IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993 491

Steering a Robot with Vanishing Points

Rolf Schuster, Nirwan Ansari, and Ali Bani-Hashemi

Abstract—The paper analyzes the use of vanishing points for steering a
robot. Parallel lines in the environment of the robot are used to compute
vanishing points which serve as a reference for guiding the robot. To
accomplish the steering task, three subtasks are performed: detection of
straight lines, computation of vanishing points, and robot steering using
vanishing points. Straight lines are detected by employing a high precision
edge detector and a line-fitting algorithm. The cross product method
introduced by Magee and Aggarwal is modified to make the detection
of vanishing points appropriate for an indoor environment. Properties
of vanishing points under camera rotation and translation are derived.
Using these properties, the location of the vanishing points can serve as
a reference for steering the robot. A model of the robot environment is
defined, summarizing the minimum number of constraints necessary for
the method to work. Finally, the limitations as well as the advantages of
using vanishing points in robot navigation are discussed.

1. INTRODUCTION

This paper analyzes and investigates the usefulness of vanishing
points for steering a robot. The objective is to steer a mobile robot
based on the vanishing points of parallel lines in its environment.
The overall analysis can be described in three sections. Section II
briefly describes a method for extracting straight lines in the robot
environment. Section III describes the computation of the vanishing
points based on the detected lines. In Sections IV and V, positions
of the vanishing points are integrated in the steering process of the
robot. Furthermore, a model of the robot environment summarizing
the essential assumptions which are necessary for the method to
work is defined. Note that vanishing points are quite useful to detect
accurate robot orientation but they are insensitive to robot translation,
and hence the method is not capable of detecting the robot position.
Section VI presents experimental results, and concludes with remarks
on the usefulness of vanishing points in robot navigation.

II. EDGE DETECTION AND LINE FITTING

A hierarchical edge detector [1] that combines the first and second
derivative operators is used to detect the edges. Both the first and
second derivative operators are applied separately to the original
image. Then the results are combined by accepting only those zero-
crossings produced by the second derivative operator as an edge point,
if at the same location, the result of the first derivative operator is
above a certain threshold. Thus one can make use of the precision
of the second derivative operator (zero-crossings), and “mask out”
the high frequency image noise by the first derivative operator. The
Sobel and the Laplacian of Gaussian (LoG) operators are used as
the first and second derivative operators, respectively. The line fitting
algorithm uses recursive subdivision to derive raw lines from the
edges. Raw lines are approximated by straight lines using a least
squares fit. A detailed discussion on the method can be found in [1].
The resulting image in Fig. 1 (the bottom one) demonstrates clearly

Manuscript received September 4, 1992; revised March 18, 1993.

R. Schuster is with Siemens AG, ZFE ST SN61, Otto Han Ring 6, N-8000
Munich 83, Germany.

N. Ansari is with the Electrical and Computer Engineering Department,
New Jersey Institute of Technology, University Heights, Newark, NJ 07102.

A. R. Bani-Hashemi is with Siemens Corporate Research, Inc, 755 College
Road East, Princeton, NJ 07540.

IEEE Log Number 9212614.

Fig. 1. The top image is the original image, and the bottom image results

by applying the edge detection and line fitting algorithm.

how precisely the edge detection algorithm detects various types of
edges in the original image.

III. DETECTION OF VANISHING POINTS

A fundamental problem in computer vision is how, given a
two-dimensional (2-D) image, to derive information about the three-
dimensional (3-D) space. One method to derive information about
3-D space from 2-D images is by finding the vanishing points.

A. Concept of Vanishing Points

The concept of vanishing points is closely related to the properties
of perspective projection [2]. At this point it is convenient to define
the following camera model: the origin of the system coincides with
the center of the lens and the z-axis with the optical axis. The image

1042-296X/93%$03.00 © 1993 IEEE

492 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

Image Plane

Gaussian
Sphere

l12
x

Fig. 2. Gaussian sphere and computation of the vector pointing towards the
intersection of two line segments (f denotes the focal length).

plane is defined by the equation z = f, where f is the focal length.
Hence, the plane is located in front of the center of the lens.

