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Fig. 2. Histogram and p.d.f. of Az.

VI. EXPERIMENTAL RESULTS

A stereo imaging system was simulated in order to assess the
accuracy of the derived probability density function and the ex-
pected value of the range error. Typical values were chosen for the
various system parameters (b = 973 m, f = 30 mm, z,,;, = 4456
m, Zpax = 5922 m, and § = 137 pm). A pseudorandom number
generator was used to generate the x and z coordinates of an object
point lying within the field of view. Perspective projection, in ac-
cordance with (1) and (2), was used to obtain the left and right
image plane coordinates corresponding to this object point. Next,
these x; and xp coordinates were rounded off to the nearest pixel,
yielding £, and fg. Finally, the measured disparity, d = £, — ip,
was used to estimate the z coordinate, via the inverse perspective
projection equation, ¢ = bf/d. The range estimation error was then
givenby Az =7 — z.

This experiment was repeated for 1 000 000 pseudorandom ob-
ject points. The results are shown in Fig. 2 as a histogram of the
range estimation error. The histogram has been scaled to unit area
and superimposed with the theoretical probability density function,
given by (10)-(12). The close match between the experimental his-
togram and the theoretical probability density function supports the
validity of (10)-(12) as a representation of the range error distri-
bution.

Using this same experiment, the average range error magnitude
was computed. The experimental value of 42.71 m agrees well with
the theoretical value of 42.32 m given by (14).

VII. CoNcCLUSION

A stochastic analysis of the quantization error in a stereo imag-
ing system has been presented. The probability density function of
the range estimation error and the expected value of the range error
magnitude have been derived in terms of the various design param-
eters. In addition, the relative range error is proposed as a better
measure of the range resolution than the percent range error when
the depths in the scene lie within a narrow range. With these re-
sults, the designer of a stereo imaging system can more accurately
determine how the choice of parameters will affect the expected
range resolution.
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Partial Shape Recognition: A Landmark-Based
Approach

NIRWAN ANSARI anp EDWARD J. DELP

Abstract—When objects are occluded, many shape recognition meth-
ods that use global information will fail. To recognize partially oc-
cluded objects, we represent each object by a set of ‘‘landmarks.’’ The
landmarks of an object are points of interest relative to the object that
have important shape attributes. Given a scene consisting of partially
occluded objects, a model object in the scene is hypothesized by match-
ing the landmarks of the model with those in the scene. A measure of
similarity between two landmarks, one from the model and the other
from the scene, is needed to perform this matching. In this correspon-
dence we introduce a new local shape measure, sphericity. It will be
shown that any invariant function under a similarity transformation is
a function of the sphericity.

To match landmarks between the model and the scene, a table of
compatibility, where each entry in the table is the sphericity value de-
rived from the mapping of a set of three model landmarks to a set of
three scene landmarks, is constructed. A technique, known as hopping
dynamic programming, is described to guide the landmark matching
through the compatibility table. The location of the model in the scene
is estimated with a least squares fit among the matched landmarks. A
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heuristic measure is then computed to decide if the model is in the
scene.

Index Terms—Affine transformation, dynamic programming, land-
marks, occlusion, partial shape recognition.

1. INTRODUCTION

Shape recognition is an important task in pattern recognition and
computer vision. We will use the term shape to refer to the in-
variant geometrical properties of the relative distances among a set
of static spatial features of an object. These static spatial features
are known as the shape features of the object. A shape feature is
classified as either a global or a local representation. A global shape
feature represents the entire object region, such as the silhouette
or contour of the object; local shape features represent portions of
the object region, such as line segments, edges, and corners of the
objects.

After extracting the shape features from a model and a scene,
some sort of similarity or dissimilarity measure must be used to
quantify the difference between the shape features. The similarity
or dissimilarity measure is referred to as a shape measure. The
shape measure should remain the same when the object is viewed
at a different scale or at a different orientation. This does not sug-
gest that size and orientation are not important for the shape rec-
ognition task. They are in fact important attributes that will be es-
timated either as a part of the shape recognition system, or as a
separate task. Shape measures should thus be invariant to transla-
tion, rotation, and scaling.

A shape measure is classified as either a global or a local shape
measure. A global shape measure quantifies the similarity between
two entire objects; a local shape measure quantifies the similarity
between portions of the objects. A global shape measure is derived
from the global shape features of the objects; a local shape measure
is derived from the local shape features. In this correspondence,
we introduce a new local shape measure, sphericity. It will be
shown that any invariant function under a similarity transformation
must be a function of the sphericity. The problem we address is
that of recognizing and locating planar objects that may be oc-
cluded or touching each other.

For the purpose of recognition, much of the visual data per-
ceived by a human being is highly redundant. It has been suggested
from the viewpoint of the human visual system [1] that some dom-
inant points along an object contour are rich in information content
and are sufficient to characterize the shape of the object. This con-
cept of dominant points has been applied in the field of morpho-
metrics [2] to study and observe the growth of biological objects.
These dominant points of an object are usually referred to as the
landmarks of the object. However, we will define the landmarks
of an object as the points of interest of the object that have impor-
tant shape attributes. Examples of landmarks are corners, holes,
protrusions, and high curvature points. They can be problem spe-
cific based on a priori knowledge. For example, in medical im-
aging, landmarks could be the location of important bone joints.
Landmark-based shape recognition is motivated by the above con-
cept of dominant points. It uses landmarks as shape features to
recognize objects in a scene. One of the merits of landmark-based
shape recognition is that the extraction of the entire object contour
is not required to achieve recognition. It only requires a landmark
extractor that can detect and order the landmarks in a sequence that
corresponds to consecutive points along the object boundary.

A landmark-based shape recognition system is shown in Fig. 1.
Landmarks extracted from a model object and from the scene are
referred to as model landmarks and scene landmarks, respectively.
Properties of the landmarks of each model can be used to guide the
extraction of the landmarks in the scene. The hypothesis of a model
object in the scene is made by matching the model landmarks with
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Fig. 1. A landmark-based shape recognition system.

the scene landmarks. Based on a decision strategy on how well the
landmarks of each model are matched with those in the scene, ob-
jects in the scene are identified.

Following a brief review of partial shape recognition methods in
Section 11, we will present an approach to extracting landmarks
from an object contour in Section III. We will discuss the tasks of
landmark matching, location estimation, and matching verification
in Section IV. Experimental results will be presented in Section V.

II. RELATED WORK

Recent work on 2-D partial shape recognition have exhibited an
increasing interest in developing methods capable of recognizing
objects when global information about the objects is not available.
The recognition task can modeled as searching for a match between
model and scene features. Commonly used features are holes and
points [3]-[5], line segments [6]-[10], curve segments [11]-[15]
or a combination of these features [16], [17]. The features are ob-
tained by a preprocessing step such as edge detection, polygo-
nal approximation, and corner extraction. We have taken a similar
view by posing the recognition task as a landmark matching prob-
lem. Detailed literature reviews can be found in many of the above
mentioned publications and in [18]. To provide a general overview
of how the partial shape recognition task has been addressed, we
will discuss the methods reported in [7], [8], [16], [17], [19]. We
do not consider the problem of 3-D object recognition such as re-
cognizing polyhedral objects [20]. A rather detailed survey of 3-D
object recognition can be found in [21].

Bhanu and Faugeras [7] cast the shape matching problem as a
segment matching problem. An object contour is first approximated
by a polygon from which features such as the length of a segment,
the slope of a segment, the angle between two adjacent segments,
and the intervertice distance are computed. The sum of the weighted
absolute differences of the feature values between a model and a
scene segment is the shape measure between the two segments.
This measure indicates the goodness of match between the two seg-
ments. A stochastic labeling scheme is then used to label each
model segment either as one of the scene segments or NIL (no
match).

