470

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995
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Abstract— This paper reports a new method for optimizing
satellite broadcasting schedules based on the Hopfield neural
model in combination with the mean field annealing theory.
A clamping technique is used with an associative matrix, thus
reducing the dimensions of the solution space. A formula for
estimating the critical temperature for the mean field annealing
procedure is derived, hence enabling the updating of the mean
field theory equations to be more economical. Several factors on
the numerical implementation of the mean field equations using
a straightforward iteration method that may cause divergence
are discussed; methods to avoid this kind of divergence are also
proposed. Excellent results are consistently found for problems
of various sizes.

I. INTRODUCTION

PTIMIZATION of large connectionist problems is a

long-standing topic in various disciplines, with many
different approaches and applications. The problem discussed
here, optimization of the broadcasting time from a set of
satellites to a set of ground terminals (the satellite broadcast
scheduling (SBS) problem), is one of these categories that
must be solved for satellite communication systems. In their
papers [1], [2], Bourret ef al. solved this problem by using a
neural network in which neurons are connected in a three-layer
model. To find the optimum, a sequential search is used. The
search is controlled by a competitive activation mechanism
based on a dynamic prioritization of satellites. The sequential
search, which is local in scope, is also very time-consuming. In
addition, two additional premises (a set of distinct priorities of
satellites and a set of suitable requests which are very difficult
to determine for large problems) are also needed. Therefore,
alternative efficient optimization methods are explored to solve
this problem.

In this paper, a new method is presented to solve the SBS
problem. The work is based on a Hopfield neural network
[3]. [4], where all neurons are completely connected, in
combination with the mean field annealing theory (MFT)
which was recently found to be an efficient method in solving
large connectionist problems [5], [6]. The main advantage
of using the MFT method lies in the fact that the search
for optima is parallel in the global sense, and hence the
execution time is shorter than other stochastic hill-climbing
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methods [7]-[9]. In contrast to the method mentioned in [1],
[2] which requires the two premises mentioned above, they
are not required for our method. Using our method, excellent
solutions are consistently found for problems of various sizes.

Instead of using a special neuron model (graded neuron)
[10] to reduce the solution space and to avoid a destructive
redundancy, a conventional neuron model clamped by an
“associative matrix” is used in this work. This clamping
technique is often applied in learning algorithms [5], [11],
[12], resulting in a large decrease of the solution space.

Due to the nonlinearity of the sigmoid function, a so-called
critical temperature 7, exists. Instead of using the “trial and
error” approach to determine T, a formula for estimating 7,
is derived. Experiments show that the estimated values using
this formula are within 10% from the experimental (trial &
error approach) results.

In this work, a type of divergence caused by the numerical
implementation of the mean field equations is analyzed, and
some schemes are suggested to avoid this kind of divergence.

This paper is organized as follows. In Section II, we briefly
describe the satellite broadcasting problem, and map it onto a
neural network framework. This is followed, in Section III,
by a brief review on some recently proposed optimization
methods with emphasis on the MFT. A set of mean field
equations are also derived in this section to solve the SBS
problem. In the next section, the determination of the Lagrange
parameters and the derivation of the formula for T, are
presented. The numerical calculations and simulation results
are discussed in Section V. Finally, conclusions are presented
in Section VL

II. MAPPING THE SBS PROBLEM ONTO A NEURAL NETWORK

Since the successful launch of the first commercial satellite
Telstar in the 1960’s, satellite communications has grown into
a multibillion dollar industry. Most commercial systems are
launched onto the geostationary orbit in spite of the disadvan-
tages such as the inability to cover the far northern latitudes
[13], the high costs for launching, and the requirement of
very large antennas. The bulk traffic required for international
telephone service over satellite systems is the key factor
for adopting geostationary orbit where the earth stations and
satellites appear stationary, i.e., no “hand-over” from a satellite
to another is needed. As the demand for various telecom-
munications applications becomes increasingly sophisticated,
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Fig. 1. An orbiting satellite communication system.

there are situations where orbits other than geostationary orbit
become desirable. In this case, it is necessary to schedule
the “hand-over” of operations from one satellite to another
[14]—this is the problem addressed in this paper. This is a
relatively new problem that few have addressed because 1)
there were only a few low-altitude satellites in place, and
2) most were used for surveillance and data collection that
may have proprietary and classified constraints. It emerges
as an important problem, however, since potential advantages
of a low altitude system such as reduced satellite power
requirement and antennas, smaller propagation delay and high
resolution images have prompted the industry to build such
a system. For example, ORBCOMM proposes to operate a
system of about 20 low altitude satellites, and GLOBALSTAR
is considering a larger system of about 40 satellites [15].
Other players are following suit. Thus, the satellite broadcast
scheduling is becoming a crucial problem. An European group
has recently attempted to address this problem [1], [2].

The problem discussed here is related to a low altitude
satellite communication system. As shown in Fig. 1, this
system consists of a set of satellites and a set of ground
terminals. Unlike the geostationary communication systems,
the satellites here are usually located in a polar orbit with a
rather low altitude and they always orbit around the earth.
Hence, the ground terminals only need to employ low-power
transmitters and portable antennas. The system can provide
global communications coverage including the two polar re-
gions which still cannot be achieved by the geostationary
systems [13].