Let ! be a straight line through the base point Py = (2o, yo, z0) in
3-D space. The equation of ! can be written as v = vo + Avq, with
vo = (%0, %0, 20)" and vg = (a, b, c)*. Projecting a point P, which
is on the straight line ! into the image plane by perspective projection
results in a point P; in the image plane, where P; = (zi, ¥, i),

= f.’l'0+)\(1
T 20 + Ac

o yo + Ab
yi = (f—zg +,\c) (1
zi = f.

As A approaches infinity, we can neglect Py = (2o, yo. 20), and thus
P; approaches the vanishing point V;. One can define the vanishing
point V; = (x4, 1, 1) of a straight line ! as follows:

o Zo+Aa\ _ ./a
m—,\lgr;of(zo+/\c>_f(2)

o yo+ A\ _ (b
y'_,\lggof(zo+)\c)_f(c) @
zn=f.

Here it is assumed that ¢ # 0, i.e., the straight line is not parallel to
the image plane. If ¢ = 0, the vanishing point V; does not exist (or V;
is infinitely far away in the image plane). Note that the vector pointing
in the direction of the vanishing point V; is parallel to the direction
of the straight line I. For later reference it is useful to define two
properties.

Property I The vanishing point Vi of a straight line ! in 3-D
space must lie on a line L in the image plane. Any segment of line
1, projected onto the image plane, is part of line L.

Property 2 Let (2 be a set of parallel lines in 3-D space. Then all
lines of {2 must have the same vanishing point Vg.

All these findings about the concept of vanishing points are well
understood and are partly described in [2]-[5].

B. Cross-Product Method

There are various methods to determine the vanishing points in a
2-D image [3]-[8]. Some methods are preferable depending on the
requirements imposed by the application and the heuristics available
from a priori knowledge of the 3-D scene. In the following, we
describe the cross-product method that has been suggested by Magee
and Aggarwal [9], and is based on a previous work by Barnard (4].

The approach uses the Gaussian sphere to represent points in the
image plane (see Fig. 2). Any vector to a point in the image plane

alpha / degrees
0 90 180 270 360

8
o

& 4
k]
3

90

Fig. 3. Two-dimensional accumulator array representing the Gaussian
sphere.

can be mapped onto the Gaussian sphere (centered at the origin). Any
vector from the origin to a point, mapped onto the Gaussian sphere,
can be uniquely described in terms of azimuth o (the angle between
the projection of the vector onto the zy-plane and the z-axis) and the
elevation 3 (the angle between the vector and the zy-plane).
Magee and Aggarwal [9] suggest a computationally efficient way to
find the intersections of line segments. They find the vector pointing
towards the line intersection using three cross products. Considering
two line segments ;2 and I34 in the image plane (see Fig. 2), we can
define four vectors to the start and end points of the line segments as

r xr2
Pi={Y), P2=| Y2
f f
x3 T4
ps=|ys |, andp,= | ysa |. 3)
f f

The vectors p,, p, and p;, p, are pointing towards the line segments
112 and I34, respectively. Using these definitions, we can find the unit
normals to the planes defined by two vectors, i.e., ni2 and na4,

X
N = P1 X Py @)
Ip1 X pol
X
nyy = P3 X Py (5)
[ps X Pl

and thus the vector ¢ along the intersection of the planes,

x; T;

. ni2 X N34 1 -
t=| ¥ | = = Yi |- (6)

|n12 X ﬁa4| |n12 X ﬂ34| —

Z Z

Combining (4), (5) and (6), the components T;, 3; and z; can be
computed by

Ti = (z2 — 21)(z3ya — T4ys) — (24 — T3)(Z1Y2 — T291)

)]
i = (y3 — ya)(z1y2 — T2y1) — (31 — y¥2)(T3ya — Tay3)

®)
% = (24 — x3)(y1 — y2) — (22 — 21)(y3 — y4). ®

If the line segments or their extensions have an intersection, the
vector i is directed towards the point of intersection. If the lines are
exactly parallel in the image plane, ¢ = 0. Owing to the properties of
cross products, vector ¢ might point in the opposite direction (with
z; < 0), rather than towards the point of intersection. The algorithm
for determining intersections has to consider this case.