Since this method uses relaxation labeling, it is computationally
intensive. A good estimate of the initial assignment of the labels is
important relative to the convergence of the algorithm and the va-
lidity of the result.

A simple technique to solve the occlusion problem has been pro-
posed by Price [8]. The shape features of an object are the line
segments of the approximated polygon of the object. Each model
segment is then compared to every scene segment in terms of their
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lengths, and the included angles between successive segments. If
the length and the angle are within certain thresholds, the model
segment is said to be compatible with the scene segment, and their
orientation difference is stored in an array known as a disparity
array. Since segments of an object are arranged sequentially along
the object contour, segments between the model and the scene are
likely to be matched in a sequence. The longest consecutive se-
quence of matched segments between the model and the scene cor-
responds to the longest compatible consecutive diagonal entries of
the disparity array that have similar orientation differences. A
transformation that aligns the model segments with the matched
scene segments is evaluated. Applying this transformation to the
model segments, disparity values based on the segment positions
and orientations are updated and stored in the disparity array. The
final matches between the model and the scene segments are deter-
mined by finding the longest compatible consecutive diagonal en-
tries of the new disparity array.

Price’s procedure is simple, but not computationally efficient
since every entry of the disparity array has to be tested for the
starting location of the longest sequence. Furthermore, the tech-
nique is sensitive to scale variation because the feature value, such
as the length of a line segment, used in this technique is inherently
scale dependent.

Bhanu and Ming [10] improve Price’s approach by using the
same disparity array but with a different matching process. The
matching process first applies the K-mean clustering algorithm it-
eratively on the disparity array until the optimal number of clusters
is found. It then checks for the elements of each cluster that are in
sequential order, and finds the sequences. Several heuristics are
included to determine the sequences. The process then clusters the
sequence averages using the same clustering algorithm described
above. The cluster which contains the largest number of sequences
determines the final matches between the model and the scene seg-
ments. A confidence value which is the ratio of the cumulative
length of the segments in the final match to the total length of all
segments of the model is evaluated to verify the final match. Al-
though it is computationally more efficient than Price’s approach,
it remains computationally expensive because of the iterative na-
ture of the algorithm.

Gorman and Mitchell [19] represent an object contour by break-
ing the contour into contour segments. The breakpoints of the con-
tour are the vertices which result from a polygonal approximation
of the contour. Each contour segment is a portion of the object
contour and consists of three consecutive vertices. It begins from
a vertex which is considered as the first vertex and then ends at the
third vertex along the object contour. The feature values of each
contour segment are the Fourier coefficients derived from tracing
along the segment from the beginning to the end and then back to
the beginning of the segment. The shape measure between a model
and a scene contour segment is the norm squared distance between
the Fourier coefficients of the two segments. An intersegment dis-
tance table measuring the norm squared distances between the
model and the scene contour segments is constructed. The table is
augmented by repeating the rows. A backward dynamic program-
ming procedure is then used to determine the minimum distance
path starting from the first column to the last column of the aug-
mented table. An entry along the minimum distance path that re-
sults from a diagonal transition corresponds to a match between the
model and the scene segment, indicated by the row and the column
index of the entry. This approach is not sensitive to scale variation
because the Fourier coefficients have been normalized.

Lamdan ez al. [16], [17] propose an approach to solve the oc-
clusion probiem by affine invariant matching. The concept can be
applied to matching points, lines and curves. We will only discuss
the point matching algorithm from which line and curve matching
are based.

For each noncollinear triplet of model points, the coordinates of
all other model points are computed using this triplet as an affine
basis.- Each such coordinate is used as an entry to a table (hash-

table); each entry of the table contains the model and the triplet
basis from which the coordinate is derived. Given a scene repre-
sented by a set of points, the affine coordinates of the scene points
are similarly computed using an arbitrary triplet of scene points as
a basis. Based on a voting procedure, each scene coordinate is then
assigned a pair (model, basis triplet) to which it corresponds. If a
certain pair scores a large number of votes, this pair is considered
to correspond to the one chosen in the scene. If not, the process
continues by checking another basis triplet. The transformation be-
tween the model and the scene can either be assumed to be the
affine transformation between the chosen model and scene triplets
[16] or be determined by a least squares affine transformation be-
tween the model and the scene points that match [17]. The com-
plexity of the algorithm depends on the number of model points in
the scene. It is bounded from above by O(n*) and from below by
O(n), where n is the number of scene points.

The shape recognition approach presented in this paper is dif-
ferent from the above methods in that the shape features of an ob-
ject are the landmarks associated with the object. Instead of eval-
uating many feature values in order to characterize the similarity
between two features, we use a function known as the sphericity
to discriminate the dissimilarity between two landmarks. The
sphericity along with its properties will be discussed in Section IV.
In contrast to some partial shape recognition methods [3], [4], [8],
[11], [12], our landmark matching algorithm is not sensitive to scale
variation. The feature matching algorithm proposed is not iterative,
and is based on what we call hopping dynamic programming to
perform landmark matching.

III. LANDMARK EXTRACTION

It is important to note that the entire contour of an object is not
needed to use landmarks to achieve recognition. The approach only
requires knowledge of the positions of the landmarks of the object
in the image. It is necessary to impose a consistent ordering of the
landmarks. If interior points of the object are used as landmarks,
it is necessary to arrange them in a predefined order reflecting the
shape and geometry of the object.

The main problem addressed in this paper is landmark matching
for object recognition and not landmark extraction. To discuss how
our method works it is necessary to first obtain the landmarks. In
this section we propose a simple landmark extraction algorithm
based on curvature. It is important to emphasize that landmark ex-
traction should be considered as a preprocessing step and other
landmarks that have a consistent ordering will work with our pro-
posed method. The method is not tied directly to curvature points.

Points with high curvature along the object contour are features
that can be used as landmarks. The contour, as in the case of a
model, usually represents one object. However, in a general scene,
when occlusion is allowed, the contour could represent merged
boundaries of several objects. For illustrative purposes, in this cor-
respondence we will only consider landmarks as points of high cur-
vature along an object contour. Note that erroneous landmarks of
objects in a scene may occur due to occlusion or noise in the scene.
We will also assume that the images are obtained by orthographic
projection, and the silhouette of an object region is either given or
can be acquired from a segmentation algorithm.

Due to the discrete boundary representation and quantization er-
ror, false local concavities and convexities along a boundary are
introduced. Smoothing is thus necessary to reduce false concavities
and convexities. A Gaussian filter, which has been shown to be an
ideal smoothing filter for numerical differentiation [22], is used.

A planar curve can be represented by a set of points in para-
metric form, (x(t), y(1)) € &2, where ¢ is the path length along
the curve. Smoothing the curve with a Gaussian filter is thus con-
volving x(r) and y(r), respectively, with a one-dimensional
Gaussian filter,

1

W

ell/z)(f/w)-,

7(t, ) =
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where w is the width of the filter. As we ‘‘traverse’’ along a curve
in increasing values of the path length, a positive curvature corre-
sponds to a concavity on our left, and a negative curvature corre-
sponds to a concavity on our right. The extreme (positive maxi-
mum and negative minimum) curvature points of a boundary which
has been smoothed by a Gaussian filter with a large w are stable
with respect to orientation and scaling; i.e., their corresponding
locations along the unsmoothed boundary remains relatively un-
changed when the boundary is rotated, or scaled within a reason-
able range. We will refer to these stable local extreme curvature
points as the cardinal curvture points.

