CP. On
the other hand, although CNP incurs the lowest average delay
of the broker, it generates the highest average delay among
servers as compared to EASE and CP because some servers
may be over-loaded to handle many resource retrieval requests,
thus suffering from high delay. As a result, high average delay
among servers causes high average overall delay for CNP.
Therefore, EASE optimizes suitable resources to be cached
in the broker in order to save almost the same amount of
energy from servers as compared to CP while ensuring the
lowest average overall delay.

We further compare the performance of the three strategies
by changing the average transmission rate of the broker, i.e.,
the value of ub. As shown in Fig. 10, EASE and CP always
incur the similar amount of energy savings; meanwhile, the
amount of energy savings increases as ub increases. This is

5Average overall delay is the mean of the average delay of all the resources,
i.e., average overall delay =

∑
i∈I

(
tbxi + tsi (1− xi)

)
/ |I|.

6Average delay among the servers indicates the mean of the average delay
of all the resources, whose contents are delivered by their servers, i.e.,
average delay among servers=

∑
i∈I

tsi (1−xi)/
∑
i∈I

(1−xi).

7The average delay of the broker is the mean of the average delay
of all the resources, whose contents are delivered by the broker, i.e.,
average delay of the broker =

∑
i∈I

tbxi/
∑
i∈I

xi.

because when ub increases, the broker caches more popular
resources by applying EASE and CP, thus potentially reducing
the energy consumption of the servers. Fig. 11 demonstrates
that the number of resources cached in the broker increases
as ub increases when EASE and CP are applied. However,
as shown in Fig. 11, the amount of energy savings incurred
by CNP does not change as ub varies because CNP does not
prefer to cache the resources in the broker even if the broker
has a larger capacity to cache more popular resources.

Fig. 12 shows the average overall delay by applying the
three strategies. The average overall delay of EASE decreases
as ub increases and EASE always outperforms CP and CNP.
Note that the average overall delay of CP is monotonically
increasing when ub < 440 Mbps and monotonically de-
creasing when ub ≥ 440 Mbps because as ub increases, CP
would cache more popular resources in the broker, and so
the broker needs to handle more resource retrieval requests
from the clients. Thus, as shown in Fig. 13, the average delay
of the broker for applying CP is increasing as ub increases;
this increases the average overall delay of CP accordingly.
When ub ≥ 440 Mbps, all the popular resources have already
been cached in the broker, i.e., the average arrival rate of
resource requests of the broker would not increase as ub

increases. Consequently, as shown in Fig. 13, the average delay
of the broker for applying CP decreases, thus resulting in the
decrease of the average overall delay of CP.

IV. RELATED WORKS

In-network content caching has been proposed to speed
up the content delivery process in Content Delivery Network
(CDN) [11]–[13], i.e., contents are cached in network nodes
(e.g., gateways and routers) based on some strategies (e.g.,
the popularity of a content) such that clients can retrieve
these contents without explicitly contacting content providers.
However, traditional in-network caching methods cannot be
tailored for the IoT system owing to the unique features of IoT.
First, most of IoT devices, are resource constrained [14], and
so the main objective of in-network caching methods in IoT
is to minimize the energy consumption of IoT devices rather
than to minimize the average content delivery latency in CDN.
Second, the contents generated by IoT devices exhibit transient
feature [15]–[17], i.e., the old content quickly loses its value,
thus requiring proper policies to refresh it. For instance, the
content of a parking spot status (i.e., empty or occupied) may
frequently change during a hour and needs to be updated over
time. This feature is different from the contents cached in
CDN, whose popularity remains stable over long timescale
[18]. Third, the size of IoT contents may be smaller than the
size of contents in CDNs, but the number of IoT contents may
be larger than the number of contents in CDNs.

Owing to these unique features of the IoT system, in-
network content caching strategies in the IoT network layer
should be redesigned. Vural et al. [19] proposed to cache IoT
contents in the edge routers and argued that retrieving contents
from the edge routers may lose freshness (i.e., obtained data
may not be up-to-date) but reduce the network traffic as
compared to retrieving contents from the original IoT servers.

7

Fig. 7: Average overall delay and the
amount of energy savings.

Fig. 8: Average number of resources
cached in the broker.

Fig. 9: Average delay among servers
and Average delay of the broker.

Fig. 10: Amount of energy savings. Fig. 11: Number of cached resources. Fig. 12: Average overall delay.

Fig. 13: Average delay among servers and average delay of
the broker.

