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Abstract—At the Internet of Things (IoT) application layer, a
physical phenomenon, which is sensed by a server (i.e., an IoT
device), is defined as an IoT resource. In this paper, we propose
to cache popular IoT resources in brokers, which are considered
as the application layer middleware nodes. Caching popular
resources in the brokers is to move the traffic loads (for delivering
the up-to-date contents of the resources) from the servers (which
host these popular resources) to the brokers, thus reducingthe
energy consumption of the servers. However, many brokers may
be geographically distributed in the network and caching popular
resources in nearby brokers may result in unbalanced traffic
loads among the brokers, and may thus dramatically increase
the average delay of the brokers in delivering the contents of
their cached popular resources to clients. To reduce the average
delay among the brokers, we propose to re-cache/re-allocate the
popular resources from heavily loaded brokers into lightlyloaded
brokers in order to balance the traffic loads among brokers.
We formulate the popular resource re-caching problem as an
optimization problem, which is proven to be NP-hard. We design
the Latency awarE populAr Resource re-cachiNg (LEARN)
algorithm to efficiently solve the problem, and demonstratethe
performance of LEARN via simulations.

Index Terms—Internet of things, resource caching, popularity,
CoAP, CoAP Pub/Sub, broker

I. I NTRODUCTION

Internet of Things (IoT) is an intriguing paradigm to
interconnect smart devices by applying various networking
technologies. In order to achieve interconnections, a flexible
three-layer IoT architecture, which comprises the perception
layer, the network layer, and the application layer [1], [2],
has been proposed. In the perception layer, smart devices
generate different types of data streams representing the states
of the physical world. These data streams are transmitted at
the network layer by applying different kinds of communica-
tions technologies. The application layer provides high-level
functionalities, such as IoT content retrieval services, data
management, and access control. In this paper, we focus on
analyzing the communications protocols and functionalities at
the IoT application layer.

IoT devices are mostly battery-constrained [3], and it is thus
not energy efficient to enable an IoT device (e.g., a temperature
sensor) to send its IoT content (e.g., the current temperature
value) to a large number of clients, who try to retrieve the
content of the IoT device. Caching IoT contents in the network
layer is proposed to solve the energy inefficiency problem and
speed up the content delivery process. Specifically, network
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nodes (e.g., routers and gateways) would cache the received
IoT contents based on their caching strategies [4]–[8]. Then,
if a network node receives a content retrieval request (from
a client) and it has the requested content, the network node
would reply to this request without forwarding it to the original
IoT device. However, this would incur the cache inconsistency
problem [9]–[11], i.e., the cached content may not accurately
reflect the current state of the corresponding IoT device.
For example, the content generated by a parking spot sensor
indicates the state of the parking spot (i.e., empty or occupied).
Suppose that the parking spot is initially empty and this
content is cached by a network node. Afterwards, the parking
spot becomes occupied and a client, whose content retrieval
request is responded by the network node (which previously
cached the content of the parking spot being empty), may
not obtain the correct state of the parking spot. The reason
for the cache inconsistency problem is the transparent nature
of IoT contents (i.e., the value of an IoT content is quickly
diminished, and thus this IoT content needs to be replaced by
a fresh one) and the local caching decision made by network
nodes (i.e., an IoT device is unaware of its content having been
cached by the network nodes. The IoT device is thus unable
to update the caches in those network nodes).

In order to solve the cache inconsistency as well as the
energy inefficiency problem during the IoT content delivery
process, we propose to cache IoT resources at the application
layer. Specifically, an IoT resource (which is different from
an IoT content) is defined as a specific physical phenomenon
captured by a specific IoT device. Yet, an IoT content repre-
sents the state of a physical phenomenon at a specific moment.
For instance, a temperature sensor is to sense the temperature
value of Bob’s smart home and the current temperature value
is 30oC. Then, “the temperature value of Bob’s smart home” is
an IoT resource (which is hosted by the temperature sensor)
and “30oC” is an IoT content. Caching an IoT resource at
the application layer indicates that the IoT resource is cached
in a broker, which is an IoT middleware with computing,
communications, and storage capabilities. Thus, the IoT device
will send the up-to-date content to the broker and clients can
retrieve the content of the IoT resource from the broker rather
than the IoT device. Based on the proposed IoT resource
caching method, we will solve the following two problems:

• Which IoT resources are suitable to be cached in brokers in
order to minimize the energy consumption of IoT devices?

• If an IoT resource is suitable to be cached in brokers, which
broker should cache the IoT resource such that the traffic
loads among brokers are balanced?



2

The main contributions of the paper are:

1) In order to solve the cache inconsistency and the energy in-
efficiency problem during the IoT content delivery process,
we propose to cache IoT resources in brokers. We illustrate
how to achieve IoT resource caching based on the current
IoT application layer communications protocols.

2) We demonstrate that caching IoT resources in brokers may
not always benefit IoT devices in reducing their energy
consumptions. We propose to cache popular resources
in brokers to minimize the energy consumptions of IoT
devices. We provide a method of measuring the popularity
of an IoT resource.

3) We point out that the traffic loads among brokers may be
unbalanced, thus increasing the average delay of brokers in
transmitting the contents of the cached popular resources
to the clients. Therefore, we propose to re-cache/re-allocate
the popular resources from heavily loaded brokers into
lightly loaded brokers in order to balance the traffic loads
among brokers.

4) We formulate the popular resource re-caching problem as
an optimization problem and prove it to be NP-hard. We
design the Latency awarE populAr Resource re-cachiNg
(LEARN) algorithm to solve the problem and demonstrate
the performance of LEARN via simulations.

The rest of the paper is organized as follows. In Section
II, we briefly review the related works. In Section III, we
illustrate how to implement IoT resource caching based on
the current IoT application layer communications protocols. In
Section IV, we provide the definition of a popular IoT resource
and illustrate how to measure the popularity of IoT resources.
In Section V, we propose to balance the traffic load among
brokers by re-caching popular IoT resources. We formulate the
popular IoT resource re-caching problem and demonstrate the
problem to be NP-hard. In Section VI, we propose the LEARN
algorithm to efficiently solve the problem. In Section VI, we
demonstrate the performance of LEARN via simulations. The
conclusion is presented in Section VII.