Unlike Asada and Brady’s curvature primal sketch [23], we do
not match the locations of the extrema from different scales to de-
termine the dominant points. Our procedure for detecting cardinal
curvature points is straightforward. Given a library of object con-
tours, each contour is first smoothed by a Gaussian filter with var-
ious widths (scales). Note that the number of extreme curvature
points of an object can vary as the range of scales (widths) varies.
The cardinal curvature points of the object are the extreme curva-
ture points of the object that remains unchanged for a range of w;
at the same time, this range of w shares a common range of w that
is used to obtain the cardinal curvature points of other objects in
the library. Points along the original unsmoothed boundary that
correspond to the cardinal curvature points are considered as the
landmarks of the object. The range of w of each object is deter-
mined off-line. For example, as shown in Table I, the cardinal cur-
vature points of the wire stripper shown in Fig. 2(a) can be ob-
tained by smoothing the contour with any w that is in the range of
16.5-36.5. Landmarks obtained for other objects by this approach
are shown in Fig. 2, with their corresponding range of w in Table
I

IV. SPHERICITY

The sphericity of a triangular transformation which maps a tri-
angle to another triangle is a measure of the similarity between the
two triangles. Under the triangular transformation, the inscribed
circle of one triangle is mapped into an inscribed ellipse of the
other triangle. As shown in Fig. 3, the sphericity is defined as the
ratio of the geometric mean to the arithmetic mean of the lengths
of the principal axes of the inscribed ellipse; i.e., the sphericity =
(2Vd, + d,)/(d, + d,). If the two triangles are similar, the
sphericity is one. The less similar the two triangles are, the smaller
is the value of the sphericity. If the vertices of one triangle are
considered as the coordinates of three consecutive landmarks be-
longing to a model, and the vertices of the other triangle as those
belonging to a scene, the sphericity is thus a measure of the simi-
larity between the set of three model landmarks and the set of three
scene landmarks. Among various properties of sphericity that we
will discuss, we will show that any invariant function under a sim-
ilarity transformation is a function of the sphericity. The triangular
transformation is uniquely defined by an affine transformation [24].

Definition 1: An affine transformation is the mapping of x to u,
where x, u € %%, defined by:

u=Ax + 1t (1)

where

x= ,u= b= VA= , and det (4) # 0.
y v f c d

Coefficients of the affine transformation which maps one triangle
into another, as shown in Fig. 3, are computed using the following
equations:

a u; ¢ v,
b|=B""u,| and | d|=B"" v, (2)
e 7 f &

TABLE 1
RANGE OF w USED TO OBTAIN THE LANDMARKS OF A LIBRARY OF OBJECTS
BASED ON CARDINAL CURVATURE POINTS

Models Figure | Range
wire stripper 2a 16.5-36.5
wrench 2b 14.5-24
specialty plier 2c 14-40.5
| needle-nose plier | 2d 14.5-(>100)
wire cutter 2e 16-28.5
| spacecraft 2f 19.5-25.5
| Borneo 2g 19.5-24
| Halmahera 2h 20-23
Luzon 2 14-19.5
Mindanao 2 17.5-21.5
New Guinea 2] 18-21
Sulawesi 2 19.5-29
where
x oy 1
B={x, vy 1
X3 y 1

(u;, v;) are the image points of the points (x;, y;), i = 1, 2, and 3,
under the transformation described by (1). Since vertices of a tri-
angle are noncollinear, det (B) # 0 and B! exists. Assuming we
know the vertices of the first triangle, we can compute the param-
eters of the inscribed circle (its radius and center). The inscribed
circle is then mapped through the transformation into an ellipse,
and the sphericity can then be computed.

A. Mathematical Definition and Properties of the Sphericity

We have presented an intuitive description of the sphericity of a
triangular transformation. We will generalize its definition to a dif-
feomorphism.' Desirable properties of the sphericity will also be
derived. _

_ Definition 2: The sphericity of a diffeomorphism, g: @ = @, (Q,
Q C =), for x € Q, is defined as

(det (2"(x) g'(x))) "

Y = 3)
(Ferter e)
where
g'(x) is the derivative of g (x),
g"(x) is the transpose of g'(x), and

det () and tr () are the determinant and the trace of a matrix,
respectively.

For notational convenience, we simply denote ¥, (x), g'(x), and
g''(x)as Y,, g', and g", respectively. Note that g’ maps a unit ball
in @ into an ellipsoid in ©. Note also that g g " is positive definite.

Lemma 1: The sphericity can be expressed in terms of the ei-
genvalues of g"g":

g
y oo oo h) @)

<%(>\1+xz+ +>\")>

where \;, i = 1,2, - -+, n, are the eigenvalues of g"g".
Proof: the result is obtained by noting the following:

det (g"g’') = det (#'D®) (spectral decomposition)
= det (D®'®) = det (D) = NNy " - - N\,
and
tr(g"g’) =t ($'D®) = tr (DO®'®) = tr (D)
=N+ A+ + N O
'A diffeomorphism is a continuous one-to-one mapping such that the

inverse mapping is also continuous, and both the mapping and its inverse
have continuous partial derivatives.



474

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL.

12, NO. 5, MAY 1990
4
5
*\k
\ 2
\ﬂ\\

Lo
., (c)
(a)
E‘vx\
er\ JS,( ‘I 3
Y T\
QQ B §
\ ;
/) \ i
i L )J
: 3 3 (2
. ® ’
(d)
(e)
I ‘
< 10x /EX‘\/Q;S
7*/95 145 N 2 I
4 1 ;’;Jf ¢ /
4):'/ . 1 {‘ H 4 S
\ e 13 /219&““’> $ 1 1(
i NS s () . L/
[ E\ix \z‘i/sk
\\\ =~ 3
N
b (i) ) (k) U]
(h)
Fig. 2. The landmarks of a library of objects obtained from the cardinal
curvature points. (a) Wire stripper. (b) Wrench. (c) Specialty plier. (d)
Needle-nose plier. (e) Wire cutter. (f) Spacecraft. (g) Island of Borneo.
(h) Island of Halmahera. (i) Island of Luzon. (j) Island of Mindanao.
(k) Island of New Guinea. (1) Island of Sulawesi.
(xy.y1) the sphericity thus takes on values in [0, 1]. If Y,(x) = 1 forall
{) x € Q, g(x) is a conformal mapping.
- . Lemma 2: The sphericity of a diffeomorphism described in Def-
inition 2 is invariant when the diffeomorphism undergoes a group
( &ays) (uyvy) (ug,vg) of transformations, G = {translation, rotation, scaling}.
*2¥2) (x1.71) Proof: Let g be a diffeomorphism, and assume g is trans-
@ (uy,vy) : I,
R formed by G with the result being g, that is,
g = aHg + h,
o &3¥8) (ugvg) {ug,v3) where
X2.¥2)
(o) (b) (uy,vy) a is the scaling factor,
% H s the rotation matrix, and
ﬁ, h is the translation vector.
| / )
s (5¥3) - (ugvy) (ug,v3) Thus,
X2:¥2.

(c)
Fig. 3. Representation of a mapping from a triangle to another triangle.
(a) Original triangles. (b) Mapping from the inscribed circle to an in-

scribed ellipse. (c) Mapping of the principal axes. Sphericity
2Vd, + dy/d, + d,.