Recall that the center of the Gaussian sphere is located at the
origin of the coordinate system. The accepted intersection vector { is
represented by its azimuth o and elevation 3:

a = arctan(&)
Ty

(10)

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

Fig. 4. Image of a ceiling pattern under perspective distortion.

\ .

Fig. 5. Line segments in ceiling pattern shown in Fig. 4.

—_— . (1
V()2 + (9:)?

Since we do not know which line segments form a common vanishing
point, we have to compute all intersections between all possible pairs
of line segments (N(N — 1)/2 possible intersections for N line
segments). In order to limit the number of intersections, we do not
accept a vector ¢ if it points towards the interior of either of the
two line segments that are used to compute vector i. In general,
vanishing points cannot lie between the start and the end-point of a
line segment since vanishing points are defined with A approaching
infinity ((2)). After all pairs of line segments have been processed,
we have to cluster the intersections, i.e., we have to decide which of
the intersections are close enough, such that they could contribute to
the same vanishing point.

3 = arctan

C. Modified Cross-Product Method

The cross-product method is appropriate for images with strong,
distinguished vanishing points and only few accidental intersections
which do not belong to any vanishing point. In general, this is
not true for real indoor or outdoor images. In particular, in an
indoor environment we cannot assume that the vanishing point will
be located within a cluster which contains more than a certain
number of intersections, and we are confronted with many accidental

493

alpha / degrees

270 360

[} 90 180

beta / degrees

Fig. 6. Acc lator ion of all intersections of the line segments

in Fig. 5 (no intersection filtering applied).

alpha / degrees

beta / degrees

Fig. 7. Accumulator representation of intersections of the line segments in
Fig. 5 (with intersection filtering applied).

intersections which do not contribute to a vanishing point. In order
to use the cross-product method in an indoor environment with
the requirements mentioned above, we modify the following three
features of the algorithm: First, additional constraints are used to
filter line segments, intersections and (a, 3) associations at different
stages of the algorithm. Second, a different representation of (a, §)
associations and a different clustering algorithm are adopted. Third,
a windowing technique based on a priori knowledge is used to select -
the vanishing point from clusters of intersections.

We define a 2-D array (accumulator) with 128 x 32 elements.
Each accumulator element represented by (a,b) contains a list of
line segments and the count of those line segments. We quantize the
occurring (c, (3) association in the accumulator such that the values of
a (0° to 360°) are mapped into a (128 sections) and the values of §
(0° to 90°) are mapped into b (32 sections). See Fig. 3 for illustration.
Thus we define a grid on the Gaussian sphere with an angular width
and height of 2.81°. This representation of the Gaussian sphere has
advantages as well as disadvantages [4], [10]. It is easy to implement
and it provides the basis for fast algorithms. The disadvantages are
that areas of accumulator elements are not uniform, and a singularity
occurs at b = 32 (3 = 90°). However, we can still use it for our
problem since we are not working close to 3 = 90° (the camera is
tilted towards the ceiling).

The modified cross-product method can be summarized in five
steps.

Step 1: Compute vector ¢+ which points towards the intersection of
the line segments using three cross products. Here we add
two constraints in order to limit the number of intersections
and avoid inaccurate intersections. We consider only those
line segments which are longer than a minimum length /min .
We do not intersect line segments that are approximately
parallel and very close to each other [11].

For the indoor environment, the constraint used in the
original cross-product method falls short of filtering out the
“accidental” intersections (see Fig. 6). Additional constraints
are necessary:

Step 2:

494 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

¢ Do not accept intersections that are interior to the extended
line segments. Line segments can be extended on both sides
of the segments by a constant factor.

* Do not accept intersections that lie within the image size (in
our case, 512 x 480 pixels), or the image size extended by
a constant factor.