II. RELATED WORKS

In order to avoid unnecessary End-to-End (E2E) com-
munications, in-network caching has been proved to be an
effective way to speed up the content delivery process [12]–
[14], i.e., some popular contents would be cached in network
nodes such that clients can retrieve these contents without
explicitly contacting content providers. The feasibilityof using
in-network caching technologies for IoT has been discussedin
the Information-Centric Networking Research Group (ICNRG)
under the Internet Research Task Force (IRTF) [9], [15].
However, the traditional in-network caching strategies applied
in Content Delivery Networks (CDNs) may not suitable for
the IoT system owing to the unique features of IoT [4], [8].
First, most of the IoT devices are resource constrained, andso
the main objective of content caching placement in IoT is to
minimize the energy consumption rather than to minimize the
delay for delivering contents to users in CDNs. Second, the
contents generated by IoT servers exhibit transient feature [4],
[16]; this feature is quite different from the contents cached in

CDNs, whose popularity remains stable over long timescale.
Typical examples include popular news with short videos,
which are updated every 2-3 hours; new movies, which change
their popularity every week; new music videos, which change
their popularity about every month [17]. Third, the sizes ofIoT
contents may be smaller than the sizes of contents in CDNs,
but the number of IoT contents may be larger than the number
of contents in CDNs.

Owing to these unique features of the IoT system, many
in-network content caching strategies in the context of IoT
has been proposed. Vuralet al. [4], [5] proposed an in-
networking caching method to facilitate IoT content caching.
Specifically, IoT contents are cached in the edge routers and
they argued that clients’ obtaining the contents from the edge
routers may lose freshness (i.e., the obtained data may not
be up-to-date) but reduce the network traffic as compared to
the clients’ obtaining the contents from the original servers.
Thus, they dynamically modified the edge routers’ content
caching probabilities in order to optimize the tradeoff between
content freshness and network traffic. Similarly, Hailet al. [6]
proposed a network layer IoT content caching strategy in the
multi-hop wireless network scenario, in which IoT devices are
equipped to cache the forwarding contents. They designed a
novel distributed probabilistic caching strategy, which is based
on the freshness of the content as well as the energy level and
the storage capability of the device, in order to improve the
energy efficiency of the IoT devices and reduce the content
delivery delay. Niyatoet al. [18] considered the case that the
contents generated by the IoT devices should be cached in the
local wireless access point and clients should always retrieve
the corresponding contents from the wireless access point.
They designed an optimal caching update period for each IoT
device (in updating its content in the wireless access point) in
order to maximize the hit rate in terms of the probability that
the clients can successfully obtain the corresponding contents.
In order to solve the cache inconsistency problem, Ha and
Kim [19] proposed to enable each IoT device to select and
maintain a set of network nodes in caching its content. Since
the IoT device is aware of which network nodes have cached
its content, the IoT device is able to update the cached content
in these network nodes to guarantee the consistency. This
approach, however, incurs heavy burdens on the IoT device,
i.e., the IoT device needs to periodically obtain the information
from all the network nodes to determine which network nodes
are suitable to cache its content; meanwhile, the IoT device
needs to send the up-to-date content to all the network nodes
(which have cached the content) by itself.

Different from the above works, we propose to cache popu-
lar IoT resources at brokers to reduce the energy consumption
of IoT devices and accelerate content delivery. Essentially,
caching popular IoT resources at brokers can solve the cache
inconsistency problem without introducing heavy burdens to
IoT devices.

III. I MPLEMENTATION OF CACHING IOT RESOURCES IN

BROKERS

In this section, we illustrate the implementation of caching
IoT resources in brokers by applying the current application
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layer communications protocols.

A. Constraint Application Protocol

CoAP [20] is originally designed for communications
among resource constrained devices. CoAP assumes two log-
ical roles, i.e., server and client. A server is a resource
host, which generates contents of the resource. A client is
a resource requester, which tries to retrieve contents of the
resource. A resource is an object reflecting a specific physical
phenomenon; normally, a resource is identified by a Uniform
Resource Identifier (URI) [21]. For instance, if Bob’s mobile
phone tries to obtain the current temperature value provided
by the temperature sensor, which is equipped in Bob’s smart
home, the temperature sensor is a server, Bob’s mobile phone
is a client, and “the temperature value in Bob’s smart home”
is a resource hosted by the server; meanwhile, this resource
can be identified by a URI (i.e., a unique address that can be
searched on the Internet), such as “coap://bobhome/temp”.
The interactions between a server and a client follow a
request/response model. For instance, as shown in Fig.1, the
client (e.g., Bob’s mobile phone) sends a resource retrieval
request, which includes the URI that points to a specific
resource in the server (e.g.,“the temperature value in Bob’s
smart home” resource hosted by the temperature sensor).
Consequently, the server responds to the resource retrieval
request by sending the content of the resource to the client.

Fig. 1: CoAP request/response interaction model.

A client can continuously observe the resource by sending
a resource observe request to the server, which hosts the
resource. The resource observe request should contain the
URI of the resource as well as the observe conditions, which
indicate the criteria for the server to transmit the contents of
the resource to the client. For instance, as shown in Fig.2,
Client-1 (e.g., bob’s mobile phone) sends a resource observe
request to the server (e.g., temperature sensor), which indicates
that Client-1 tries to observe the resource (which is identified
by the resource URI) and the server should send the up-to-date
content of the resource every5 mins.

We can divide the clients into two classes:read clients
and observe clients. The read clients send resource retrieval
requests to obtain the contents of resources in the corre-
sponding servers. Normally, the servers would not store any
information (e.g., URIs) of these clients. The observe clients
send resource observe requests to continuously monitor the
status of resources. The servers should maintain the URIs
of the servers and their corresponding observe conditions by
storing them in the local binding table. As shown in Fig.2, two
clients (e.g., bob’s mobile phone and the air conditioner) send
the resource observe requests to the server (e.g., temperature
sensor). The server should create a binding table [22], which
maintains the URIs of the two clients and their corresponding

observe conditions1. Consequently, the server can send the
contents of the resource to the corresponding clients once their
observe conditions are satisfied.

Fig. 2: Clients observe the resource.

B. Resource Directory

Clients need to know the URIs of the resources before
they can send the resource retrieval/observe requests to obtain
the contents of the resources. In order to enable clients to
discover the URIs of the interested resources, another entity,
i.e., Resource Directory (RD), has been proposed [23]. An RD
hosts the descriptions of resources and provides the resource
lookup functionality to clients. Note that the descriptions of
a resource include the URI and the context information (e.g.,
the resource type and the resource location) of the resource.
Fig. 3 illustrates the interactions among a server, a client,
and an RD. First, a server registers its hosting resource to an
RD by sending a resource registration request, which includes
the descriptions of the resource, to the RD2. Second, the
RD stores the descriptions of the resource into its database
and returns the database entry ID of the resource3 (e.g.,
/rd/1001) to the server. Third, a client may send a resource
discovery request to discover the URI of a specific resource.
Note that the resource discovery request may include a set
of query criteria (e.g., resource type=’temperature sensor’ and
location=’bob’s home’) describing the resource that the client
wants to discover. As a result, the RD would return the URI(s)
of the resource(s), which matches the query criteria.