Note that the eigenvalues of g”g’ correspond to the lengths of
the semiaxes of the transformed ellipsoid. Since the geometric mean
of a sequence of positive real numbers is always greater than or
equal to the arithmetic mean of the same sequence of numbers [25],

]

(«Hg')'(aHg")
azgll(HYH)gl
Using Definition 2, ¥; = Y,. O

Definition 3: Denote G as a group of transformations from a

space (i into itself. A function ¢ (u) on f is said to be a maximal
invariant under G [26] if it is invariant under G, and

— "ot
= g

2
a’g

if ¢(u;) = ¢(u,), there exists { € G such that u, = {u,,

where u) = {u, indicates that { maps u, to u,.
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Using the above definition, we can prove the following theorem.

Theorem I: Let u be a set of three two-dimensional points, that
is,uep =2 xi? x E

Denote Y (u) as the sphericity derived from the affine transfor-
mation of a set of three fixed points, x, to . Y(u) is a maximal
invariant under G = {translation, rotation, scaling}.

Proof: Note that we have used Y(u) to indicate that u is
transformed by G. The sphericity of a diffcomorphism is invariant
under G from Lemma 2. Since an affine transformation is a diffeo-
morphism, the sphericity of a triangular transformation is invariant
under G. To show that the sphericity of a triangular transformation
is a maximal invariant under G, it is sufficient to show that if u,;
and u, € |4, then

Y(u,) = Y(u,) implies u, = {u,

Given u, and u, in [, there exists two affine transformations that
map the set of three fixed points x to u; and u,, respectively. Let
A, and ¢, be the linear part and the translation part of the affine
transformation that maps x to u;, and likewise for 4, and £,. From
Lemma 1, if Y(u,) = Y(u,), then the eigenvalues of A{A, are
multiples of the eigenvalues of 454,. That is,

A, = kP4,

for some constant k, and ® is an orthogonal matrix. Note that the
column vectors of & form an orthogonal basis in 5. & corresponds
to a rotation matrix and k corresponds to the scaling. Finally, the
translation part does not contribute to the evaluation of the spher-
icity.

Therefore,

for some { € G.

u, = {u. O

The importance of a maximal invariant is shown by the following
theorem.

Theorem 2: 1f ¢ (u) on W is a maximal invariant under G, then
Y (u) is invariant under G if and only if  is a function of ¢ (u).

Proof: The proof can be found in [26]. ]

From Theorem 2, we can conclude that any invariant function
under G derived from a triangular transformation is a function of
the sphericity.

Lemma 3: The sphericity of an affine transformation defined by

(1), for |A] > 0, is:
113 - (15 +0d)
Y, = 2 2 2
2+ +d+e

, (5)

where

h=a+d, tp=a-d,

ty=b—c, and t,; =b + c.

Note that (5) expresses the sphericity Y, in terms of the coefficients
of the affine transformation.
Proof: From (1) and (3),

[ det (4'4) 17
Y, = 2
1
—tr (AA
(3 )
a®+c* ab+ cd

— 1/2
det < ab +cd b+ d° >

- 2
1 o\
(5 (a* + B> + c* + d'))

_ 2(ad — bc)
(a® + B + ¢* + d%)
Lemma 3 provides a simple equation for computing the sphericity
of a triangular transformation, and will be used in the next section

to determine the sensitivity of the sphericity with respect to distor-
tion. Other properties of the sphericity are discussed in [18].

-+
B+ ++15

g

B. The Probability Density Function of the Sphericity

Let {(u,, v)), (43, v3), (u3, v3)} be the coordinates of a se-
quence of three consecutive landmarks belonging to a scene, and
{(x1, y1), (x2, ¥2), (x3, ¥3) } be three consecutive landmarks be-
longing to a model. The sphericity of the triangular transformation
which maps {(x;, »1), (x2, ¥2), (x3, ¥3) } to {(uy, v1), (ua, 03),
(u3, v3)} determines how well the model landmarks match the
scene landmarks. If the object in the scene is the rotated, trans-
lated, scaled, or a distorted version of the model, how well do the
associated landmarks match each other? In other words, is the shape
measure (sphericity) robust with respect to rotation, translation,
scaling, and distortion? It has been shown in Section IV-A that the
sphericity is rotation, translation, and scale invariant. In this sec-
tion, we will discuss the relative robustness of the sphericity with
respect to distortion in the scene landmark locations. If the set of
three scene landmarks are duplicates of the three model landmarks,
the sphericity derived from the mapping of the model landmarks to
the scene landmarks should be one. We will assume that the dis-
tortion in the scene landmarks can be modeled as ‘‘noise’’ added
to the locations of the model landmarks by the following:

u; =x;, + n, i=1,2,3,
and
U =y + Riys, i=1,2,3,
wheren;, i = 1,2, - - -, 6, are independent identically distributed

(i.i.d.) normal (Gaussian) random variables with mean zero and
standard deviation o.
That is,

u ~ n(x, 02)’ vy ~ n(y, 02)

Uy ~ n(xy, 0%), 2 ~ n(y, o),

and

us ~ n(x, 02)’ vy ~ n(ys, 02)»

where n (., 0%) denotes a normal probability density function with
mean p and standard deviation o.

The i.i.d. normal random variables are used to make the analysis
tractable. With the above assumptions, the sphericity is a random
variable. We want to determine the probability density function,
the mean, and the variance of the sphericity. We would hope that
the sphericity has a mean close to 1 and variance close to 0 when
o is small. This leads to the following theorem.

Theorem 3: 1f the set of points (x;, y,), (X2, ¥2), (x3, y3) form
an equilateral triangle, the sphericity based on the above model of
distortion has the following probability density function, mean, and
variance:

fn.(”g) =

2
E(Yg)=1—;+

where

Sy (+) is the probability density function of the sphericity Y,,

Uy is the independent variable of the function Sfr.(+), and

B(+; 1, 1, p) denotes the noncentral Beta probability density
function [27] with 2, 2 degrees of freedom, and noncentrality
p, with p = (sidelength )2/202, where ‘‘sidelength’’ refers to
the length of a side of the equilateral triangle.

Proof: A detailed proof can be found in [18].
From (7) and (8), we see that if ¢> — 0, then,

E(Y,) > 1 and var(Y,) — 0.
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Also note that

1 [
if- <002 ———<0.1],
! P <sidelength >

then var (Y,) < 0.015 and E(Y,) > 0.96.

This means that if the standard deviation of the i.i.d. normal ran-
dom variables, the distortion, is less than 10% of the sidelength of
the equilateral triangle, the mean of the sphericity is greater than
0.96 and the variance is less than 0.015. Since the sphericity of a
triangular transformation indicates the similarity between the two
triangles formed from the model and the scene landmarks, respec-
tively, the two triangles are less similar as the distortion increases.
We thus expect that, as the distortion increases (o increases), the
mean of the sphericity decreases from 1, and the variance of the
sphericity increases, as indicated by the above equations.

We have shown the probability density function of the sphericity
in closed form for the special case of the equilateral triangle. We
empirically estimate the probability density function, the mean, and
the standard deviation of the sphericity for several other types of
triangles using histograms. Each type is specified by an angle with
a fixed height and a fixed base length such that an angle of 60°
corresponds to an equilateral triangle, as shown in Fig. 4. We refer
to the smallest perpendicular distance of a triangle as the smallest
perpendicular distance from a vertex to the opposite side of the
triangle. Each of the i.i.d. normal random variables that is used
for modeling the distortion is assumed to have zero mean, and stan-
dard deviation equal to a percentage of the smallest perpendicular
distance of the triangle. Ten thousand samples are used for each
estimate.