Experiments show that the constraint using extended lines is
sufficient for ordinary indoor scenes. In the case of images
from an indoor ceiling grid, it is practical to accept only
those intersections which are outside of the image. Clearly,
this constraint is not necessary for the method to work but
is included to increase the computational efficiency.
Compute the angles o and § of the accepted intersec-
tion. Then we find the accumulator grid element (an,bn)
corresponding to the intersection («,) on the Gaussian
sphere. The line segments associated with the intersection
(v, B) are added to the line list of the accumulator element
(an,bn), and the line count of the accumulator element
(an,bn) is increased. After all intersections are processed,
the accumulator provides the number of line segments that
intersect within each grid element on the Gaussian sphere.
Given the line count in each accumulator element, we have to
cluster adjacent accumulator elements which have non-zero
line count. The clustering algorithm scans the accumulator
twice and labels connected elements (8-connected) that have
nonzero line count, with the same label.

Compute the centers of the intersections within the clusters.
For computational efficiency we approximate the center of
the intersections by weighed averaging. With the line count
as the weight for each accumulator element, the center of a
cluster (@center, Gcenter) €an be computed by

Step 3:

Step 4:

Step 5:

o K
Qcenter = w (12)
128 Zi:l n;
90° T K | nabs
Beenter = = 13)
323

where n; represents the line count, a; and b; indicate the
position of the element in the accumulator and K is the
number of accumulator elements in that cluster. The constant
factors only transform the accumulator representation into
angles in degrees.

This modified cross-product method provides the direction of all
vanishing point candidates uniquely determined by azimuth ccenter
and elevation fcenter- Now the desired vanishing point has to be
selected from the group of candidates. Provided that there exists some
a priori knowledge of the approximate location of the vanishing point,
it is possible to define a window in the accumulator indicating where
the vanishing point is expected. Then a vanishing point which has
the highest line count within the window is selected.

D. Results

Fig. 4 shows the original image of a room ceiling with a common
grid pattern, texture, fans and lamps. The detected lines are shown
in Fig. 5. The ceiling grid contains two groups of detected lines
(the horizontal and vertical line group). The lines of each group
should form one common vanishing point. The modified cross-
product method is applied to the detected lines. Fig. 6 shows all
the line intersections resulting from Fig. 5 without any filtering
constraints. Fig. 7 shows the resulting intersections detected by the
modified cross-product method. The gray value of the accumulator
elements indicates the number of intersections located within that area

v
ceiling
H 4 lines
z 2
y j
image plane
f
0 X
T, &
Tt &
} et '
0 L, T, L, L x

Fig. 8. Coordinate systems. (a) Definition of the room coordinate system and
camera coordinate system. (b)—(c) Definition of the angles x and 7.

of the Gaussian sphere (the darker the more intersections). Three large
clusters are detected. The smallest cluster around (o = 280°,8 =
53°) results from the vertical line group. The other two clusters on
the right and the left of the first one result from the horizontal line
group. Since these lines are almost parallel, their angle of intersection
is very small, and thus the error of intersection is very large [11]. The
intersections of that line group are not located within one accumulator
element only, but they spread over a large region. As 3 approaches
0° the vanishing point on the image plane approaches infinity. Hence
for a useful measurement of the vanishing point 8 should not be
close to 0°.

Since there are more horizontal lines than vertical lines detected,
the clusters resulting from the horizontal lines have a higher line
count. If we want to select the cluster of the vertical lines as a
vanishing point, we have to use a window (provided the approximate
location of the vanishing point is known). Fig. 7 shows the window
used to select the cluster of the vertical lines as the vanishing point.

The result demonstrates that the modifications made to the original
cross-product method are necessary to enable the algorithm to work
in an indoor environment. These results illustrate the advantages
and limitations of vanishing points as well as the usefulness of the
modified cross-product method.

IV. ORIENTATION FROM VANISHING POINTS

In general, any approach to robot navigation that uses any type of
sensors requires a model of the environment of the robot. In other
words, if we want to obtain information about the environment of
the robot via sensors, we first have to define that environment. In

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4,

Vanishing Points

in moving camera system
2000.0 —— ————————
—— T const x e
pconst
1000.0 |- i pess .
.
& 00 '
NS H
>~ * n=-15 1
-1000.0 |- : .
[O
ES 4 LS ES
X
—2000.0 s , L :
—4000.0 —2000.0 0.0 2000.0 4000.0
x/Pixel

Fig. 9. Movement of vanishing points as a function of the angles u and 7.

the following we define a model for the robot environment which
contains a minimum number of constraints necessary for steering a

robot based on vanishing points.