C. Caching IoT resources in brokers

The interactions among servers, clients, and RDs enable the
clients to find their interested resources’ URIs and obtain the
contents of these resources. However, it is not efficient when
many clients try to obtain the same resource during a time
period, i.e., the server may transmit a huge amount of data to
these clients. This situation happens when some popular events
take place. For example, when a football game is held in a
stadium, tens of thousands of smart cars would look for empty
parking spots near the stadium. Thus, each street parking meter
may need to transmit a huge amount of data to these smart cars

1The paper uses different terminologies, from those appliedin the corre-
sponding IETF RFCs and drafts.

2Note that the URI of the RD is well-known or the server can discover the
RD by broadcasting/multicasting an RD discover message [23].

3The database entry ID of the resource identifies the locationof the resource
in the RD’s database. The server should know this information such that it
can update or delete the descriptions of the resource in the RD later on.
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Fig. 3: The interactions among server, client, and RD.

in order to report its parking status (i.e., if the parking spot is
empty and when it will be empty if it is currently occupied).
Obviously, it is not efficient to enable the street parking meters
to transmit the huge amount of data, which may exhaust
the network resources and the energy supplies of the street
parking meters (which may be powered by batteries). Note
that exhausting the network resources of the street parking
meters results in increased delay for the street parking meters
in transmitting the contents to the clients, and exhaustingthe
energy supplies of the street parking meters disables the street
parking meters from sensing and transmitting data.

In order to efficiently deliver the contents of resources,
a new entity, i.e., broker, is introduced by the CoAP Pub-
lish/Subscribe protocol [24]. A broker is an application layer
middleware node equipped with powerful hardwares and suffi-
cient energy supplies. One of the functionalities of the broker
is to cache IoT resources. Specifically, a broker can cache
a resource hosted by a server, and thus the server would
periodically transmit the up-to-date content of the resource to
the broker, which consequently helps the server forward the
content of the resource to the clients upon requests. Therefore,
enabling the broker to deliver the content of the resource has
the potential to reduce the traffic loads of the server, which
may finally reduce the energy consumption of the server. The
communications for the server in enabling the broker to deliver
the content of the resource is illustrated in Fig.4. 1) The server
would first send a resource creation request to the broker to
cache a resource. The resource creation request should contain
the resource URI (indicating which resource is requested tobe
cached) as well as the binding table information associated
with this resource. 2) The broker would send the URI of
corresponding resource cached in the broker back to the server
if the broker determines to cache the resource. Note that there
are currently two URIs related to this resource: the URI of
the resource hosted by the server and the one cached in the
broker. 3) After receiving the response from the broker, the
server would periodically send the up-to-date content of the
resource to the broker. 4) Meanwhile, the server should update
the URI of the resource in the RD’s database such that the
clients can find the URI of the resource cached in the broker.
5) The read clients, who are interested in the resource, can
find the URI of the resource via the RD. 6) Consequently,

these clients can obtain the up-to-date content of the resource
by sending resource retrieval/observe requests to the broker.
7) The broker sends the content of the resource to the observe
clients based on the information in the corresponding binding
table.

IV. POPULAR RESOURCE CACHING AT THEIOT
APPLICATION LAYER

In this section, we first illustrate that caching IoT resources
may not always reduce the energy consumption of their
servers. In order to minimize the energy consumption of
servers, we propose to cache IoT resources only if they are
popular. We provide a method to measure the popularity of an
IoT resource. Table I summarizes the main notations applied
in the rest of the paper.

TABLE I: List of Important Notations

Notation Definition

I Set of all the IoT resources in the network.
J Set of all the popular IoT resources in the network.
K Set of all the brokers in the network.
li Average content size of resourcei.
λi Average resource retrieval request arrival rate of resource i.
ψi Content update rate of resourcei.
η Predefined threshold to measure the popularity of IoT resources.
xjk Binary cache indicator between popular resourcej and brokerk.
λk Average resource retrieval request arrival rate of brokerk.
µk Average service rate of brokerk.
tk Average delay of brokerk.
ρk Average network resource utilization of brokerk.

A. Definition of popular resources

Caching a resource in a broker cannot always benefit the
server (which hosts the resource) because once the resource
is cached in the broker, the server needs to periodically send
the up-to-date content of the resource to the broker (in order
to keep the content of the resource in the broker fresh) even
if no client is interested in the resource. On the other hand,
if the resource is not cached in the broker (i.e., the server
would respond to the resource retrial requests by itself), the
server does not need to transmit any data when no client is
interested in the resource. Therefore, caching the resource in
the broker may not always reduce the traffic load of the server.
Note that a heavier traffic load of the server incurs a higher
energy consumption of the server.

In order to minimize the energy consumption of servers,
only popular resources should be cached in brokers.A re-
sourceis consideredpopular if cachingthis resourceby a bro-
ker will result in traffic load reduction of its hosting server
by η, where η ≥ 0 is the predefined traffic load threshold.
Specifically, denoteI as the set of resources hosted by the
servers in the network andi is used to index these resources.
Denote the average content size of resourcei as li and the
average resource retrieval request arrival rate (i.e., theaverage



5

Fig. 4: The interactions among server, client, RD, and broker.

(a) The scenario of resourcei not being cached in a broker.

(b) The scenario of resourcei being cached in a broker.

Fig. 5: The traffic load of the server in different scenarios.

number of resource retrieval requests4 per second during a time
slot) for resourcei asλi. As shown in Fig. 5a, if resourcei is
not cached in a broker, i.e., the server (which hosts resource i)
needs to respond to the resource retrieval requests, the traffic
load of the server isliλi. On the contrary, as shown in Fig.
5b, if resourcei is cached in the broker, the server only needs
to periodically send the up-to-date content of resourcei to a
broker, which will eventually help the server respond to the
resource retrieval requests. Denoteψi as the content update
rate of resourcei (i.e., the average number of times that the

4There are many resource retrieval requests related to each resource. These
resource retrieval requests comprise two parts, i.e., the resource retrieval
requests from read clients and the resource retrieval requests from observe
clients (note that read clients and observe clients are defined in Section III.A).
The resource retrieval requests from read clients are generated and sent by
the read clients. Yet, the resource retrieval requests fromobserve clients are
automatically generated by the server/broker once some observe conditions in
the binding table are satisfied. For instance, an observe client tries to obtain the
content of a resource every 5 mins; thus, the server/broker would automatically
generate a resource retrieval request for the observe client every 5 mins and
send the content to the observe client accordingly.

server sends the up-to-date content of resourcei to the broker
per second during a time slot). Then, if resourcei is cached in
the broker, the traffic load of the server becomesliψi. Based
on the above, we define the resources that satisfy the following
equation to be the popular resources:

li (λi − ψi) > η, i ∈ I. (1)

Essentially, Eq. 1 indicates that popular resourcei being
cached in a broker can reduce at leastη amount of traffic load
of the server as compared to popular resourcei not being
cached in a broker. Note that reducing the traffic loads of
the server implies decreasing the energy consumption of the
server. Therefore, if a resource becomes popular, it is suitable
to be cached in a broker.