The sphericity is distributed on [0, 1], which is quantized into
50 regions for the cases studied. Figs. 5 and 6 show the estimated
probability density function of the sphericity for two types of tri-
angles specified by their angles. Each value of the ‘‘noise level™”
corresponds to a percentage of the smallest perpendicular distance
of the triangle; the length corresponding to this percentage is used
as the standard deviation of the zero mean i.i.d. normal random
variables used to model the distortion. The estimated mean of the
sphericity for various types of triangles and ‘‘noise levels’ is shown
in Fig. 7, and the estimated standard deviation is shown in Fig. 8.
With a small noise level, the sphericity has an estimated mean close
to 1, and standard deviation close to 0. The plots of the estimated
probability density function of the sphericity for other types of tri-
angles are similar to those shown here.

We conclude from the above analysis that the sphericity is rel-
atively robust with respect to distortion in the sense that a small
perturbation in the landmarks does not significantly affect the value
of the sphericity.

V. THE USE OF THE SPHERICITY

The hypothesis of a model object in a scene is made by matching
the model landmarks with the scene landmarks. The landmark
matching task is performed by a procedure known as hopping dy-
namic programming. The location of the object in the scene is then
estimated by a least squares fit. A heuristic measure based on the
least squared error of the fit is used to verify the hypothesis.

A. Landmark Matching by Hopping Dynamic Programming

Let {(x;, y1), (X3, ¥2), = * * , (X4, ¥) } be the coordinates of a
sequence of landmarks associated with a model, and {(u,, v,),
(U3, 12), * * +, (U, U,)} be those associated with a scene. Note
that n is the number of model landmarks, and m is the number of
scene landmarks. The goodness of match between the ith model
landmark and the jth scene landmark is given by the sphericity (5)
derived from the triangular transformation mapping {(x;_,, y;-1),
(X ¥ (Kigrs Yie)  to { s 50), (uy, 1), (Mg, 0540) ) A
mapping is said to be orientation or sense reversing [28] if the
Jacobian of the mapping is negative. It can be seen from (5) that

height

base

Fig. 4. Types of triangles used for estimating the probability density func-
tion of the sphericity, each specified by an angle.

angle=30

1.00 4

estimated p.d.f

gpher €39

Fig. 5. Estimated probability density function of the sphericity for angle
= 30° at various noise levels. Each value of the “‘noise level’” corre-
sponds to a percentage of the smallest perpendicular distance of the tri-
angle. The length corresponding to the percentage value is used as the
standard deviation of the zero mean i.i.d. normal random variables used
for modeling the distortion in the landmarks.

angle=90

1‘00]

.730 4

estimated p.d.f.

Fig. 6. Estimated probability density function of the sphericity for angle
= 90° at various noise levels. Each value of the ‘‘noise level” corre-
sponds to a percentage of the smallest perpendicular distance of the tri-
angle. The length corresponding to the percentage value is used as the
standard deviation of the zero mean i.i.d. normal random variables used
for modeling the distortion in the landmarks.

t!le value of the sphericity is negative if the triangular transforma-
tion is sense reversing.

A table of compatibility is constructed between the sequence of
model landmarks and the sequence of scene landmarks. The row
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Fig. 7. Estimated mean of the sphericity corresponding to different types
of triangles specified by the angles 15°, 30°, 45°, 60°, 75°, and 90°.

index i corresponds to a model landmark while the column index j
corresponds to a scene landmark. The (i, j) entry of the table is
the sphericity value of the triangular transformation mapping the
ith model landmark and its two adjacent landmarks to the jth scene
landmark and its two adjacent landmarks. Consider a simple ex-
ample of a scene where there are two objects overlapping each other
as shown in Fig. 9. The extracted landmarks in the scene are based
on the cardinal curvature points using w = 20. A table of compat-
ibility between the wire stripper [Fig. 2(a)] and the scene (Fig. 9)
is shown in Table II(a). Since the landmarks of an object are ob-
tained by tracing sequentially along the object boundary, it is likely
that matches between the model and scene landmarks correspond
to a sequence of high-valued entries that are diagonal to each other
in the table. This sequence will correspond to a path in the table.
A brute-force approach to finding such a sequence is impractical.
We will instead formulate a dynamic programming procedure to
achieve the matching.

Our matching procedure is somewhat similar to the feature
matching algorithm of [19]. Gorman and Mitchell [19] use a back-
ward dynamic programming procedure to find a minimum distance
path from the first column to the last column of their augmented
intersegment distance table. Their assumption that the path must
make use of all the scene features is inadequate because the scene
may have extraneous or missing features due to occlusion. Instead
of this assumption, we will only require that our path covers the
range of either all the model landmarks or all the scene landmarks;
i.e., the path traverses through either all the rows or all the columns
of the table of compatibility. Neither the starting point nor the des-
tination point of a path which corresponds to a sequence of matches
between the scene and model landmarks is known. Instead, a sup-
port entry, which is an entry in the table that provides strong evi-

T e teer
angle 15
--------------- angle 30
————————— angle 45
------------ angle 60
——————— angle 75
--------- angle = 90

Fig. 8. Estimated standard deviation of the sphericity corresponding to dif-
ferent types of triangles specified by the angles 15°, 30°, 45°, 60°, 75°,
and 90°.

N oW

Fig. 9. A scene which consists of a wire stripper and a wrench overlapping
each other. Each landmark is labeled and indicated by an ** x.""

dence of a true match between a model and a scene landmark, is
used to guide the matching process. The evidence is strong if the
entry as well as its diagonal neighboring entries have sphericity
values close to one. That is, the model landmark and its neighbor-
ing landmarks match well locally with the scene landmark and its
neighboring landmarks. Denote s(i, j) as the sphericity value at
the (i, j ) entry of the table. The (i, j) entry of the table is said to
be the support entry of the table if the sum s(i — 1,j — 1) + s(i,
j) +s(i+ 1,j+ 1)is maximum. In the example shown in Table
II(a), the support entry can either be entry (3, 12) or (4, 1). Since
the sphericity is a local similarity measure between a model and a
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TABLE II
AN EXAMPLE OF PERFORMING LANDMARK MATCHING BY HDP. (a) THE
TABLE OF COMPATIBILITY BETWEEN THE WIRE STRIPPER AND THE SCENE
SHOWN IN FIG. 9. (b) THE RESULT OF PERFORMING HDP USING (3, 12) AS
THE SUPPORT ENTRY. (¢) THE MAXIMUM VALUE PATH IS INDICATED

BY 1’s.
Modet
1 007 037 008 -020 004 004 -031 019 017 -003 -031 016
2 -0.16 094 -040 041 -020 -008 098 -08 -062 020 100 -034
3 003 044 02t 009 009 002 -028 032 012 -007 -034 100
4 100 012 003 -058 002 072 -018 009 030 -002 -015 003
5 -0.12 100 -037 033 017 -006 086 -076 -045 016 093 048
6 002 015 060 -004 09 001 -015 030 008 -054 -017 0.07
1 2 3 4 5 6 7 8 9 10 11 12
Scene
(@)
Model
1 200 200 100 000 000 000
2 200 200 100 000 000 0.00
3 100 100 100 100 100 100
4 000 000 100 199 199 199
5 000 000 100 199 29 299
6 000 000 100 199 299 3.60
10 n 12 1 2 3
Scene
)
Model
1 1 0 0 0 0 O
2 1 1 0O 0 0 O
3 0 0 1 0 0 O
4 ¢ 0 o0 1 0 O
5 6 0 o0 0 1 O
6 0o 0 0 0 0 1
10 11 12 1 2 3
Scene
©

scene landmark, the overall goodness of match between the model
and the scene is determined by the sum of the sphericity values of
those landmarks that match each other. The sequence of matches
should correspond to a path in the table that passes through the
support entry and maximizes the sum of the sphericity values of
the path with the following two constraints:

1) a model landmark cannot match with more than one scene
landmark, and

2) a scene landmark cannot match with more than one model
landmark.