Our work is to maximize the broadcasting time for each
satellite such that all the following constraints are met:

1) A satellite cannot broadcast to more than one ground

terminal at a time;

2) A ground terminal cannot receive information from more
than one satellite at a time;

3) A satellite must broadcast as much as possibly close to
its requested time, and the system cannot allocate more
time than requested unless the requested time for the rest
of the satellites are completely satisfied;

4) A satellite only broadcasts when it is visible from a
ground terminal.

To solve this problem, we adopt the following nota-
tion.

S is the set of satellites consisting of Ng elements
(satellites)

S={abed-}={1,23 i, Ns}.

Here, a, b, c,d, - - - denote the different satellites each of
which can be indexed by an integer number, %, ranging
from 1 to Ns.

A is the set of ground terminals consisting of N4
elements (terminals)

A= {zaya‘rvwa""}: {11273w"'7j7'”aNA}-

Here, z,y,x,w, - - - are different ground terminals; each
of which can also be indexed by an integer number, j,
ranging from 1 to Ny;

T is the set of time slots consisting of Np elements
(time slots); each of which can be indexed by an integer
number, k, ranging from 1 to Nr;

R is a vector denoting the set of requested number
of time slots given by the problem. It consists of N,
elements (time slots)

R= [7"1. To, T3, " TNS]t.

Here, r1,79,73, -+, TN, are the requested time slots for
satellite 1,2,3,---, N;, respectively.

U is a vector denoting the set of maximum number
of time slots for each satellite allocated by the system.
It consists of N, elements

U= [U],U2,7L3,' : '7uNs]t'

Here, uy,u2,us, -, un, are the number of time slots
allocated for satellites 1,2,3,---, N, respectively.

Our goal is to find the optimal schedule satisfying the

following two criteria simultaneously:

1) The schedule must be legal, that is, all constraints are
fulfilled;

2) The distance between the vectors, U and R, must be
minimized.

A. Neuron Encoding

In this paper, we denote a neuron by S;;x. Each neuron is
turned “on” or “off” depending on whether or not satellite ¢
is assigned to transmit to terminal j during time slot k. Thus,
Sijr is mathematically defined by

1 if satellite ¢ is assigned to
Sijk = terminal j during time slot k; 1)
0 otherwise.

B. Associative Matrix A

From the above definition of neurons, it is clear that some
neurons are always fixed to zero because of Constraint (4)
mentioned earlier. This is due to the fact that no ground
terminal is visible to the satellite even when all ground
terminals are idle. Usually, the number of neurons which are
nulled owing to Constraint (4) is large. We should reflect this
constraint into the neural network by clamping those neurons
which do not meet Constraint (4) to zero throughout the
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optimization. To do so, we define an associative matrix A
with Ng X N4 rows and Ny columns

" A,
A=| A
LAN
[ ai a112 A1INy
_ | @1nNa1 A1N42 0t GIN4Np )
-aNsNAl ANgNANp

where A; is the submatrix (N4 x Nr) associated with Con-
straint (4) imposed on satellite ¢; a;;; takes on zero or one
according to

1 if satellite 7 is visible to
terminal 7 at time slot k;
0 otherwise.

3

Aijk =
From the definition of A and the problem constraints, two
important relations are observed:
1) The maximum number of requested time slots T max(i)
for satellite ¢ must be less than or equal to the number
of nonzero columns of the submatrix A;
Nr

Tmax(i) < E (“nonzero columns in A;”).
=1

G

2) The usable time slots u; must be less than or equal to

Tmax(i)-

&)

AT
u; = Z Zsijk < Tmax(s).
7k

The above relations are useful since they can be used to check
for the illegality of a solution.

C. Formulation of the Energy Function

In optimization problems, one needs to formulate a particu-
lar objective function which is to be optimized. Our problem
is a constrained optimization problem. To map a constrained
optimization problem onto a Hopfield neural network [3], [4],
we have to embed the constraints onto one function known as
the energy function which consists of two terms: the cost term
and the constraint term. The cost term is the optimization cost
(objective) function that is independent of the constraint term.
This constraint term is the penalty imposed on for violating
the constraints.

E = w. x “cost” + wy, x “penalty” (6)
where w, and w,, are the Lagrange parameters [16]. These two
terms must counteract each other. In our case, the cost term is
negative and the constraint term is positive. The optimization

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995

is then achieved by minimizing the energy function. Here, the
cost term or the energy due to the cost, Ey, is defined by

S A T

Ey = —%ZZZ(SiJk - Sijk)
Tk

which reflects the idea of maximizing the total broadcasting
time. The negative sign implies that minimization is to be
applied.

The following penalty terms will be defined according to
the four constraints:

1) A satellite cannot broadcast to more than one ground
terminal at a time. The statement implies that all of the
following equations must be satisfied simultaneously because
they represent all possible violations.