B. Monitoring the popularity of a resource

If a resource is not currently cached in a broker, the server
should monitor the number of resource retrieval requests of
the resource in each time slot. If the resource becomes popular
(i.e., Eq. 1 is satisfied), the server would request to cache the
resource in a broker by sending a resource creation request
to the broker. On the other hand, if the resource is currently
cached in the broker, the broker would take the responsibility
to monitor the number of resource retrieval requests of the
resource in each time slot. If the resource is not popular
(i.e., Eq. 1 is not satisfied), the broker would send a resource
deletion notification to the corresponding server (which hosts
this resource) to imply that the resource is no longer suitable
to be cached in the broker. Consequently, the server would
respond to the resource retrieval requests by itself.

C. Broker deployment

A broker can be a logical entity (i.e., a function embedded
in a router/switch/gateway) or a physical entity (such as a
cloudlet [25]–[27], a fog node [28], etc.). A good broker
deployment enables each server to discover and communicate
with at least one specific broker such that this server’s hosting
resources can be cached in the corresponding broker. Note
that applying different broker deployments does not affect
the problem (which will be mentioned in Section V) and
the related algorithm. In order to better express our ideas,
we provide one possible broker deployment strategy, which
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leverages the edgeIoT architecture [28], as an example. Specif-
ically, as shown in Fig. 6, each Base Station (BS), which has
already been deployed in the mobile network and provides
high radio coverage, is equipped with multiple wireless in-
terfaces (such as Zigbee and low power area network) such
that different servers can communicate with the corresponding
BSs [29]. Thus, each BS is considered as a smart gateway to
provide various communications interfaces to its local servers.
Meanwhile, each BS is connected to a broker, which may
comprise a number of interconnected physical machines to
provide the IoT resource caching functionality. Thus, each
server can actually communicate with the broker via the
corresponding BS. In addition, each broker can communicate
with the Internet as well as other BSs/brokers via the Software
Defined Networking (SDN) based cellular core [30]–[33]. In
the SDN-based cellular core network, OpenFlow switches
are adopted to separate out all control functions from the
data forwarding function. All the switches are controlled by
the SDN controller via the OpenFlow protocol [34]. The
OpenFlow controller manages the forwarding plane of BSs
and OpenFlow switches, monitors the traffic at the data plane,
and establishes user sessions.

Fig. 6: A possible solution of broker deployment.

The mentioned broker deployment provides each server with
the flexibility in caching its hosting popular resource in a
broker, i.e., a resource can be cached in the local broker, whose
connected BS is the gateway of the server, or in a neighboring
broker via the SDN based cellular core. If a popular resource
is cached in the broker, the broker is responsible for delivering
the contents of the resource to the clients via the SDN based
cellular core and the Internet5.

V. TRAFFIC LOAD BALANCING AMONG BROKERS

Many brokers can be geographically distributed in the
network. Normally, if a resource becomes popular, the server
would select the local broker, which incurs the smallest Round
Trip Time (RTT), to cache its popular resources. This may lead
to unbalanced traffic loads among brokers. For example, as
shown in Fig. 7, broker-1 caches two popular resources, i.e.,

5In this paper, we consider the case that all the clients are Internet clients,
i.e., clients would retrieve the contents of IoT resources via the Internet.

Fig. 7: The illustration of unbalanced traffic loads among
brokers and the resource re-caching process.

resource-1 and resource-2, and broker-2 caches one popular
resource, i.e., resource-3. Thus, broker-1 needs to respond
to 2n and 3n resource retrieval requests related to resource-
1 and resource-2 during a time slot, respectively. While,
broker-2 needs to respond ton resource retrieval requests
related to resource-3 during a time slot. If the sizes of these
resources’ contents are the same, broker-1 would transmit
more data to the clients than broker-2 would, i.e., traffic
loads are unbalanced between the two brokers. The unbalanced
traffic loads may significantly increase the average delay of
delivering the contents of popular resources to clients.

In order to reduce the average delay, traffic loads can be of-
floaded from heavily loaded brokers to lightly loaded brokers.
For example, as shown in Fig. 7, broker-1 can offload its traffic
loads to broker-2 by enabling broker-2 to cache resource-2
(such that broker-2 should take the responsibility to respond
to the resource retrieval requests related to resource-2).Here,
we define the process of a popular resource, which is originally
cached by one broker, to be cached by another broker as
resource re-caching/re-allocation. Essentially, balancing the
traffic loads among brokers is implemented by resource re-
caching/re-allocation. Note that a popular resource can only be
cached among brokers in the same broadcast domain6. This
can actually prevent a popular resource being cached by a
broker far away from the server (which hosts the resource).

A. Average delay model

The average delay of a broker in delivering the traffic load
comprises two parts, i.e., the average queueing delay of the
traffic waiting in the network queue of the broker and the
average transmission delay of the broker in transmitting the
traffic. Note that the average network delay of delivering the
traffic to the clients over the SDN-based mobile core network
and the Internet is not considered in the paper.

Suppose the resource retrieval request arrival process for
resourcei during a time slot follows a Poisson process
with the average arrival rateλi (requests/sec). DenoteJ
(J ⊆ I) as the set of popular resources in the network, i.e.,
J = {i|li (λi − γi) > η}, andj is used to index these popular
resources. Meanwhile, denoteK as the set of brokers in the
same broadcast domain andk is used to index these brokers.
Denotexjk as a binary variable indicating whether popular

6A number of proximity brokers would be assigned the same vLANtag by
the SDN controller. The brokers having the same vLAN tag are considered
to be in the same broadcast domain, where the brokers can share their
information by broadcasting them in the domain.
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resourcej should be cached in brokerk (i.e.,xjk = 1) or not
(i.e., xjk = 0). Thus, the total number of resource retrieval
request arrivals in brokerk, which is the sum of the resource
retrieval request arrivals of popular resources that are cached
by brokerk, also follows a Poisson process with the average
arrival rate

ςk =
∑

j∈J

λjxjk . (2)

Assume that the content sizes of resources are the same,
denoted asl, and the data transmission rate of brokerk,
denoted asrk, is deterministic, which depends on the network
interface capacity of brokerk. Thus, the service rate of broker
k (i.e., the number of the resource retrieval requests can
be responded by brokerk per second), denoted asµk, is
also deterministic, whereµk = rk

l
(requests/sec). Thus,

the process of brokerk in delivering the contents of popular
resources in response to the received resource retrieval requests
can be considered as an M/D/1 queueing model and the
average delay (i.e., the queueing delay plus the transmission
delay) for brokerk in response to a resource retrieval request
can be derived as

tk =
1

µk
︸︷︷︸

transmission delay

+
ρk

2µk (1− ρk)
︸ ︷︷ ︸

queueing delay

, (3)

whereρk indicates the average network resource utilization of

brokerk, i.e., ρk =

∑

j∈J

λjxjk

µk
.