Thus, they dynamically modified the edge routers’ content
caching probabilities in order to optimize the tradeoff between
content freshness and network traffic. Similarly, Hail et al. [20]
proposed a network layer IoT content caching strategy in the
multi-hop wireless network scenario, in which IoT devices are
equipped to cache the forwarding contents. They designed a
novel distributed probabilistic caching strategy, which is based
on the freshness of the content as well as the energy level and

the storage capability of the device, to improve the energy
efficiency of the IoT devices and reduce the content delivery
delay. Niyato et al. [21] advocated that contents generated by
IoT devices should be cached in local wireless access points,
from which contents should always be retrieved by clients.
They designed an optimal caching update period for each IoT
device to maximize the hit rate in terms of the probability of
clients in successfully obtaining the corresponding contents.

Although in-network caching in the IoT network layer can
potentially reduce the delay of the clients in retrieving their
requested IoT contents and the energy consumption of IoT
devices in delivering their IoT contents, it suffers from two
drawbacks, i.e., the cache inconsistency problem [22], [23] and
the security problem [24]. The cache inconsistency problem
refers to the inconsistency between the content cached in
network nodes and that generated by the IoT device, and
it would result in the content received by the clients not
reflecting the current state of the corresponding IoT device.
Meanwhile, the security problem implies that network nodes
are unable to conduct access control to prevent unauthorized
clients from retrieving the cached IoT contents. The cache
inconsistency and security problems are attributed to the local
caching decisions made by network nodes (i.e., an IoT device
is unaware of its content having been cached by the network
nodes, and is thus unable to update the caches and add
corresponding access control policies in these network nodes).

In order to solve the cache inconsistency and security

8

problems of in-network caching in the IoT network layer,
we propose to implement IoT resource caching in the ap-
plication layer, which is different from IoT content caching
in the IoT network layer. First, IoT resources do not have
the freshness feature. Clients can retrieve up-to-date contents
by accessing the corresponding IoT resources. Second, IoT
resources are cached in a broker (i.e., a middleware) rather
than network nodes, and the broker is discoverable by clients
and IoT devices. Third, IoT devices are aware of where their
cached IoT resources are located, and thus IoT devices can
update the contents and add access control policies of the IoT
resources. Therefore, IoT resource caching in the application
layer can basically resolve the cache inconsistency and security
problems. To the best of our knowledge, we are the first to
propose caching resources in the IoT application layer.

V. CONCLUSION

In this paper, we have proposed to cache the IoT resources
in the application layer by applying CoAP Pub/Sub. We have
formulated the problem of dynamic resource caching in the
broker to maximize the total energy savings from servers,
while guaranteeing the minimum average delay (for publishing
the content of the resource to the clients) for each resource. We
have designed the EASE algorithm to solve the problem. The
performance of EASE has been demonstrated via simulations.

REFERENCES

[1] Q. Jing, et al., “Security of the Internet of Things: perspectives and
challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–2501, 2014.

[2] A. Al-Fuqaha, et al., “Internet of Things: A survey on enabling technolo-
gies, protocols, and applications,” IEEE Commun. Surveys Tuts.,, vol. 17,
no. 4, pp. 2347–2376, 2015.

[3] The Constrained Application Protocol (CoAP). [Online]. Available:
https://tools.ietf.org/html/rfc7252.

[4] Publish-Subscribe Broker for CoAP. [Online]. Available:
https://tools.ietf.org/html/draft-koster-core-coap-pubsub-05.

[5] X. Sun and N. Ansari, ”PRIMAL: PRofIt Maximization Avatar pLace-
ment for mobile edge computing,” 2016 IEEE Intl. Conf. Commun. (ICC),
Kuala Lumpur, 2016, pp. 1–6.

[6] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet
network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484, July 2017.

[7] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the Internet
of Things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[8] B.T. Polyak and A.B. Juditsky, “Acceleration of stochastic approximation
by averaging,” SIAM J. Control and Opt., vol. 30, no.4, pp. 838–855, 1992

[9] N. Ansari and X. Sun, “Mobile edge computing empowers
Internet of Things,” IEICE Trans. on Commun., doi:
10.1587/transcom.2017NRI0001, early access.

[10] X. Sun and N. Ansari, “Cloudlet Networks: Empowering Mobile Net-
works with Computing Capabilities,” IEEE COMSOC MMTC Commun.-
Frontiers, vol. 12, no. 4, pp. 6-11, July 2017.

[11] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Comput. Netw., vol. 57, no. 16, pp. 3128–3141, 2013.

[12] X. Yuan, et al., “Enabling secure and efficient video delivery through
encrypted in-network caching,” IEEE J. Sel. Areas Commun., vol. 34, no.
8, pp. 2077–2090, Aug. 2016.

[13] Y. Li, et al., “How Much to Coordinate? Optimizing In-Network Caching
in Content-Centric Networks,” IEEE Trans. Netw. and Serv Manag., vol.
12, no. 3, pp. 420–434, Sept. 2015.