)

ZZZ Z(Sm'sijlk)=0 ®)
J n#i
S T A A A
EZZZ Z (Sijk - Sijik - Sijok) =0 (9)
ik § hFIRFNAT
S T A A A A
O IPIDS >
ik § hFiRFNFE] Im#EERFENE]
. (Sl]k . Sij;k . Siij ..... Sijmk) =0. (IO)

Obviously, when the total number of ground terminals in-
creases, the number of equations required to impose this
constraint increases. Fortunately, however, it can be shown
that if the first equation is satisfied, the remaining equations
are also satisfied simultaneously.
Lemma 1: If (8) is satisfied, Constraint (1) is met.
Proof: Consider (9)

zz‘zz S

i J Jt#J Jz¢11¢1

:ZZ Z Sijzkz E(Sijk'sijxk)-

ik a#n#d J 1#i

Sijk = Sijik * Sijok)

By definition, each neuron takes on either one or zero. Thus,
if (8) is true, then every term in (8) must be zero

Sijk - Sijie =0 Vi k,j1 # 7.
Substituting (11) into (9), we obtain the following

ZZZZ Z (SU" Sijk - Sljzk)

g 3 1#3#FRFET

an

By deduction, if (8) is true, the remaining equations required
to impose Constraint (1) are all satisfied simultaneously. Thus,

only (8) is needed to impose Constraint (1). Q.E.D.
Hence, the pena]ty term for this constraint is
&—ZZZsz%w (12)

FENIE
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2) A ground terminal cannot receive information from
more than one satellite at a time. Constraint (2) is a dual
to Constraint (1). This can be seen by simply replacing the
z,Yy, 2, w, with a, b, ¢, d in (8) through (10), respectively. Thus,
the penalty term for this constraint is similarly defined by

A T § §

Er=Y """ "(Sijk - Sivje).
ik

i iy

(13)

3) A satellite must broadcast as much as possibly close to its
requested time slots, and the system cannot allocate more time
than requested unless the requests for the rest of the satellites
are completely satisfied.

The first part of the statement implies that the distance
between U and R should be minimized. Thus, the penalty
term, E3, corresponding to this statement is

s AT 2 s
By=3 |2 Sun—ri| =) (wi-r)® (14
i ik i
where
AT
=303 S
ik
The second part of the statement implies that u; —r; Eg :;.

Note that this has been incorporated in the cost term E.

4) A satellite broadcasts only when it is visible from a
ground terminal. This constraint is imposed by the clamping
technique which will be discussed in Section III. That is,
neurons are forced to 0 (complied to Constraint (4)) by using
the associative matrix. The total energy function for the SBS
problem defined in the Hopfield framework becomes

E=wy - Eg+w;-E+ws-FEy+ws-E3 (15)

where wq, w;,ws, w3 are the Lagrange parameters used to
weigh the significance of Ey, F1, E> and FEs, respectively.

III. THE MFT FRAMEWORK FOR THE SBS PROBLEMS

In the previous section, the SBS problem has been mapped
onto the neural network framework, and the energy function
has been formulated. The remaining task is to employ a
robust method to minimize the energy function. Our prob-
lem is a large scale combinatorial optimization problem in
which the energy function to be optimized is a function of
discrete variables. A search for the optimal configuration is
computationally expensive, if not impossible.

Conventional methods such as gradient-based methods
which are local in scope are not applicable. Recently, several
robust methods such as simulated annealing [7], [17] and
genetic algorithm [18] have been proposed to solve large
scale problems; however, not every problem can be mapped
onto the framework suitable for these methods. MFT [5],
[6], [19], [20] is derived from the Stochasticly Simulated
Annealing (SSA) by incorporating the SSA mechanism with
the Hopfield Energy function. It has been shown to be robust
in solving large scale problems, and more efficient than SSA.

The main difference between SSA and conventional meth-
ods is that SSA searches for the global minimum by using
the gradient descent method in a stochastic manner. It allows,
under certain conditions, the search to climb uphill, thus
providing the SSA a mechanism to escape from local minima.

In SSA, there are two conceptual operations involved: a
thermostatic operation which schedules the decrease of the
temperature (an algorithm parameter), and a random relaxation
process which searches for the equilibrium solution at each
temperature.

In MFT the two operations are still needed. The thermostatic
operation is the same as in SSA; however, the relaxation
process in searching for the equilibrium solution has been
replaced by searching for the average (mean) value of the
solutions. Equilibrium can be reached faster by using the mean
[20], and thus the MFT speeds up by several tens to hundreds
times over the SSA.

The remaining question is whether the two solutions ob-
tained from the two respective relaxations are approximately
equal to each other. It has been proved by Peterson [5], [6] that
for large size problems which are really what we are interested
in and also, by experiments, even for small size problems, the
answer 1is true.