Note that a smaller value oftk indicates brokerk can deliver
its traffic load (i.e., the contents of its cached resources in
response to the received resource retrieval requests) to the
clients faster. From E.q. (3), we can derive that as the average
network resource utilization of a broker increases, the average
queueing delay of the broker would exponentially increase,
thus dramatically increasing the average delay of the broker.
If the average network resource utilization of a broker equals
to 1, its average delay goes to infinity.

B. Problem formulation

We formulate the popular resource re-caching problem as
follows:

P0 : argmin
ρ,X

∑

k∈K

(
1

µk

+
ρk

2µk (1− ρk)

)

, (4)

s.t. ∀k ∈ K, ρkµk =
∑

j∈J

λjxjk, (5)

∀k ∈ K, 0 < ρk < 1, (6)

∀j ∈ J ,
∑

k∈K

xjk = 1, (7)

∀j ∈ J , ∀k ∈ K, xjk ∈ {0, 1} . (8)

Here,ρ = {ρk|k ∈ K} denotes the average network resource
utilization of all the brokers andX = {xjk|j ∈ J , k ∈ K} de-
notes popular resources to be cached by brokers. The objective
of P0 is to minimize the total average delay of the brokers.
Constraint (5) implies the network resource utilization of
each broker. Constraint (6) imposes that the network resource

utilization of a broker should be less than 1 in order to keep the
system stable and reliable. Constraint (7) means each popular
resource should be cached by a specific broker.

Theorem 1. P0 is NP-hard.

Proof: By substituting Constraint (5) (i.e.,ρk =∑

j∈J

λjxjk

µk
) into P0, P0 can be transformed into

P1 : argmin
X

∑

k∈K

2µk −
∑

j∈J

λjxjk

2µk

(

µk −
∑

j∈J

λjxjk

) ,

s.t. ∀k ∈ K,
∑

j∈J

λjxjk < µk, (9)

Constraints (7) and (8).

Thus, provingP0 to be NP-hard is transformed to proving
P1 to be NP-hard, which can be demonstrated by proving the
decision problem ofP1 to be NP-complete [35]. The decision
problem ofP1 can be described as follows: given a positive
value b, is it possible to find a feasible solutionX for P1
such that the total average delay of the brokers is less thanb,
i.e.,

∑

k∈K

2µk −
∑

j∈J

λjxjk

2µk

(

µk −
∑

j∈J

λjxjk

) ≤ b, (10)

and all the constraints ofP1 (i.e., Constraints (7), (8), and
(9)) are satisfied?

Assume thatb → +∞, i.e., Eq. (10) always holds for any
solution. Then, the decision problem ofP1 is transformed into
whether a feasible solutionX , which satisfies Constraints (7),
(8), and (9), exists or not. Now, we consider the scenario that
there are only two brokers in the network (i.e.,k ∈ {1, 2})
and the service rate of the two brokers are the same, i.e.,
µ1 = µ2 = 1

2

∑

j∈J

λj + ε, whereε is a very small positive

value. Then, the decision problem ofP1 can be transformed
into: whether there exists a feasible solutionX , which meets
the following constraints,







∑

j∈J

λjxj1 =
∑

j∈J

λjxj2 = 1
2

∑

j∈J

λj ;

∀j ∈ J , xj1 + xj2 = 1;
∀j ∈ J , xj1 ∈ {0, 1} , xj2 ∈ {0, 1} .

The above problem is essentially a partition problem, i.e.,
whether the set of popular resourcesJ can be allocated into
two brokers such that the traffic load of the two brokers7 are
the same, i.e.,

∑

j∈J

λjxj1 =
∑

j∈J

λjxj2 = 1
2

∑

j∈J

λj . Therefore,

the partition problem is reducible to the decision problem
of P1. The partition problem is a well-known NP-complete
problem, and thus the decision problem ofP1 is also an

7We assume that the content size of each resource is the same, and thus the
traffic load of brokerk refers to the sum of the average number of resource
retrieval request arrival rates of the popular resources, which are cached by
brokerk, in the rest of the paper, i.e.,

∑

j∈J

λjxjk.
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NP-complete problem. Consequently,P1 is NP-hard, which
further indicatesP0 is NP-hard.

VI. L ATENCY AWARE POPULAR RESOURCE

RE-CACHING(LEARN)

In order to efficiently solveP0, we design the novel
LEARN algorithm. The basic idea of LEARN is to decompose
P0 into two sub-problems, i.e.,optimal network utilization
assignment among brokersandpopular resource re-allocation,
and sequentially solve them to obtain the optimal resource
caching vectorX = {xjk|j ∈ J , k ∈ K}. Note that the
optimal network utilization assignmentproblem is to obtain the
optimal network utilization of each broker (i.e.,ρ) to minimize
the total average delay of all the brokers. Thepopular resource
re-allocation problem is to allocate the popular resources
(i.e., X ) among brokers such that the sum of the difference
between the actual network utilization and the optimal network
utilization of each broker is minimized.

A. Optimal network utilization assignment among brokers

Constraint (5) is the coupling constraint that defines the rela-
tionship betweenρ andX . Removing the coupling constraint
allowsP0 to be solved via two separate simpler problems. In
order to remove the coupling constraint, we relax Constraints
(5) by summingρk for all k ∈ K, i.e.,

∑

k∈K

µkρk=
∑

k∈K

∑

j∈J

λjxjk=
∑

j∈J

(

λj
∑

k∈K

xjk

)

. (11)

Since
∑

k∈K

xjk = 1 (∀j ∈ J ), we have

∑

k∈K

µkρk =
∑

j∈J

λj , (12)

and thusP0 can be transformed into

P2 : Z(ρ) = argmin
ρ

∑

k∈K

(
1

µk

+
ρk

2µk (1− ρk)

)

,

s.t.
∑

k∈K

µkρk =
∑

j∈J

λj ,

∀k ∈ K, 0 < ρk < 1.