[14] A. Sehgal, et al., “Management of resource constrained devices in the
internet of things,” IEEE Commun. Mag., vol. 50, no. 12, pp. 144-149,
December 2012.

[15] S. Vural, et al., “Caching transient data in Internet content routers,”
IEEE/ACM Trans. on Netw., vol. 25, no. 2, pp. 1048-1061, Apr. 2017.

[16] M.A. Hail, et al., “On the performance of caching and forwarding in
information-centric networking for the IoT,” Intl. Conf. Wired/Wireless
Internet Commun., Malaga, Spain, May 25–27, 2015, pp. 313-326.

[17] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali, “Data management for
the internet of things: Design primitives and solution,” Sensors, vol. 13,
no. 11, pp. 15582–15612, 2013.

[18] N. Golrezaei, et al., “Femtocaching and device-to-device collaboration:
A new architecture for wireless video distribution,” IEEE Commun. Mag.,
vol. 51, no. 4, pp. 142–149, April 2013.

[19] S. Vural, et al., “In-network caching of internet-of-things data,” 2014
IEEE Intl. Conf. Commun. (ICC), Sydney, NSW, 2014, pp. 3185–3190.

[20] M.A. Hail, et al., “Caching in named data networking for the wireless
Internet of Things,” 2015 Intl. Conf. Recent Advances in Internet of Things
(RIoT), Singapore, 2015, pp. 1–6.

[21] D. Niyato, et al., “A novel caching mechanism for Internet of Things
(IoT) sensing service with energy harvesting,” 2016 IEEE Intl. Conf. on
Commun. (ICC), Kuala Lumpur, 2016, pp. 1–6.

[22] A. Lindgren, et al., “Design choices for the IoT in information-centric
networks,” 2016 13th IEEE Ann. Consumer Commun. & Netw. Conf.
(CCNC), Las Vegas, NV, 2016, pp. 882–888.

[23] A. Rao, O. Schelen, and A. Lindgren, “Performance implications for
IoT over information centric networks,” Proc. Eleventh ACM Wksp. on
Challenged Netw., New York City, NY, Oct. 03–07, 2016, pp. 57–62.

[24] R. Li, et al., “A Verifiable and Flexible Data Sharing mechanism for
Information-Centric IoT,” 2017 IEEE Intl. Conf. Commun. (ICC), Paris,
France, 2017, pp. 1-7.

Xiang Sun [S’13] received a B.E. degree in elec-
tronic and information engineering and an M.E.
degree in technology of computer applications from
Hebei University of Engineering, Hebei, China. He
is currently working towards the Ph.D. degree in
electrical engineering at NJIT, Newark, New Jersey.
His research interests include mobile edge comput-
ing, big data networking, green computing and com-
munications, content/resource caching in Internet of
Things, and Drone-aided mobile access networks.

Nirwan Ansari [S’78, M’83 ,SM’94, F’09] is Dis-
tinguished Professor of Electrical and Computer
Engineering at NJIT. He has also been a visiting
(chair) professor at several universities.

He recently authored Green Mobile Networks: A
Networking Perspective (Wiley-IEEE, 2017) with T.
Han, and co-authored two other books. He has also
(co-)authored more than 500 technical publications,
over 200 in widely cited journals/magazines. He has
guest-edited a number of special issues covering
various emerging topics in communications and net-

working. He has served on the editorial/advisory board of over ten journals.
His current research focuses on green communications and networking, cloud
computing, and various aspects of broadband networks.

He was elected to serve in the IEEE ComSoc Board of Gover-
nors as a member-at-large, has chaired ComSoc technical committees,
and has been actively organizing numerous IEEE International Confer-
ences/Symposia/Workshops. He has frequently delivered keynote addresses,
distinguished lectures, tutorials, and invited talks. Some of his recognitions
include several Excellence in Teaching Awards, some best paper awards,
the NCE Excellence in Research Award, the IEEE TCGCC Distinguished
Technical Achievement Recognition Award, the ComSoc AHSN TC Technical
Recognition Award, the NJ Inventors Hall of Fame Inventor of the Year
Award, the Thomas Alva Edison Patent Award, Purdue University Outstanding
Electrical and Computer Engineer Award, and designation as a COMSOC
Distinguished Lecturer. He has also been granted 35 U.S. patents.

He received a Ph.D. from Purdue University in 1988, an MSEE from the
University of Michigan in 1983, and a BSEE (summa cum laude with a perfect
GPA) from NJIT in 1982.

	Post-cover
	Dynamic Resource Caching in the IoT Service Layer for Smart City - nolog