A. Mean Field Equations for the SBS Problem

In this section, we first briefly review the general mean
field equations. The notations are adopted from [5], [6], [10]
in which the detailed derivation can be found. The relaxation
in both SSA and MFT are made according to the Boltzmann
distribution [7]

P(S) = e BSVT 1z (16)

where S’ is any one of the possible configurations specified
by the corresponding neuron set
E(8') is the energy of the corresponding configuration;
T is the parameter called temperature;
Z is the partition function given by
7 = ZE—E(S’)/T
Sl
and the summation covers all possible neuron configurations.
In the mean field theory, instead of concerning the neuron
variables directly, we shall investigate their means (average)
by defining
Vi=(S)=1-Pp(S;=1)+0-Pr(S; =0)=Pr(S=1)
(18)

a7

and

V' = (S (19)
where S; is a neuron; V; is the mean of neuron S;; Pr(S; = 1)
and Pr(S; = 0) are the probabilities for S; = 1 or §; = 0,
respectively; S’ is any one of possible configurations; V' is
the mean configuration corresponding to S’. Thus, in the mean
field, (16) becomes

P(V')=e BVT 7 (20)
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and the discrete sum in (17) can be replaced by multiple nested
integrals over the continuous variables V; and U; [5], [6]

N o0 joo
Z=cH/ dv,.’/ dUle=FOVOULTY (1)
i=1v/ % —joo

where ¢ is a complex constant, and U’ {Uy, Uy,
-,Un}; F is called the effective energy given by

F(V'.U'.T)=E(V")/T+

v .
Z'(Uivi ~log <Z eSUi)>. (22)
i=1 s

As has been indicated by Peterson [5], {6], by using a saddle
point expansion of F', one could see that the partition function
Z is actually dominated by the saddle point, i.e.,

Z ~ CeF Vol T) 23)
where C is a constant, and (Vj, Up) is the saddle point of (21).
Thus, the statistical mechanism of the MFT governed by (20)
is likewise determined by the mechanism of the saddle point.
The saddle point can be obtained as follows

a(F) _
E1UA =0, 24
a(F) _
3(7) =0. 25)

Substituting (22) into (24)

o(F) u / sU )
—— =V, - Set e?Vil =0
o(U:) sz{zo,u ;
we obtain
Vi= <Z SeSU’>/Z eSYi, where s = {0,1}.
s s 26)
Substituting (22) into (25)
aF) O(E)1
V) Vi) T
we have
__9E)1
U; = V)T 27

Equations (26) and (27) are known as the general MFT
equations.

For our SBS problem, replacing S, defined in (1) by Vj;x
and substituting it into (27) and then into (26), we now get
1.elUip(.0Ui Ui

elUi  0Ui 1 4 Ut

1 eVt 1 1 2Vi-1-¢W

2 Tr e 273 T2 ey

1 1eVi-1 1 1 U;
=3t aTyen Tt ptanh (7)

AE) 1
a(VUk) 2T)

Vije =

=0.5+ 0.5 tanh ( (28)
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Fig. 2. Depicting the function of v; ;.

By incorporating the clamping technique discussed in Section
II-B, we obtain the MFT equations for the SBS problem as
follows
O(E) 1
Vijk = aijk| 0.5+ 0.5tanh | — ———~-—=a;; @
o= (03 +05tamn (~ 557 ) ). @

Equation (29) is depicted below in Fig. 2.

IV. ALGORITHM PARAMETERS

Before solving the MFA equations, several parameters
must be specified. They are the Lagrange parameters,
wg, w1, ws, w3, the critical temperature T, the saturation
temperature and the annealing schedule. These are discussed
below.

A. The Lagrange Parameters—uwy, w1, w3

In general, good solutions can be obtained for a reasonably
wide domain in the space of wp, w1, w2, ws. Some guidelines
are suggested here, however, to assure that our choices of the
parameters lie within this domain.

In the mean field domain, all the energy functions
Ey, E1, Ey, E5 become the functions of mean field variables
as follows

S A T
%ZEX}C: ijk - 1]k (30)
i
S T A A
= ZZZ Z( ijk * Vulk) (31)
ik 1#i
A T S S
= Z }:Z Z(Vi]‘k -Vijr) 32)
i ki u#
AT 2
= (ZZVm - . (33)
1 7 k

Consider the derivative of the total energy function in the
mean field domain

AE) _ O(Eo) +w d(F1)
a(Vigr)  0Vigk) — 0(Vigk)
(E) d(E3)
+ wa B(Vl]k) w3 B(W]k) 34)

The parameter wy governs the relative balance between the
“cost” and ‘“constraint” terms. wj,ws,ws refiect the rela-
tive importance among Constraints (1) through (3). Since
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O(E1)/0(Vijk) and O(E2)/d(Viji) are similar in nature and
much more important than the others, they are thus weighed
equally, and are weighed heavier than the others. For ex-
ample, we may choose: wy = 0.4,w; = 2.0,wy = 2.0.
Consider the effect of each individual parameter on any
neuron. Note that, from (31) and (32), 9(E1)/3(V;jr) and
O(E,)/0(V;jx) are always positive, and thus by (29), the
value of neuron Vjjx due to E; and E, approaches “0.”
From (30) O(Ey)/0(V;jx) is always negative, making neu-
ron Vi approach “1.” 9(E3)/9(Vi;x) may be positive or
negative depending on whether the requested time slots have
been satisfied, thus making the neuron approach “0” or “1,”
respectively.