The physical meaning ofP2 is to calculate the optimal
average network utilization of each broker such that the total
average delay of all the brokers is minimized. Note thatP2
is not related toX and can be easily solved based on the
following two lemmas.

Lemma 1. P2 is a convex problem.

Proof: The constraints ofP2 are linear, and thus we only
need to prove the objective function ofP2 is convex, i.e., the
Hessian matrix of the objective function is positive definite
[36]. For everyk ∈ K, we have

∂2Z

∂ρk∂ρk
=

4µk

(1− ρk)
3 > 0,

∂2Z

∂ρk∂ρι∈K\k
= 0.

Thus, the Hessian matrix ofZ can be expressed as

H=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2
Z

∂ρ1∂ρ1
· · ·

∂2
Z

∂ρ1∂ρ|K|

...
. . .

...
∂2

Z

∂ρ|K|∂ρ1
· · ·

∂2
Z

∂ρ|K|∂ρ|K|

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

4µ1

(1−ρ1)
3 · · · 0

...
. . .

...
0 · · ·

4µ|K|

(1−ρ|K|)
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where |K| indicates the total number of brokers. Obviously,
H is a symmetric matrix with all the diagonal entries positive,
i.e.,H is positive definite. Therefore,Z is a convex function
andP2 is a convex problem.

Lemma 2. P2 has a close form solutionρ∗ = {ρ∗k|k ∈ K},
where

ρ∗k = 1−

∑

k∈K

µk −
∑

j∈J

λj

µk |K|
. (13)

Proof: SinceP2 has been proved to be a convex problem,
the corresponding Karush Kuhn Tucker (KKT) conditions can
be obtained as follows:

∀k ∈ K,







1
2µk(1−ρk)

2 + αk − βk − µkγ = 0,

αk (ρk − 1) = 0,
βkρk = 0,

(14)

∑

k∈K

µkρk =
∑

j∈J

λj , (15)

whereαk, βk, andγ are the Lagrangian multiplexers. In order
to satisfy Eq. 14, we can deriveαk = 0, βk = 0, and

ρk = 1−

√

1

2µ2
kγ
. (16)

Substitute Eq. 16 into Eq. 15, and we have

γ =
1

2






|K|
∑

k∈K

µk−
∑

j∈J

λj






2

. (17)

We can derive the optimal solutionρ∗k by substituting Eq. 17

into Eq. 16, i.e.,ρ∗k = 1−

∑

k∈K

µk−
∑

j∈J

λj

µk|K| .

B. Popular resource re-allocation

Note thatρ∗ indicates the average optimal network uti-
lization of all the brokers in order to minimize the average
delay of all the brokers. The next step is to re-allocate
the popular resources among brokers such that the average

network utilization of each broker (i.e.,

∑

j∈J

λjxjk

µk
) can be as

close as to its optimal value (i.e.,ρ∗k). Thus, we formulate the
popular resources re-allocation problem as follows:

P3 : argmin
X

∑

k∈K

∣
∣
∣
∣
∣
∣

ρ∗k −
∑

j∈J

λjxjk
µk

∣
∣
∣
∣
∣
∣

,

s.t. ∀k ∈ K,

∑

j∈J

λjxjk

µk

< 1,

∀j ∈ J ,
∑

k∈K

xjk = 1,

∀j ∈ J , ∀k ∈ K, xj ∈ {0, 1} ,
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where the objective is to minimize the sum of the difference
between the actual network utilization and the optimal network
utilization for each broker in the network. The constraintsof
P3 are equal to Constraint (6)–(8) inP0. Note thatP3 is
also an NP-hard problem (which can be proved by applying the
same method in Theorem 1). Thus, we design a heuristic algo-
rithm, i.e., Optimal Popular ResourcE re-cAching (OPERA),
to solveP3. Define gk as the utility function of brokerk,
where

gk = ρ∗k −
∑

j∈J

λjxjk
µk

. (18)

Note that a broker incurring a largergk indicates that the
broker is less loaded, and thus can cache more popular
resources. The basic idea of OPERA is to iteratively allocate
a popular resource to a suitable broker8, which is defined as
the broker that achieves the largest value of the utility function
among all the available brokers. A broker is said to be available
if the average network resource utilization of the broker isstill

less than 1 in caching the popular resource, i.e.,

∑

j∈J

λjxjk

µk
< 1

holds after the popular resource is allocated to the broker.
Specifically, as shown in Algorithm 1, we first initialize

X = 0 (where X = {xjk |j ∈ J , k ∈ K}) and sort the
popular resources in descending order based on their traffic
loads9. Then, we select the first popular resource in the sorted
popular resource set and allocate it into a suitable broker.
Denote j∗ as the selected popular resource andk∗ as the
suitable broker to cache popular resourcej∗, where

k∗=argmax
k






gk

∣
∣
∣
∣
∣
∣

∑

j∈J

λjxjk+λj∗ < µk, k ∈ K






. (19)

Here,

{

k

∣
∣
∣
∣
∣

∑

j∈J

λjxjk + λj∗ < µk, k ∈ K

}

refers to the set

of available brokers with respect to popular resourcej∗. We
allocate popular resourcej∗ into brokerk∗, i.e., xj∗k∗ = 1.
After the allocation, we update the utility function of broker
k∗ based on Eq. 18. We continue to allocate the next popular
resource in the set of sorted popular resource into its suitable
broker until all the popular resources are all allocated. Note
that the complexity of OPERA is|J | log |K|.

C. Summary of LEARN

As mentioned before, the basic idea of LEARN is to sequen-
tially solve the two sub-problems,optimal network utilization
assignment among brokersandpopular resource re-allocation,
to obtain X . As shown in Algorithm 2, first, the popular
resources are identified from all the resources in the network,
and the information (i.e., the average resource retrieval request
arrival rate and the content size) of each popular resource as
well as the service rate of each broker are collected (i.e., Step
1 and Setp 2). Then, the optimal average network resource

8Allocating a popular resource to a broker means that the broker is enabled
to cache the popular resource.

9The traffic load of a popular resource (i.e., the value ofλj (j ∈ J )) refers
to the average resource retrieval request arrival rate related to the popular
resource during a time slot.

Algorithm 1 X = OPERA (L,λ,µ,ρ∗).

Input: 1) The content size vector of all the popular resources,
i.e., L = {lj |j ∈ J }. 2) The average resource retrieval
request arrival rate vector for all the popular resources,
i.e.,λ = {λj |j ∈ J }. 3) The service rate vector for all the
brokers, i.e.,µ = {µk|k ∈ K}. 4) The optimal solution
of P2, i.e.,ρ∗ = {ρ∗k|k ∈ K}.