A. Definition of the Generic Model

Kriegman and Binford [12] suggest the definition of a generic
model. A generic model is a single model that describes a large class
of objects. This implies that the generic model of an environment is

as general as possible and uses a minimum number of constraints on
the environment. This ensures that the method is applicable to many
different environments.

The generic model for steering a robot guided by vanishing points
can be defined by three constraints:

* A minimum of two parallel, straight lines are detected by the
camera.

* The direction of the lines is known with respect to the robot
environment.

* The direction of the lines is not parallel to the image plane of
the camera.

This generic model describes any environment which provides par-

allel, straight lines with any known direction (not parallel to image

plane). This covers a wide range of different indoor and outdoor

environments. There are no assumptions necessary on the orientation

of the surfaces containing the lines (roads, ceilings, floors, walls).

Only the direction of the lines with respect to the environment has
to be known.

B. Vanishing Points with Moving Camera

We can define two coordinate systems (see Fig. 8), one representing
a room in an indoor environment (room system, z', ¥’ and z'-axes),
and the other representing the space the camera points to (camera
system, z, y and z-axes). Let p}, = [ka',ky', k2, k] be the vector
representing the point P’ in the room system, and let P be the
corresponding point and p, = [kz,ky, kz, k] be the vector in the
camera system. The vectors are given in homogeneous coordinates,
where k is an arbitrary nonzero constant. Then P’ can be transformed

AUGUST 1993
-‘-
s
s rarajlel
kY |/ lines
[POS 1
A POS 0
(a)
Image Plane POS 0
Vanishin
...... n const o & iy g
]
S 0
>
Tve
0 ©
Ho=0 o
No= -35
x / pixel
(b)
Image Plane POS 1
...... Vanishing
1} const p=20° O Point
ns=20°
®
£
> IR
VP
! p=-30°
n=-35°
x / pixel

(©)

Fig. 10. Vanishing points used for robot steering. (a) Robot in two positions.

(b)~(c) Vanishing point in the image plane for robot position 0 and 1.

into P using

Py = P’hTﬁu%n (14)
where
[1 0 o0 0]
0 1 00
T= 0 0 1 0 as
| -T. -T, -T. 1]
[cosp O sinp 0]
01 00
Ra= sing 0 cosp 0 ae)
| 00 0 lj
[1 0 00
_ |0 cosp —sinp 0
Ry = 0 sinp cosy O an
| 0 0 01

(see Fig. 8 for the definition of the translation components T, T},
T, and the angles p and 7).

Equation (14) can easily be used to transform lines'from ’the room
system into the camera system. In general, a line, I = I, + A I,

495

496 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

paralle!
/ lines

POSO /&t
(@)
image Plane POS 0
Vanishing
ssess 1 const o S
]
i o
~ 0 =
> Ho=0 o
n,=-35
Hy 0
-
P b= 20:
VP, ns20
x / pixel
(b)
Image Plane POS 1
esanne Vanishi
1 const oEm
Hr= Bu- Py
2
o
s 0 p=-30°
°
n,=-35
(23 by
:l\ b= 20:
——
Py N 20
x / pixel VP,
©

Fig. 11. Vanishing points used for robot steering with rotated and tilted
parallel lines (¢ 1., 71). (a) Robot in two positions. (b)—(c) Vanishing point in
the image plane for robot position 0 and 1.

in the room system (with I = (zoyozo)' and Iy = (a'b'¢’)!) can
be transformed into the corresponding line, I = I, + Alg, in the
camera system (with Iy = (zoyo20)® and 14 = (abc)’). To simplify
the derivation (without loss of generality), the vector I}, to the base
point of line I’ is assumed to be (L, H,0). Note that there are no
assumptions made regarding the direction of the line '. Using (14),
we transform the vector I, (base point) and the direction vector I,
separately using