Since we have already determined w; and we, we are
left to determine the relationship between wg and ws. In
other words, we may now assume Constraints (1) and (2) are
already satisfied, ie., By = Ey = 0 = 9(E1)/d(Vijk) =
O(E2)/0(Vijr) = 0. Consider the extreme case in which
Vijr takes on either O or 1. In this case, for each fixed i,
if the number of neurons having values “1” are more than the
requested time slots (see (33)), this implies that the system tries
to allocate more time slots than requested. Thus, we should try
to force the system to turn “off”” a neuron. Note that the neuron
Vijk that is “on” has 0(Ey)/9(Vi;x) = —1 (see (30)), and
O E3)/0(Vijk) = 2(2;42{%-,0 —71;) > 2 (see (33)) because
the system has allocated more time slots than requested, i.e.,
EA%T Vije — i > 1. To turn off this neuron (see (34))

A(E) d(Ey) (Es)

>0=>
(Vi) A Vin) o (Vig)

+w >0,

A T
:>w0(—1)+2w3 ZZV;J‘]C—T‘,' >0,
J k

= wo(—1) + 2wz >0,
= w3 > 0.5wg.

Now consider the other extreme case in which the number
of time slots allocated by the network is less than the
requested time slots. In this case, the network should try
to turn on a neuron. Note that the neuron V;;. that is
“off” has d(Eg)/d(V;jx) = 0 and 9(E3)/d(V;;i) <0. Thus,
O0(E)/8(Vijr) <0, the neuron is turned “on” as long as
ws > 0.
In conclusion, we may use the following rule of thumb

wo = 0.4, w1 = ws = 2,w; > ws > 0.5wy. 35)

B. The Critical Temperature, T

In MFT, our task is to solve for the neuron value Vi
at different temperatures through a set of nonlinear equations
(29). For convenience, this equation is rewritten as follows

AE) 1
Vijk — 0.5a;;, = 0.5tanh | — ————~—a;x |- 36
ijk ijk ( 8(‘/1]]:) 2T ijk ( )
To gain insight on the dynamics in obtaining a solution,
consider Fig. 3. In this figure, while the abscissa represents the
neuron V;x, the ordinate represents various functions of V;;.
On . the other hand, while the ordinate represents an arbitrary

% y2,y3 p 10 Stanb( 2D
i

04 Yie
24 !
-4 v : T T v
-2 -1 0 1 2 3
Fig. 3. The dynamics in obtaining a solution.
§
X,¥2,y3 L)
3
y3 ’ Y
Y2
0.5tanh(-x/21) | b

Fig. 4. Mapping a point from y» to ys3.

variable X, the abscissa represents 0.5 tanh(—X/2T'). The
straight line labeled by y1 represents the left-hand side of
(36). Here we only need to consider the case when a;j, = 1,
otherwise, V;;x = 0. The straight line labeled by y2 represents
the function 8(E)/9(Vijr). Note that in our SBS probiem,
from (30) through (33) , we obtain

o(E)

A(Vijx)
where m and B are constants, which is a straight line.
The discussion here, however, is also applicable to the
case when J(E)/0(V;jir) is no longer a straight line. As
mentioned above, the dashed curve represents the function
(0.5tanh(—X/2T)) in which the ordinate is X, and the
abscissa is 0.5 tanh(X/27T). It is readily seen from (36) that
we can map y2 through the hyperbolic tangent function [i.e.,
0.5 tanh(—y2/27)] to obtain the curve labeled by y3.y3
corresponds to the right-side of (36). Fig. 4 shows an example
of mapping a point on y2 to the corresponding point on y3
through the mapping, 0.5 tanh(—X/2T).

Note that Curve y3 and Line y2 intersect on the abscissa
axis at a point labeled B. The value of B depends on the state
of the network. Curve y3 and Line y1 intersect at A which is
the solution for (36). The abscissa value of A is the neuron
value of Vj;; at temperature 7.

Fig. 5 shows the behavior of Curve y3 at different temper-
atures. Note that at high temperature, Curve y3 becomes a
straight line with slope equal to approximately zero. Thus, the
solution at high temperature is V;;; = 0.5, i.e., the intersection
point between y1 and y3 is (0.5, 0). We thus have the following
Lemma.

Lemma 2: All neurons except those clamped by the asso-
ciative matrix, have values of 0.5 at high temperature.

= m(Vijx — B) 37)
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Sigmoid Function at High Temperature Y
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B 7\ i
Sigmoid Function at Low Temperature

Fig. 5. The solutions at high and low temperatures.

As the temperature is decreasing, however, the dash curve
and therefore y3 is becoming a signum function as shown in
Fig. 5. If B is greater than 1, it can be seen that in this case,
the intersection which is the solution is (1, 0.5), i.e., Vjjx = 1.
Similarly, it can be shown that if B is less than 0, the solution
is Vijk = 0.

Our goal is to determine the temperature parameter known
as the critical temperature at which a remarkable state tran-
sition takes place resulting in a deep drop of system energy.
From Lemma 2 all neurons except those which are clamped
have the same initial value of 0.5, and thus the remarkable
state transition likely occurs when neurons start acquiring a
value of I or 0, at which case the neurons start competing
for 1 or 0. We thus propose the following definition for the
critical temperature.

Definition: The critical temperature is the highest temper-
ature at which at least one neuron V;;; reaches 1 or 0 from
its original trivial state, i.e., 0.5.