Output: The optimal popular resource caching vector, i.e.,
X = {xjk|j ∈ J , k ∈ K}.

1: Initialize X = 0.
2: Sort the popular resources in descending order based on

their traffic loads.
3: Calculate the utility functions of all the brokers based on

Eq. 18.
4: n = 1;
5: while Not all the popular resources are allocateddo
6: Select thenth popular resource, denoted asj∗, in the

set of sorted popular resources;
7: Find the suitable brokerk∗ based on Eq. 19;
8: Let xj∗k∗ = 1;
9: Update the utility function of brokerk∗;

10: n = n+ 1;
11: end while
12: return X .

utilization for each broker is calculated based on Lemma 2
(i.e., Step 3). Afterwards, the optimal resource caching vector
X is obtained by executing the OPERA algorithm (i.e., Step
4). Finally, all the popular resources will be re-allocatedbased
on X (i.e., Step 5). Note that the complexity of LEARN is
determined by the complexity of OPERA.

Algorithm 2 The LEARN algorithm

1: Find the popular resources based on Eq. 1 to form the set
of popular resourcesJ .

2: Obtain the values ofL, λ, andµ.
3: Calculate the value ofρ∗ based on Lemma 2.
4: X = OPERA (L,λ,µ,ρ∗).
5: Re-allocate the popular resources among brokers based on

the value ofX .

VII. S IMULATION

The network comprises3 × 3 Base Stations (BSs), each
of which is connected to a broker. The coverage of each
BS is 1 km2. Meanwhile, there are N=3,000 servers in the
network and each server hosts one resource. The distribution
of the servers may exhibit spatial dynamics, and the location
of a server follows a Normal distribution, i.e.,{zxi , z

y
i } ∼

N (1500, 500), wherezxi and zyi indicate the location of the
server (which hosts resourcei (1 ≤ i ≤ N )). As shown in Fig.
8, the server density in BS-5’s coverage area is higher than the
one in other BSs’ coverage areas. Servers within the a BS’s
coverage area can directly communicate with the BS via vari-
ous wireless access technologies. The network capacity of each
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broker is the same, i.e.,µ1 = µ2 = · · · = µ|K| = 350 Mbps.
Meanwhile, the content size of each resource is 500Kb. The
average arrival rate for each resource during a time slot is
randomly selected between[0.1 request/s, 2 request/s], i.e.,
∀i ∈ I, λi = U (0.1, 2). Moreover, we set the thresholdη = 0
and the content update rate for all the resource to be the same,
i.e., ψ = ψ1 = ψ2 = · · · = ψ|I| = 0.2.

Fig. 8: The network topology.

A. Energy consumption of servers

In this section, we investigate how much energy will be
saved in servers for caching popular resources in brokers (by
executing LEARN). As comparisons, we consider two other
methods, i.e., Non-cache and Always-cache. In the Non-cache
method, all the IoT resources are not cached by brokers even
if they are popular, and thus servers would respond to the
resource retrieval requests by themselves. In the Always-cache
method, all the IoT resources are cached by brokers no matter
whether they are popular or not. We assume that transmitting
one unit of data consumes one unit of energy; Fig. 9 shows
the normalized energy consumption of the servers by applying
LEARN, Non-cache, and Always-cache10. Obviously, LEARN
always incurs the lowest energy consumption as compared to
the others. Note that as the content update rate of resources
(i.e., the value ofψ) increases, fewer resources are considered
as popular resources and are suitable to cache in brokers,
and thus the energy consumption of the servers incurred by
Always-cache increases accordingly. Whenψ = 0.2, all the
resources are non-popular, and thus the energy consumptionof
the servers incurred by LEARN and Non-cache are the same.

B. Average delay analysis

In this section, we analyze the performance in terms of the
average delay of all the brokers in response to their received

10The normalized energy consumption of the servers incurred by
LEARN/Non-cache/Always-cache equals to the energy consumption of the
servers incurred by LEARN/Non-cache/Always-cache divided by the energy
consumption of the servers incurred by Always-cache, respectively.

Fig. 9: The normalized energy consumption.

resource retrieval requests by applying LEARN. As compar-
isons, we also analyze the two other popular resource caching
methods, i.e., Nearest Popular Resource Caching (NPRC) and
OPTimal load balancing (OPT).

In NPRC, each popular resource is iteratively allocated
to the broker, which incurs the shortest RTT among all the
available brokers. Note that an available broker is defined
as the broker, whose average network resource utilization is
still less than 1 if the broker determines to cache the popular
resource. In OPT, we relax the binary constraintsxjk ∈ {0, 1}
in P0 to be x ∈ [0, 1]. Thus, solving OPT is equivalent to
solvingP2, which has been proved to have the optimal value,
i.e., ρ∗. OPT generates the lower bound ofP0 but does not
obtain the feasible solution ofP0. The purpose of providing
the results of OPT is to demonstrate the optimality of LEARN.

We monitor the average delay among all the brokers for
100 time slots. Fig. 10 shows the average delay for a broker
(in delivering an IoT content) during the monitoring period.
LEARN achieves the similar performance as compared to
OPT, which demonstrates that LEARN is a good heuristic
algorithm. NPRC incurs much longer average delay as com-
pared to LEARN and OPT because popular resources are
cached by their nearest available brokers, thus resulting in
unbalanced traffic loads among brokers. In other words, some
brokers incur higher average network resource utilizationand
thus suffer from longer average delay, while other brokers
incur lower average network resource utilization and thus incur
shorter average delay. In order to demonstrate this conjecture,
we further analyze the average network resource utilization
and the average delay for each broker during the monitoring
period. As shown in Fig. 11, each broker incurs almost
the same network resource utilization by applying LEARN
and OPT. However, Broker-5 (which is connected to BS-5)
incurs higher network resource utilization than other brokers
by applying NPRC because the popular resource density in
the BS-5’s coverage area is higher than other BSs, and thus
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Broker-5 caches more popular resources than other brokers
by applying NPRC, i.e., Broker-5 may incur higher traffic
load than others. Consequently, Broker-5 incurs higher net-
work resource utilization. Note that higher network resource
utilization leads to longer average delay based on Eq. 3. Thus,
as shown in Fig. 12, Broker-5 incurs significant longer average
delay than others by applying NPRC. This is the reason why
NPRC incurs much longer average delay among the brokers
as compared to LEARN and OPT as shown in Fig. 10.

Fig. 10: The average delay among all the brokers during the
monitoring period.

Fig. 11: The average network resource utilization for each
broker.

C. The performance impact on the traffic load of the network

We further analyze the performance of LEARN, OPT, and
NPRC by varying the number of servers11 in the network.