From the above two constraints, a vertical or a horizontal tran-
sition of the path should not be considered as a match between the
model and the scene landmark.

Unlike the classical shortest path problem {29], we want to search
for a path that passes through the support entry, rather than from a
starting point to a destination point, or vice versa. Since backward
dynamic programming is applicable when the destination point is
available, and forward dynamic programming is applicable when
the starting point is available [29], the support entry can be treated
as both a starting and a destination point. That is, we work both
forward and backward from the support entry.

Denote (k, ! ) as the support entry, a, (i, j) as the accumulated
sum of the sphericity values from the (k, /) to the (i, j ) entry in
the backward procedure, and as(i, j) as the accumulated sum of
the sphericity values from the (k, /) to the (i, j) entry in the for-
ward procedure.

Treating the support entry as the destination point, we have the
following set of transition rules for the backward procedure:

Doay(i —1,j — 1) =max {a,(i,j) +s(i = 1,j — 1),

ay(i — 1, /), ap(i,j — 1)}
2y ap(i — 1,1) = max {s(i,[),s(i —1,1)}

3) ap(k,j — 1) = max {s(k,j), s(k,j — 1)}

4) ay(k, 1) = s(k, 1).

A diagoral transition according to rule 1) implies a possible
match between the (i — 1)th model landmarks and the (j — 1)th
scene landmark, and hence the sphericity value at (i — 1,7 — 1)
is added to the accumulated sum of the sphericity at (i, j) to pro-
duce the accumulated sum of the sphericity at (i — 1,j — 1). Since
a horizontal or a vertical transition does not constitute a match, the
accumulated sum of the sphericity remains the same as before the
transition. Rules 2) and 3) are the boundary conditions. Rule 4) is
the initial condition. To account for the periodic nature of the land-
marks to be matched, when i — 1 < 1, the value of i — 1 is
replaced by n + i — 1; whenj — 1 < 1, the value of j — | is
replaced by m + j — 1.

Treating the support entry as the starting point, we have the fol-
lowing set of transition rules for the forward procedure:

oae(i + 1, j + 1) = max {a;(i, j) + s( + 1,j + 1),

a(i + 1,j), ap(i,j + 1)}

2 ap(i + 1,1y =max {s(i, 1), s(i + 1,1)}

3) ap(k,j + 1) = max {s(k,j), s(k,j + 1)}

4) ap(k, ) = s(k, 1).

Again, according to Rule 1), a diagonal transition implies a pos-
sible match between the (i + 1)th model landmark and the ( j +
1)th scene landmark, and hence the accumulated sum of the spher-
icity at (i + 1,j + 1) is obtained by summing the sphericity value
at (i + 1,j + 1) and the accumulated sum of the sphericity at (i,
j ). Similarly, rules 2) and 3) are the boundary conditions, and rule
4) is the initial condition. Again, to account for the periodic nature
of the landmarks to be matched, when i + 1 > n, the value of i
+ 1isreplaced by i + 1 — n; whenj + 1 > m, the value of j +
1 is replaced by j + 1 — m.
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We now need to address how to switch between the forward and
backward procedure. Taking a forward and a backward step alter-
nately is not a good strategy because matches are not usually equally

divided between the forward and the backward path. Let (i, j ) be
the entry which the backward procedure has reached at the present
stage, and (f, f) be the entry which the forward procedure has
reached at the present stage. We define the backward average
sphericity value at entry (i, j) as a, (i, j) divided by the number
of transitions made by the backward procedure traversing from en-
try (k, [ ) to entry (i, j) of the table. Similarly, weﬂdAeﬁne the for-
ward average sphericity value at entry (1,))as as(i, j ) divided by
the number of transitions made by the forward procedure traversing
from entry (k, 1) to entry (i, j) of the table. The procedure which
has a larger average sphericity proceeds one stage. That is, if the
backward average sphericity value at entry (i, j) is larger than the
forward average sphericity value at entry (i, j ), the backward pro-
cedure will proceed to entry (i — 1,j — 1); otherwise, the forward
procedure will proceed to (1 + 1, + 1). In other words, the pro-
cedure having a more promising path of matches proceeds one
stage. The algorithm continues in this fashion until the combined
path of both the forward and the backward procedures covers the
range of either all the model landmarks or all the scene landmarks.
The combined path is known as the maximum value path. We call
this procedure hopping dynamic programming (HDP).

Continuing from the earlier example, and using entry (3, 12) as
the support entry, HDP yields the result shown in Table Ii(b). Each
entry of the upper left portion of the table represents the accumu-
lated sum of the sphericity at that entry resulting from the backward
dynamic programming procedure. Likewise, each entry of the lower
right portion of the table represents the accumulated sum of the
sphericity at that entry resulting from the forward dynamic pro-
gramming procedure. The resulting maximum value path is shown
in Table II(c).

After determining the path, several heuristics are used to further
refine the matches between the model and the scene landmarks
along the path. From the two constraints mentioned earlier, entries
along the path that result from horizontal or vertical transitions can-
not be considered as matches. Only entries along the path that re-
sult from diagonal transitions are considered as possible matches.
Since each entry is a sphericity value, a small value signifies that
these two landmarks do not match well locally with each other.
Such an entry, if included as a match, will also introduce error in
the estimation of the location of the object in the scene. We require
that the entries along the path must be above a certain threshold
before they can be considered as possible matches. A threshold
value of 0.6 has been empirically developed. In the above example
shown in Table II, entries (2, 11), (3, 12), (4, 1), (5, 2) are con-
sidered as possible matches. Isolated entries that have been consid-
ered as possible matches so far are then eliminated because they
are not locally supported by their neighbors. At this point, entries
along the path that are considered as matches must be sequences
consisting of at least two consecutive diagonal entries. The exam-
ple shown in Table II does not have any isolated entry, and hence
entries considered as matches remain the same.

Since the sphericity value of each entry is derived from mapping
a model landmark and its two adjacent landmarks to a scene land-
mark and its adjacent landmarks, a sphericity value that is close to
one not only indicates that the model and the scene landmark match
well locally with each other but also implies that their two respec-
tive adjacent landmarks match well with each other. The final step
is to check the values of the entries that are considered as matches
along the path. If the entry has a value that is greater than 0.9, its
adjacent diagonal entries will also be considered as matches. In
Table II, since all entries that are considered as matches between
the model and the scene landmarks have sphericity value greater
than 0.9, their respective adjacent diagonal entries are considered
as matches. Thus, entries (1, 10) and (6, 3) are also considered as
matches; they are adjacent to entries (2, 11) and (5, 2), respec-

tively. In this example, model landmarks 1, 2, 3, 4, 5, and 6 match
with scene landmarks 10, 11, 12, 1, 2, and 3, respectively.

B. Location Estimation and Matching Verification

After determining the landmarks of a model that match well with
those in the scene using HDP, we next estimate the location of the
model object in the scene, and verify the hypothesis that this model
object is in the scene. Location of the object in the scene is esti-
mated by finding a coordinate transformation consisting of trans-
lation, rotation, and scaling that maps the matched landmarks of
the model to the corresponding scene landmarks in a least square
sense. A score based on the least squared error of the mapping is
used to quantify the overall goodness of the match between the
model and the scene.