L = [TR,R, (18)

and

Ly, = l'lih&ngvl (19)
where 1., = [Ln,H.0,1] and I;,, = [a',¥', ¢, 1]. The subscript
indicates homogeneous coordinates. In (19) it is not necessary to
apply the translation T since the direction vector is an independent
vector, without a specific location associated with it. Equations (18)
and (19) determine the parameters of line I in the camera system
uniquely. Hence, after converting loa, lar into Cartesian coordinates,

L |

]

/_

\\

Fig. 12. Detected lines in ceiling pattern with the robot facing three different
directions, # = —30° (top), # = 0° (middle) and p = +30° (bottom).

we can write the line equation of I = Il + Alg as

(Lo —Tz)cosp+ T sinp

(H—-Ty)cosn+ (L, — T;)sinpsinn — T cos psinn
(Ty — H)sinn+ (Lo — Ty)sinpcosn — T, cos pcos n

1=

a cosp — c'sinp
4+A| b cosn+ (a' sinp + ¢ cosp)sing
—b'sinn + (@' sin p + ¢’ cos p) cos

(20)

This is the transformation of line I’ (room system) into line I (camera
system) in terms of the location and orientation of the camera in
the room system. This enables us to determine the location of the
vanishing points as a function of the parameters of the line I. Applying
(2) on line I given by (20), the vanishing point in the image plane is
a'cosp — c'sinp

—b'sinn + (a’sinp + ¢’ cospu)cosn
b’ cosn + (a’sinp + ¢’ cosp)sinn

—b'sinn + (a’sinp + ¢’ cosu)cosn

Vi=f @1

It is assumed that line I’ is not parallel to the image plane which
implies that the denominators in (21) are not equal to zero. From (21)
it is clear that the vanishing point V; is determined by the direction
of the line I, i.e., I, = (a’,b', '), and the turn and tilt of the camera

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

alpha / degrees

o
k]
o
g
©
<
8
2
(a)
alpha / degrees
[
[
I
&
©
]
°
o

(b)
alpha / degrees

180 270 360

beta / degrees
»
o«

90 ek

(c)

Fig. 13. Detected intersection and vanishing points with the robot facing
three different directions, 4 = —30° (a), ¢ = 0° (b) and pu = +30° (c).

in the room system (i. 7). Therefore any line I’ with the direction I}
has the same vanishing point V; no matter where it is located in the
room (Property 2). The vanishing point V; does not depend on the
location of the line I’ or the translation (Z:.T,.T-). Therefore it is
an intrinsic property of vanishing points that they are insensitive to
translation [5]. Since there are no assumptions made concerning the
orientation of the lines (a’, b, ¢') and the orientation of the camera
(. m), it is clear that (21) is valid for the general case defined by
the generic model.

C. Vanishing Points from Ceiling Lines

To illustrate the properties of generalized vanishing points, (21) is
simplified by adding constraints to the generic model. We further
assume that the lines are located in the ceiling of the room. In
addition, the lines are assumed to be’paral’]el to ,th,e +'-axis of the room
system (see Fig. 8). Then the line I =1{, + A I can be rewritten as

, Ly |0
Il=|H|+X|0 (22)
0 1

Using the simplified direction vector Iy in (21), the vanishing point
P

497

r # - actyal tum

F= - computed rotation

Fig. 14. Experimental resuits of using vanishing points to determine rotation
g for robot turn p (see text).

17 is defined by
—tan p

cosn

tann
1

v=f (23

Rewriting (23), the components of the vanishing point V; in the image
plane are

—f tan
o “ftanp

and y; = ftann. (24)
cos

Xy
Now we can analyze the movement of vanishing points in the image
plane for any given movement of the camera (x.7). Assuming the
camera is pointing in the direction of the z-axis (1 = n = 0),
the vanishing point is located at the origin of the image plane
(V7 = (0.0)). If the camera is rotating (x variable) with a constant tilt
(1 constant), the vanishing points form a horizontal line in the image
plane (see Fig. 9). For each rotation ; there exists a unique vanishing
point on that horizontal line. If the camera tilt is varied (n variable)
while there is no rotation (x constant), the vanishing points are located
on a symmetrically shaped curve in the image plane (see Fig. 9). If u
or 15y approaches 90 degrees, the vanishing point approaches infinity.
In any other cases, (24) enables us to predict the location of the
vanishing point for any given rotation x and tilt » of the camera.