11Increasing the number of servers is actually increasing thenumber of the
popular resources that are needed to be cached in the brokers.

Fig. 12: The average delay for each broker during the moni-
toring period.

Fig. 13: The average delay among all the brokers by varying
the number of servers.

Note that varying the number of servers in the network
changes the total traffic load of the network. Fig. 13 shows
the average delay among the brokers in delivering their traffic
loads during the monitoring period based on different number
of servers. LEARN and OPT exhibit the similar average
delay, i.e., the difference between LEARN and OPT varies
between1 × 10−10 and 1 × 10−8 as the traffic load of the
network changes. The subtly small average delay difference
demonstrates that LEARN closely adheres to the lower bound
as the traffic load of the network increases. On the other hand,
the average delay incurred by NPRC significantly increases
as the number of servers increases. Note that the average
delay curve of NPRC can be divided into three segments. 1)
When 1100 ≤ N < 1400, all the brokers, except Broker-
5 (which is over-loaded but still has the residual capacity
to cache the popular resources), are lightly loaded, and thus
the average delay among the brokers is determined by the
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Fig. 14: The variance of the average network resource utiliza-
tion among brokers.

Fig. 15: The communications overheads
(a=130B, b=110B/client, ζ = 200B).

average delay of Broker-5, whose average delay exponentially
increases with the number of servers increases; 2) When
1400 ≤ N < 3200, Broker-5 is congested (i.e., Broker-5
cannot cache any more popular resources), and it would re-
cache its local popular resources to its neighboring brokers
(i.e., Broker-2, Broker-4, Broker-6, and Broker-8), whichare
lightly loaded. Consequently, the average delay among all
the brokers increases slightly; 3) When3200 ≤ N ≤ 4600,
most of the neighboring brokers become over-loaded, and thus
their average delay would increase dramatically as their traffic
loads increase. Consequently, the average delay among all the
brokers also increases dramatically.

Fig. 14 shows the variance of the average network resource
utilization among brokers by changing the number of servers
in the network. LEARN and OPT (which always incurs zero
variance) can always yield the similar variance as the number
of servers increases. This indicates that the resource utilization

of each broker (by applying LEARN and OPT) keeps nearly
the same as the total traffic load in the network increases, thus
implying that LEARN and OPT can always evenly distribute
the total traffic loads among the brokers based on their network
resource capacities. On the other hand, the variance incurred
by NPRC is always larger than those incurred by LEARN and
OPT, i.e., traffic loads among the broker are unbalanced.

D. Communications overheads consideration

We further analyze the communications overheads incurred
by LEARN and NPRC. Note that the communications over-
heads are generated once a popular resource is re-cached,
i.e., the popular resource previously cached by a broker
(e.g., Broker-1) is currently re-cached by another broker (e.g.,
Broker-2). Specifically, as shown in Fig.16,

• Step-1: once the popular resource is determined to be cached
by Broker-2, Broker-1 should send a resource creation
request to Broker-2. The resource creation request includes
the URI of the popular resource hosted by the server as
well as the binding table of the popular resource. Note
that transmitting the binding table to Broker-2 is to inform
Broker-2 about the observe clients of the popular resource
such that Broker-2 can continue to transmit the up-to-date
contents of the popular resource to those observe clients.

• Step-2: once Broker-2 receives the resource creation request,
it would store the binding table, create a new URI, which
identifies the popular resource cached in Broker-2, and
return this new URI to Broker-1.

• Step-3: Broker-1 needs to inform the server about the new
URI (which points to the popular resource in Broker-2) by
sending a notification message to the server such that the
server can send the up-to-date contents to Broker-2.

• Step-4: after receiving the notification message, the server
needs to respond with a confirmation message to Broker-1.

• Step-5: after receiving the new URI, the server should
update the URI of the popular resource in the RD by sending
a resource update request to the RD such that the read clients
can find the new URI, which points to the popular resource
in Broker-2.

• Step-6: after receiving the resource update request, the RD
needs to send to the server with a resource update response
in order to confirm that the URI has been updated.

Fig. 16: The illustration of communications overheads incurred
by popular resource re-caching.
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1) Communications overheads at brokers:Extra messages
are generated by the two brokers in Step-1, Step-2, and Step-
3. Denote ζ as the amount of communications overheads
incurred from Step-2 to Step-3. Note that the value ofζ is
the same among different popular resources, i.e., no matter
which popular resource is re-cached, the total amount of
communications overheads incurred from Step-2 to Step-3 is
the same. Denoteωj as the amount of data incurred by Step-
1. The value ofωj depends on the size of the binding table
of resourcej, which is further determined by the number
of observe clients of resourcej, i.e., more observe clients
of resourcej result in a larger size of the binding table of
resourcej, thus increasing the value ofωj. Hence, we have
ωj = a+ bnj , wherenj is the number of the observe clients
of resourcej, b is the coefficient that maps the number of
the observe clients into communications overheads, anda is
the offset of communications overheads. Thus, we can derive
the total amount of communications overheads by re-caching
popular resourcej as follows:

oj = a+ bnj + ζ. (20)

Basically, the total amount of communications overheads
is determined by the number of re-cached popular resources
and the amount of communications overheads incurred in
each popular resource re-caching. Assume that the number of
observe clients of each popular resource is randomly selected
between 0 and 100. Fig. 15 shows the average number of re-
cached popular resources and the average amount of communi-
cations overheads incurred by LEARN and NPRC. Obviously,
LEARN incurs more popular resources that are re-cached
and more communications overheads than NPRC during a
time slot. In addition, as the number of servers increases, the
difference between the communications overheads incurredby
LEARN and those incurred by NPRC increases accordingly.

2) Communications overheads at servers:Extra messages
are generated by the server (which originally hosts the resource
that is re-cached by a different broker) in Step-4 and Step-
5. Thus, the amount of communications overheads incurred
by the server is determined by the size of the notification
confirmation message (in Step-4) and resource update request
(in Step-5). Note that the server consumes extra energy in
transmitting the two messages when its popular resource is re-
cached by a different broker. Thus, there is a tradeoff between
reducing the average delay of the brokers (by re-caching their
popular resources) and reducing the energy consumption of
servers. We will investigate on how to optimize the tradeoff
in the future.

VIII. C ONCLUSION

In this paper, we have proposed to cache popular resources
in brokers and designed a metric to measure the popularity
of a resource. In addition, we have formulated the popular
resource re-caching problem to minimize the total average
delay among the brokers. We have proved the problem to
be NP-hard and designed the LEARN algorithm to solve the
problem. We have demonstrated the performance of LEARN
via extensive simulations.
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