Continuing from the earlier example, the wire stripper is mapped
into the scene, as shown in Fig. 10, by the least square coordinate
transformation derived from the matched pairs of landmarks be-
tween the model and the scene. Note that if a priori knowledge of
the scale of the object in the scene is available, the scale factor
derived from the least square coordinate transformation can be used
as an additional parameter for verifying the match.

The least squared errors only quantify how well a portion of the
model landmarks match with the corresponding scene landmarks.
A small error indicates that the portion of the model landmarks
match well with the corresponding scene landmarks. It does not,
however, account for the overall goodness of match. Denote € as
the least squared error derived from the matched pairs of landmarks
between the model and the scene. To account for the overall good-
ness of the match between the model and the scene, we use the
following heuristic measure which penalizes incomplete matching
of the landmarks of the model:

1.0 + n=-2 1 n-2 € fork = 3
. — | lo — = 3,
- k-2) ®l\k-2))°
Y fork =0,1,2
(9)
where
n = is the total number of landmarks of the model,
k = is the number of model landmarks that match the scene

landmarks, and
€/(k (scale factor)), i.e., € is the normalized least squared
error.

ol
Il

Note that k < n. The scale factor is derived from the coordinate
transformation. The heuristic measure, €', which can be regarded
as the error measure for the overall goodness of match between the
model and the scene, is referred to as the match error. If only one
or two model landmarks match those in the scene, the least squared
error is always zero because there always exists a coordinate trans-
formation that perfectly maps a set of one or two points to another
set. We consider such cases where two or less model landmarks
match with those in the scene as undetermined cases; i.e., these
cases have insufficient evidence of match between the model and
the scene. The logarithmic term of the match error serves as a pen-
alty factor for incomplete matching of the model landmarks. When
all model landmarks match those in the scene (k = n), the match
error equals the normalized least squared error. The penalty is larger
when less model landmarks match those in the scene (k is smaller).
In the earlier example, since all the model landmarks match those
in the scene, the match error value of 0.62 is the same as the least
squared error. The hypothesis of the model in the scene is finally
determined by the value of the match error. With a small error we
accept the hypothesis while with a large error we nullify the hy-
pothesis. The decision strategy of the landmark-based shape rec-
ognition is thus a thresholding operation. If a match error is above
a threshold, the match is considered correct; otherwise, the match
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Fig. 10. The result of mapping the wire stripper into the scene shown in
Fig. 9 by the least square coordinate transformation.

is considered incorrect. In our study, this threshold is set empiri-
cally.

C. Computational Complexity of Hopping Dynamic
Programming

Let N = min (n, m) denote the minimum between the number
of model landmarks and the number of scene landmarks. It can be
deduced from the transition rules of HDP [18] that the computa-
tional complexity of HDP is bounded from above by

(N - 1)2 additions and 2N(N — 1) comparisons,
and is bounded from below by
0.5(N — 1)2 additions and (N° — 1) comparisons when
N is odd, or
(0.5N? — N + 1) additions and N* comparisons when N is even.

As compared to [17] which has a complexity bounded between
O(n*) and O(n), the HDP has a complexity of O(N?).

The above computational complexity does not include any other
overhead, such as switching between the forward and the backward
procedure, looping, data transfer, etc. In general, as seen in the
examples shown in Section III, each object is usually represented
by less than 50 landmarks. It is thus computationally inexpensive
to perform the landmark matching task by HDP.

VI. EXPERIMENTAL RESULTS

In the following examples, landmarks in the scene are extracted
based on the cardinal curvature points using w = 20. Consider again
the scene shown in Fig. 9, the results of performing the landmark
matching task between the scene and each of the tool models shown
in Fig. 2 are summarized in Table III. Models that match well with
the objects in the scene are those with the smallest match errors.
Although the wire cutter is not in the scene, the match error be-
tween the wire cutter and the scene is quite small. The reason for
this small match error is that the relative positions of the landmarks
of the wire cutter are similar to those of the wire stripper which is
in the scene.

Fig. 11 shows a more complicated scene which consists of six
overlapping objects. Compared to their respective models, the spe-
cialty plier has been rotated by 20° and scaled by an area factor of
0.5. The wrench and Halmahera has been rotated by 90°; the
spacecraft has been rotated by 180°. Luzon has been scaled by an
area factor of 1.4, and Borneo has been rotated by 90° and scaled
by an area factor of 0.6. Compared to their respective model land-
marks, three out of six of the landmarks of the specialty plier, one
out of six of the landmarks of the wrench, two out of seven of the
landmarks of the spacecraft, two out of eight of the landmarks of
Halmahera, five out of eighteen of the landmarks of Luzon, and
three out of seven of the landmarks of Borneo are missing. With
respect to each model, those landmarks in the scene not belonging
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TABLE III
THE SUMMARY OF THE RESULTS OF MATCHING THE TOOL MODELS WITH THE
SCENE SHOWN IN FIG. 9. IDENTIFIED OBJECTS ARE INDICATED BY ***7’.

Models Model! figure | Total Number | Number of Match Error
numbers of Model matched model
landmark landmarks

wrench * 2b 1.98
needle-nose plier 2d 4 oo
wire cutter 2e 7.39
pecialty plier 2¢ 6 43.02
wire stripper * 2a 6 0.62

Fig. 11. A scene which consists of six overlapping objects—Borneo, Lu-
zon, Halmahera, spacecraft, specialty plier, and wrench. Each landmark
is labeled and indicated by an **X.”’

TABLE IV
THE SUMMARY OF THE RESULTS OF MATCHING THE LIBRARY OF OBJECTS
SHOWN IN FIG. 2 WITH THE SCENE SHOWN IN FIG. 11. IDENTIFIED OBJECTS
ARE INDICATED BY “**’".

Models Model figure | Total Number | Number of Match Error
numbers of Model matched model
landmark: landmarks
wrench * 2b 6 4 0.74
needle-nose plier 2d 4 0 oo
wire cutter 2e 6 2 oo
pecialty plier * 2 6 3 7.89
wire stripper 2a 6 2 oo
Borneo * 2g 7 5 11.75
I * 2h 8 6 0.57
Luzon * 2i 18 14 0.78
Mind: 2j 13 3 54.59
New Guinea 2k 11 5 127.74
1 i 21 9 4 18.08
pacecraft * 2f 7 5 0.55

to the model are considered as extraneous landmarks. The results
of matching each model object of the library with the scene are
summarized in Table IV. Again, the models that correctly match
with the scene have the smallest match errors. Figs. 12-17 show
the results of mapping Borneo, Luzon, Halmahera, spacecraft, spe-
cialty plier, and wrench into the scene, respectively.

Now consider a scene which consists of three overlapping ob-
jects, as shown in Fig. 18(a). The gray level value of the object
region is 160, and the background is 96. Compared to their re-
spective models, the needle-nose plier has been scaled by an area
factor of 0.3, and the spacecraft has been rotated by 90° and scaled
by an area factor of 0.6. The scene contour together with its land-
marks is shown in Fig. 18(b). Although all the landmarks of the
needle-noise plier appear in the scene, part of their sequential order
is lost due to occlusion. Six out of the seven landmarks of the
spacecraft appear in the scene, but only three (17, 18, 19) are in
the correct sequential order. Nine out of thirteen landmarks of Min-
danao are in correct sequential order. The results of matching each
model object of the library with the scene are summarized in Table
V.

To simulate the effects of noisy data, a zero mean i.i.d. Gaussian
random variable is added to each pixel of the image. The noisy
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Fig. 12. The result of mapping Borneo into the scene shown in Fig. 11.