Lemma 3: The critical temperature, T, for our SBS prob-
lem is approximately equal to

T.=m(2B -y —1)/4y (38)

where m, B and y are derived from the following system of
equations

(39)

2‘/11:‘_1:1/
(Vijk = B) =y.

ﬁm

Proof: From the above discussion and definition, the
critical temperature corresponds to the critical value of T in
(36) as the solution is making a transition from Ay to A
as shown in Fig. 5. In other words, the critical temperature
is obtained by solving for the parameter T in (36). Because
of the nonlinear term, tanh(.), in (36), it is difficult, if not
impossible, to obtain a closed form analytical solution. The
following approximation is made by expanding tanh(—z/2T')
by a Taylor series at x = 0, we have

T T 1 rx\3
tanh (~57) = ~37+ 51 () +

If we use only the first
tanh(—z/(2T)), (36) becomes

order term to approximate

0B 1
Vi 2T

Vi —1=

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995

-2

T T T
-2 -1 0 1 2 3

Fig. 6. The two possible solutions of (39).

Here, the nontrivial case that the neuron is not clamped has
been assumed, i.e., a;;x = 1. Substituting (37) to the above
equation, we have.

2‘/;jk —-1= f%m(Vijk - B)

Thus, the critical temperature can be obtained by solving the
set of equations as stated in (39). Solving (39) results in the
critical temperature as stated in (38). Here, y is +1 or —1
because the remarkable transition occurs when the neuron
reaches 1 or O from its original trivial value; ie., Vijr = 1
or 0 = y = £1. Furthermore, as shown in Fig. 6, if B>1
and m > 0, the solution V;;x = 1(y = 1). Likewise, if B <0
and m >0, the solution V;;; = 0(y = —1). Similarly, other
conditions can be summarized below

B>05 B<0.5
m>0 y=+4+1 y=-1.
m<0 y=+1 y=+1

(40)

Strictly speaking, when 0 < B <1, V;; does not take on 0 or
1, however, within a few iterations the particular V;;; will
converge to 1 or 0. Note that for a different neuron Vi1, B
may be different. As long as the estimated critical temperature
is higher than the true critical temperature, however, the
annealing theory guarantees that the system will converge to a
(near) global optima. Thus, for a given associative matrix A,
we shall solve for B using (37) for each neuron, and pick the
largest B. Q.E.D.

The following example illustrates the computation of the
critical temperature using Lemma 3.

Example 1: Let the associative matrix A and the vector R
of the requested number of time slots be the same as those
in Example 3 which will be described later in Section V-B,
and let wy = 0.3,w; = 2.0,w2 = 2.0, and w3z = 0.2. Here,
m = 2wz —wy = 0.4 —.03 = 0.1>0.

As discussed above, B is obtained by painstakingly check-
ing every neuron that will yield the largest solution to (37).
For this example, B = 12.

Since m>0 and B >0.5, then y =
0.5 xm x (B —1) = 0.55.

The critical temperature obtained through simulation results
which will be presented later in Example 3 is 0.51. This agrees
closely to the one computed above.

1. Hence, T, =
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C. The Annealing Schedule

We adopt the following linear annealing schedule starting
from the critical temperature

T(n+1)=09T(n)
where
41

The stopping criterion for the annealing procedure is defined
by the temperature at which the network is saturated. The
network is saturated if the following conditions are met.
1) All neuron values are within the range [0.0, 0.2] or
within the range of [0.8, 1.0] without any exception;
2) B85 (Vijk)?/N >0.95, where N is the number of
neurons that have values within the range of [0.8, 1.0].

V. NUMERICAL IMPLEMENTATION AND SOLUTIONS

When implementing the MFA algorithm numerically, the
straightforward iteration method below is used at each tem-
perature to obtain the steady state neuron values

A(E) 1

Y+l _ .

(V”k) = Qijk (0.5+0.5tanh ( 3(‘/5;)) 2Tll”k)>.
(42)

The superscript n indicates the iteration index. For each
iteration, there are many neurons to be updated. We can
either update all neurons synchronously or one after another
asynchronously. In practice, it is found that asynchronous
updating has a better performance. The procedure to schedule
the satellite broadcasting times using MFT is summarized
below:

1) For a given SBS problem, establish the associative
matrix A described in Section II-B;

2) Establish the coefficients wy, w;, we, w3 as discussed in
Section IV;

3) Determine the critical temperature 7. according to
Lemma 3;

4) Initialize neurons with random numbers as follows

‘/ijk = {05 + 0.2rand[—l, 1]}aijk; (43)

5) Anneal the network until the network is saturated ac-
cording to the saturation criterion defined in Section
IV-C.

6) At each temperature, iterate the MFT equations until the
following convergence criterion is met

S

A T
MY WG v <107 N,
ik

7

(44)

where N, is the number of nonzero neuron elements.
That is, we require that the averaged difference of a
neuron between two iterations to be within 1073,

0

- T T
-1 0 1 2

Fig. 7. Slope of y2 in the neighborhood of the solution is greater than 1.
P
14
0
a
-2 T T T T
.2 -1 0 1 2
Fig. 8. Slope of y2 in the neighborhood of the solution is less than 1.