V. STEERING THE ROBOT

The previous sections assume a rotating camera that is located on
the floor (z, z-plane) of the room system. Now the robot is located
on the floor and the camera is mounted on the robot such that it
is pointing in the direction the robot moves to. The angle x now
represents the turn of the robot, the angle # still represents the tilt
of the camera (see Fig. 8).

To illustrate the practical application of the method we first define
a model of the robot environment which includes several constraints
and assumptions. Later in this section we generalize the environment
applying the generic model. The objective here is to steer the robot
parallel to the straight lines located on the ceiling of a room. These
lines can be some kind of a ceiling pattern or a ceiling grid. The
camera is pointing up to the ceiling (7 < 90°) and takes pictures of
the ceiling lines. We determine the vanishing point by the modified

498 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 4, AUGUST 1993

cross-product method. Knowing (a, 3), the location of the vanishing
point, we can use

sin a
tan 3

z,=f andy; = f (25)

tan 3
to find (x;,y:) on the image plane. Substituting (25) into (24) and
solving for u and 7 yields

p = arctan SBacosy and 7 = arctan sma) (26)
tan 8 tan 3

These equations can be used to compute the turn and tilt of the robot
for any given vanishing point. For steering the robot the tilt of the
camera is assumed to be constant. Thus (26) can be used to compute
the rotation of the robot necessary to align it with the ceiling lines.
Fig. 10(a) shows four ceiling lines and the robot in two positions. In
Position 0, it is facing the desired direction, parallel to the ceiling
lines (zo = 0°). Therefore, the vanishing point V Py is located on
the y-axis in the image plane (see Fig. 10(b)). Because of the tilt of
the camera (o = —35°), the vanishing point is located below the
origin. In Position 1 the robot is turned to the left (0 = 30°). This
results in a vanishing point shifted to the right. Fig. 10(c) illustrates
the movement of the vanishing point (V P;). Based on the vanishing
point (V' P;) and the tilt 7, (26) can be used to determine yr, i.e.,
the angle the robot is rotated such that it is oriented parallel to the
ceiling lines

cosacosr,). an

= arctan
hr (tan 8

This method of computing the rotation zr can be used in a recursive
navigation procedure, where the robot repeatedly determines the angle
IR, corrects its orientation and moves forward.

Now we can generalize the robot environment according to the
generic model. A minimum of two parallel lines are detected by the
camera. The direction of the lines with respect to the room system
is represented by two angles ur and 7L, where pr denotes the
direction of the line with respect to the y', z'-plane and 7, represents
the direction of the line with respect to the &', z'-plane. For the
generalized environment it is possible to compute the rotation of
the robot by

pr = arctan (Mﬂ) - pL 28)

tan 3

in order to turn the robot into the correct direction. Fig. 11 illustrates
that concept.

VI. CONCLUSION

The current implementation of the steering process assumes an
environment with lines located in the ceiling of an indoor scene
where the robot is supposed to move on the floor in a direction
parallel to the lines. Fig. 12 shows images of a ceiling pattern with
the robot pointing in three different directions. The line segments have
been detected by the line detection algorithm described in Section II.
Fig. 4 shows the original image of the ceiling pattern. In the top
image of Fig. 12, the robot is turned to the left (o = —30°). In
the middle image, the robot is facing the direction parallel to the
lines (o = 0°). In the bottom image, the robot is turned to the
right (o = 30°). Fig. 13 shows the results of the detected vanishing
points corresponding to the three respective directions which the robot
points to. The accepted intersections are displayed in the accumulator
array representing azimuth and elevation (o, 3) on the Gaussian
sphere. The vanishing point is selected within the window shown
in the accumulator. The location of the vanishing point within the
window is marked with a cross. The («, 3) location of the vanishing