Fig. 13. The result of mapping Luzon into the scene shown in Fig. 11.

Fig. 14. The result of mapping Halmahera into the scene shown in Fig.

image is then thresholded at 128. The contours of the resulting
regions in the thresholded image are traced, and the longest contour
from which landmarks are extracted is used to represent the object
contour in the noisy image. We will consider the noisy image as
the image of the scene. Note that no attempt has been made to clean
the noisy image.

Denote o as the standard deviation of the Gaussian random vari-
ables. The signal to noise ratio (SNR) of the noisy image is defined
as:

64
SNR = 20 log — dB,
4

Fig. 15. The result of mapping the spacecraft into the scene shown in Fig.
11.

Fig. 16. The result of mapping the specialty plier into the scene shown in
Fig. 11

Fig. 17. The result of mapping the wrench into the scene shown in Fig.
11.

where 64 is the difference between the gray level values of the
object region and the background. Fig. 19 shows the landmarks
along the object contour extracted from the noisy image with a 3
dB SNR. The results of matching each model object of the library
with the scene are summarized in Table VI. The sequential order
of the landmarks in the scene compared to the respective model
landmarks are lost. Only the match between Mindanao and the
scene has a smaller error, and the rest are either mismatched or
undetermined. Fig. 20 shows the landmarks along the object con-
tour extracted from the noisy image with a 6 dB SNR. The exper-
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Fig. 18. (a) A scene which consists of three overlapping objects—Min-
danao, spacecraft, and needle-nose plier. (b) Extracted scene landmarks.
Each landmark is labeled and indicated by an ** X"

TABLE V
THE SUMMARY OF THE RESULTS OF MATCHING THE LIBRARY OF OBJECTS
SHOWN IN FIG. 2 WITH THE SCENE SHOWN IN FIG. 18(b). IDENTIFIED
OBJECTS ARE INDICATED BY " *7°

Models Model figure | Total Number | Number of Match Error
numbers of Model matched model
landmark Jandmark
wrench 2b 6 3 77.11
needle-nose plier * 2d 4 4 0.24
wire cutter 2e 6 2 oo
specialty plier 2¢ 6 2 [ oo
wire stripper 2a 6 4 13.96
Borneo 2g 7 2 oo
Halmahera 2h 8 3 137.97
Luzon 2i 18 4 261.62
* 2j 13 10 1.40
New Guinea 2k 11 2 oo
Sulawesi 21 9 3 140.39
pacecraft * 2f 7 3 8.22
3
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Fig. 19. Landmarks along the object contour extracted from the noisy im-
age with SNR = 3 dB.

imental results are summarized in Table VII. When the sequential
order of the landmarks in the scene are not severely changed com-
pared to those of the respective models, matches are correctly de-
termined yielding small match error values.

MAY 1990
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Fig. 20. Landmarks along the object contour extracted from the noisy im-
age with SNR = 6 dB.

TABLE VI
THE SUMMARY OF THE RESULTS OF MATCHING THE LIBRARY OF OBJECTS
SHOWN IN FIG. 2 WITH THE SCENE SHOWN IN FIG. 19. IDENTIFIED OBIECTS
ARE INDICATED BY “**"°

Models Model figure | Total Number | Number of Match Error
numbers of Model matched model
landmark landmark
wrench 2b 2 )
needle-nose plier * 2d 4 0 o
wire cutter 2e 0 L)
pecialty plier 2c Q oo
wire stripper 2a 6 3 78.17
Bormneo 2g. 7 3 14.42
Halmahera 2h 8 3 114.58
Luzon 2i 18 6 171.81
Mind: y * 2j 13 6 18.09
New Guinea 2k 11 3 116.42
Sulawesi 21 9 4 53.22
pacecraft * 2f 7 4 1608
TABLE VII

THE SUMMARY OF THE RESULTS OF MATCHING THE LIBRARY OF OBJECTS
SHOWN IN FIG. 2 WITH THE SCENE SHOWN IN FIG. 20. IDENTIFIED OBIECTS
ARE INDICATED BY ""*"°

Models Model figure | Total Number | Number of Maich Error
numbers of Model matched model
landmarks landmark
wrench 2b 6 2 o
needle-nose plier * 2d 4 3 2.92
wire cutter 2¢ 6 3 62.56
specialty plier 2c 6 2 oo
wire stripper 2a 6 4 7.75
Bomeo 2g 7 3 121.68
Halmahera 2h 8 3 158.96
Luzon 2i 18 S 159.37
Mindanao * 2 13 6 1447
New Guinea 2k 11 3 2070
___Sulawesi 2] 9 3 66.15
spacecraft * 2f 7 3 17.02

VII. CONCLUSIONS

The experimental results have demonstrated that the landmark
matching task can handle occlusion reasonably well. It is difficult
to theoretically analyze the performance of the landmark matching
task which are, in many cases, problem dependent. The perfor-
mance depends on the quality of the extracted scene landmarks.
and the number of correct landmarks in a scene that are detectable.
From Section [V, the match error is undefined if two or fewer land-
marks of a model are correctly matched with the scene landmarks.
Therefore, when matching landmarks of a model with thosc in a
scene, at least three landmarks in a scene that correspond to the
model must be detectable. In addition, part of the sequential order
of the detectable landmarks must be preserved. From the experi-
mental results, it is safe to say that an object in a scene can be
recognized as long as more than half of its landmarks in the scene
can be detected in the correct sequential order. It is also important
to note that distortion in landmark locations does not degrade the
matching performance as much as distortion in the sequential order
of the landmarks.
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On Curve Matching

HAIM J. WOLFSON

Abstract—Two algorithms to find the longest common subcurve of
two 2-D curves are presented. These algorithms are based on conver-
sion of the curves into shape signature strings and application of string
matching techniques to find long matching substrings. Then direct
curve matching is applied to the corresponding ‘candidate’ subcurves
to find the longest matching subcurve. The first algorithm is of com-
plexity O(n), where n is the number of sample points on the curves.
The second one, while being theoretically somewhat less efficient,
proved to be robust and efficient in practical applications. Both algo-
rithms solve the problem for general curves without being dependent
on some set of special points on the curves. The algorithms have indus-
trial applications to problems of object assembly and object recogni-
tion. Experimental results are included. The algorithms can be easily
extended to the 3-D case.

Index Terms—Computer vision, curvature, curve matching, ma-
chine intelligence, object recognition, part assembly, pattern recogni-
tion, string matching.

I. INTRODUCTION

The problem of finding the best fit between two curves is of
central importance in robotic applications of computer vision. This
problem appears in various assembly tasks requiring a robot to put
two pieces together along their matching boundary, e.g., ‘‘puzzle
assembly’” [1]-[3]. Another major application for such an algo-
rithm is in recognition and location of partially occluded objects in
an overlapping scene [4]-[6]. Since two-dimensional objects are
completely described, both globally and locally, by their closed
boundary curves, the detection of partially occluded objects partic-
ipating in a composite scene can be done by matching the boundary
curve of the scene with the boundary curves of candidate objects,
and trying to find out whether they have a *‘long enough’” matching
subcurve. This method is particularly attractive in recognition of
partially occluded objects, because in such a situation no use can
come of global object characteristics, and only properties which
are preserved locally, such as the visible boundary curve, can be
taken into account. The method can also be applied to three-di-
mensional objects which are flat enough, or have a small number
of stable positions, so that the orthogonal projection of each such
position can be taken as a 2-D model. Curve matching algorithms
also have potential applications in finding correspondence between
maps and terrain images. An earlier version of Algorithm II of this
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