A. Convergence

Divergence is one of the most difficult problems encoun-
tered in numerical calculations. There are several types of
factors which lead the calculation to divergence. Next, we
shall discuss the factors that will cause divergence in the
straightforward iteration method used to solve the SBS prob-
lem. Rewriting the straightforward iteration described in (42)

and ignoring the iteration index for the time being, we obtain
oE) 1
Vijk — 0501 = 0. h{ —-—————aix |- 45
ijk — 0.5a;5; = 0.5 tan ( B(V,:jk) 2Ta]k 45)
Let the left-hand side and the right-hand side of (45) be y;
and yo, respectively

y1 = Vijr — 0.5a;5x (46)
A(E) 1

=0. g ). 47

y2 =0.5tanh ( Vi) i ]k) 47

The solution for (45) is the intersecting point between Line
y1 and Curve yo as shown in Fig. 7. Consider the following
two cases in which the slope of y» in the neighborhood of the
solution are less than and greater than 1

Casel.
Case 2.

Fig. 7 depicts the condition corresponding to Case 1 and
likewise, Fig. 8 to Case 2. These figures show how the solution
evolves through the iteration procedure (45), indicated by the
arrows. Here A is the solution. The sequence of arrow a-b-
c represents one iteration. As shown in Fig. 7, the iteration
procedure diverges from solution A, while the procedure
converges to solution A in Fig. 8.

If %2 is moved such that the intersecting point B between
»2 and the abscissa is outside the range [0, 1], it can be shown

|the slope of ya| > 1;
|the slope of ya| < 1.
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prohibited region

T T
-1 [ 1 2 3

Fig. 9. The intersection Point B is outside the range [0, 1].

(see Fig. 9) that the iterating procedure will converge to the
solution. Unfortunately, the exact location of the intersection
point B is unknown because it will move dynamically during
the iterating process. In Case 2, the divergence caused by one
iteration is called local divergence. Local divergence may not
be a fatal divergence because the intersection point B may
move out of the range [0, 1] after a sweep of iterations (all
neurons are updated once). If the intersection point B always
lies within the range [0, 1], then the local divergence becomes
global. We shall avoid global divergence.

In the previous section, we point out that asynchronous
iteration is better than synchronous iteration. One reason is that
the asynchronous method has more chances for the intersection
point B to jump out of the [0, 1] range.

To avoid global divergence, one may adjust some parame-
ters such that the intersection point B is out of the range {0,
1]. The following are a few suggestions:

1) Adjust wo,w;, wa, ws;

2) Simply increase r;;

3) Use other iteration methods.

B. Solutions

We have implemented the proposed method to solve the
SBS problem of various sizes. We consider cases when the
requested broadcasting time is less than the maximum ca-
pacity the network can allocate, as well as cases when the
requested broadcasting time exceeds the maximum capacity
of the network. Cases of the first type are known as “small
request” cases, and cases of the second type are known as
“large request” cases. A network consisting of 108 neurons of
which 44 neurons are active due to clamping is used to solve
the following two examples. The last example shows a large
size problem solved by a network of 864 neurons.

The capacity of a neural network is an important measure
especially when the network is used as an associative memory
or a classifier. The capacity allows one to quantify the amount
of information the network can store or the number of patterns
the network can distinguish. In a Hopfield net, information is
stored as stable states. Hopfield net is known to have poor
scaling properties. That is, its capacity for a network with
binary neurons increases less than linearly [21], [22]. There
has been a growing interest to increase the capacity such as
using ternary neurons {23], [24], and subnetworking [25]. This
interesting topic is, however, beyond the scope of this paper.
Here, Hopfield net is used for optimization, and in combination
with mean field annealing, allows fast convergence and escape
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from local minima in search for a global optima. Moreover,
neurons take on sigmoidal nonlinearity rather than binary or
ternary values. As mentioned earlier, problems of various
sizes have been successfully solved by the proposed method.
Here, a large example which is presentable within a page,
consists of 864 neuron of which 400 are active. It corresponds
to a system with 8 satellites and 6 antennas, a reasonably
deployable system.

Example 2: Consider the SBS problem with four satellites,
three ground terminals and nine time slots. Constraint (4)
is defined by the Associate Matrix A and the requested
broadcasting time for each satellite is defined by R as follows

11010110 17
0010000T10
100111110
111100001
001000110
4_0000 101001
10100110 1|
0000O0O0GO0O0O
0000T1T1T1T1FP0
011000001
0000O0O0O0T11
1 001000 1 1

R=[2 2 2 2.

SOLUTION 1
wo = 0.5, w; = 2.00, wo = 2.00, w3 = 0.2.

SATELLITE 1 (Vy)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
SATELLITE 2 (Vy;i)

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SATELLITE 3 (Vi)

0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

SATELLITE 4 (Vi;i)

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

U=[3 3 3 3.

Here, U is the time slots allocated by the network.

SOLUTION 2
wo = 0.3, w; = 2.00,ws = 2.00,ws = 0.2

SATELLITE 1 (V3)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000
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SATELLITE 4 (Vi)

0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000
0.999 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000

U= 2 2 2.