point is used to compute the angle between the ceiling lines and the
direction the robot is pointing to. Experimental results for computing
the rotation pr from detected vanishing points are shown in Fig. 14.
The graph shows the computed pr as a function of robot turn z,
where pr represents the rotation necessary to point the robot into
the direction of the lines. The error associated with the computed
pr is approximately +1.5 degrees. This is sufficient for steering
the robot considering the inaccuracies of the robot movements itself.
However, the accuracy of the system can be improved (at the expense
of computational efficiency) by either reducing the grid size of the
accumulator or using the continuous representation for intersections
as described in the original cross product method [9].

One limitation of the current system is that detected lines should
never be parallel to the image plane. This limits the maximum rotation
of the robot to approximately £90° from the direction of the lines.
This problem can be overcome by using two cameras. They have to
be mounted on the robot such that they have the same tilt, and the
angle between their optical axes is 90°. Since vanishing points are
insensitive to translation, the location of the center of projection of
the cameras is not crucial in determining the orientation of the robot.
Provided that both cameras detect the same set of parallel lines, this
setup would enable the system to determine the orientation in any
direction (from 0° to 360° with respect to the lines).

The experimental results demonstrate the usefulness of vanishing
points in determining the orientation of a robot. Vanishing points
provide a reference for detecting robot rotation. This is true not only
for parallel ceiling lines, but in general for any two parallel lines
in indoor or outdoor environments. This opens a vast field of appli-
cations of this steering technique. Like any other sensor, vanishing
points have intrinsic limitations in their sensing capabilities. They are
not sensitive to translation which imposes a serious problem in navi-
gation. The robot can be shifted towards a wall or an obstacle, and the
vanishing point would still be in the same place. Hence, integrating
the vanishing point technique with other sensors are recommended.

REFERENCES

[1] R. Schuster, N. Ansari and A. Bani-Hashemi, “A hierachical edge
detector using the first and second derivative operators,” in SPIE Proc.:
Intell. Robots and Comput. Vision XI, vol. 1824, 1992, pp. 230-241.

[2] A. Rosenfeld and A. C. Kak, Digital Picture Processing, Vol. 2, second
ed. New York: Academic, 1982.

[3] S. A. Shafer, T. Kanade and J. R. Kender, “Gradient space under
orthography and perspective,” in Proc. Workshop on Comp. Vision:
Representation and Control, 1982, pp. 26-34.

[4] S. T. Barnard, “Methods for interpreting perspective images,” J. Artifi-
cial Intell., vol. 21, no. 4, pp. 435462, 1983,

[5] B. Caprile and V. Torre, “Using vanishing points for camera calibration,”
Int. J. Comp. Vision, pp. 127-139, 1990.

[6] J. R. Kender, “Shape from texture,” Ph.D. dissertation, Dept. Comput.
Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1980.

[7]1 L. Shigang, S. Tsuji and M. Imai, “Determining of camera rotation from
vanishing points of lines on horizontal planes,” in Proc. 3rd Int. Conf.
Comp. Vision, Osaka, 1990, pp. 499-502.

{8] G. Wei and Z. He, “Determining vanishing point and camera parameter:
New approaches,” in Proc. 9th Int. Conf. on Pattern Recog., 1988, pp.
450-452.

[9] M. J. Magee and J. K. Aggarwal, “Determining vanishing points from

perspective images,” Comp. Vision, Graphics, and Image Proc., vol. 26,

no. 2, pp. 25667, 1984.

L. Quan and R. Mohr, “Determining perspective structures using hier-

archical hough transform,” Pattern Recog. Lett. , vol. 9, pp. 279-286,

May 1989.

H. Nakatani, R. S. Weiss and E. M. Riseman, “An error analysis for

surface orientation from vanishing points,” in Proc. SPIE, vol. 974, pp.

187-194, 1988.

D. J. Kriegman and T. O. Binford, “Generic models for robot naviga-

tion,” in Proc. 1988 IEEE Int. Conf. Robotics Automat., vol. 2, 1988,

pp. 746-751.

[10]

(11]

(12