Both solutions are legal, and sufficient to meet the requested
time slots, i.e., U > R. Solution 1 allocates more time slots
than requested because wg is larger, i.e., more emphasis is
placed to maximize the capacity.

Example 3: Consider the SBS problem with four satellites,
three ground terminals and nine time slots. Constraint (4)
is defined by the Associate Matrix A and the requested
broadcasting time for each satellite is defined by R as follows

1 1 01 01 1 0 17
00100O0OO0OT10P0
100111110
111100001
00100O01T10
A= 000101001
101001101}
000 0O0O0OO0TU 01
000011110
01 1000O0O0O0T1
00 0O0O0OO0OO0OT11
Ll 001000 1 1l

R=[9 8 7 6]
wo = 0.3, w; = 2.00, wy = 2.00, w3 = 0.2

SOLUTION

SATELLITE 1 (V7x)

0.000 1.000 0.000 1.000 0.000 1.000 1.000 0.000 1.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

SATELLITE 2 (Va;i)

1.000 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

SATELLITE 3 (V3;y)

0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 1.000 0.000 1.000 1.000 0.000

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995

\ E

T

o T T T T
0.2 04 06 08 10 12
Fig. 10. System energy at different temperatures.

SATELLITE 4 (Vy;;,)

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
U=[6 5 4 3.

In this example, the requested time slots are more than the
system can allocate. Though the system cannot meet the
request, it provides the maximum under the given constraints.
Fig. 10 shows the system energy at different temperatures.
The experiment shows that the critical temperature is 0.51
at which a remarkable transition of system (a deep drop of the
system energy) takes place. This agrees quite well with the
one computed in Section IV-B.

Example 4: A larger size problem: Consider the SBS prob-
lem with eight satellites, six ground terminals and eighteen
time slots. A and R defined in (x) (see preceding page) corre-
spond to the associative matrix and the requested broadcasting
time for the satellites, respectively. Note that the network
consists of 864 neurons of which 400 are active due to
clamping.

With wg = 0.3,w; = 2.00, w2 = 2.00,ws = 0.4, the
system produces the following solution which meets all the
constraints and the requested broadcasting time.

U=[4 7 4 11 12 1 13 2

See satellites 1-8 at the bottom of this page and on the next
page.

C. Summary of Results

Consistent results have been obtained for problems of larger
sizes at a higher cost of computation. Table I summarizes the
computational load of the above examples in terms of the
average number of iterations required to reach the optimal
solutions using the same weights but with varying initial
conditions. Each example was run 200 times using random
seeds for different initial conditions. Though the neurons
may not converge to the exact values for different initial

SATELLITE 1 (V3;%)
00 00 00 00 00
00 00 00 00 00
0.1 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.1
0.0

0.0
0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.1
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.9
0.0

0.0
0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
0.0
0.0
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SATELLITE 2 (Va;;)

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 3 (V3;)

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
1.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 4 (V)

0.0
0.0
0.0
0.0
0.0
0.9

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 5 (V)

1.0
0.0
0.0
0.0
0.0
0.0

1.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0

1.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 6 (Vg;i)

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.1
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 7 (Vi)

0.0
0.0
0.0
1.0
0.0
0.0

0.0
0.0
0.0
1.0
0.0
0.0

0.0
0.0
0.0
1.0
0.0
0.0

0.0
0.0
0.0
1.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

SATELLITE 8 (Vg;y)

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
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0.0
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0.0
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0.0
0.0

1.0
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0.0
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0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.3
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.1
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.9
0.0
0.0

1.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
1.0
0.0

0.0
0.9
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.9

0.0
0.0
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0.0
0.0
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0.0

0.0
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0.0
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0.9

1.0
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0.0
0.0
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0.0
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0.2
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0.0
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0.0
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0.0
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0.0
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0.0
0.0
0.0
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TABLE 1
SUMMARY OF RESULTS
Problems Average number of Tterations | Average number of
to reach steady state sweeps per iteration
Example 2 Solution 1 23 21
Solution 2 31 22
Example 3 3 27
Example 4 30 200

conditions, they are consistently either very close to 1 or 0.
It is intuitive that a larger problem requires more computation

as

demonstrated in the table.

VI. CONCLUSION

In this paper, we have presented a new method to solve the
satellite broadcast scheduling problem. The problem was first
mapped onto a neural network from which an energy function
is derived. Optimization is achieved by minimizing the energy

by

2)

3)

4)

5)

As

mean field annealing. Our key contributions include:

1) Formulate an appropriate energy function.

Introduce the clamping technique, and thus reduce the
computation.

Derive the estimated critical temperature of the algo-
rithm.

Discuss and suggest alternatives to avoid the diver-
gence of the numerical implementation of the proposed
method.

Demonstrate the robustness of our method by having
achieved good solutions for problems of various sizes.

compared to the previous method [1], [2], our method

excels in the following ways:

2)

1) Our method using MFT is parallel and global in scope,
thus achieving good performance and computational
efficiency.

Our method does not need to specify a set of distinct pri-
orities for the satellites to broadcast, and no assumption
is made on requiring a set of suitable requests.

In conclusion, MFT has been demonstrated to be an ef-
fective and robust optimization technique in solving the SBS
problem.
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