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Chair and Varshney have derived an optimal rule for fusing
decisions based on the Bayesian criterion. To implement the
rule, the probability of detection Pp and the probability of false
alarm Pp for each detector must be known, but this information
is not always available in practice. An adaptive fusion model
which estimates the Pp and Pr adaptively by a simple counting
process is'presented. Since reference signals are not given, the
decision of a local detector is arbitrated by the fused decision of
all the other local detectors. Furthermore, the fused results of the
other local decisions are classified as “reliable” and “unreliable.”
Only reliable decisions are used to develop the rule. Analysis on
classifying the fused decisions in term of reducing the estimation
error is given, and simulation results which conform to our

analysis are presented.
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I. INTRODUCTION

Distributed detection systems with data fusion
have been investigated widely in recent years [1-6].
The problem of decision fusion in a binary hypothesis
system was considered by Chair and Varshney [1],
and Thomopoulos et al. [6]. Chair and Varshney
[1] developed an optimal decision rule by using the
minimum probability of error criterion. Thomopoulos
et al. [6] proposed the optimal decision rule based
on the Neyman-Pearson test. They showed that the
optimal fusion rule is obtained by a weighed sum of
local decisions through a hard limiter. The weight
associated with each local detector indicates the degree
of reliability of the detector. Each weight is a function
of the probability of detection Pp and the probability
of false alarm Pr of the detector. The Pp and Pg
can be obtained when cither the distribution of the
observations at each detector is given, or when some
reference signals are provided to estimate the Pp and
Pr by an empirical method. However, in practice,
neither Pp nor Pr is known. Furthermore, since the
sensors are usually exposed to a changing environment,
the performance of each individual detector may not
always be the same, i.€., the Pp and Pr may vary with
time. We propose an adaptive system to estimate the
Pp and Pr. Without knowledge of the performance
of each detector, the proposed system is capable
of approximately estimating the Pp and Pr of the
detector in the course of performing the decision
fusion. :

Consider a binary hypothesis testing system
consisting of # local detectors with the probabilities
of two hypotheses Hy, H; denoted as P(Hy) = Py

and P(H;) = Py, respectively. Assume that under

each hypothesis, the observations at each detector

are statistically independent. Let u; and u denote

the decisions made by the ith detector and the fusion
center, respectively. When the ith local detector favors
the Hi hypothesis, u; = +1; otherwise u; = 1. The
output u is similarly defined. We let Pp; and Pr;
denote the probability of detection and the probability
of false alarm of the ith detector, respectively.

Chair and Varshney [1] showed that the optimal
fusion rule for the minimum probability of error
criterion is

n
+1,  if a+ au;>0

u= j=1 ®
-1, otherwise
where
Py
ao= log?% €3
Pn:
log—lﬂ, if u;=+1 .
a; = Prj ‘ v ‘3 4
. lo1 Pr; ‘1ffu<- 1 "()
& 1-— PDj’ ST
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Fig. 1.

Structure of the fusion system.

For the case Py = P; and the probability of false
alarm Pp; is equal to the probability of miss Py,
ao = 0 and the optimal fusion rule can be simplified
to

n
+1, if Y wiu;>0
j=1

u= )
-1, otherwise
where
w; =log %, for each j. )
The system structure is shown in Fig. 1, where
y= Z: wjlj. ©)
=

The structure shown in Fig. 1 is similar to a
single neuron system, in particular, the perceptron
[7]. If reference signals are given, they can be used
as a “reference” to train the system such that the
weights converge to the optimal values defined by
(5). However, in practice, such a reference is not
readily available and at the same time, the Pp and
Pr of a detector may vary with time. Since the fused
decisions are usually better than local decisions, they
can be considered as the reference. When the ith local
decision u; is equal to the fused decision u, then u; is
considered to be correct; otherwise, u; is considered
to be incorrect. Since u = sgn(y) = sgn(z:;:l wil;),
the fused decision u has already taken into account
the decision of the ith detector, u;. If u is used as a
reference for u;, a bias is established for u;. Thus,
in the proposed system, the decision of the ith local
detector u; is arbitrated by the fused decision of all the
other (n— 1) local detectors. Denote the fused decision
as @;, and define

yi=Y_ wiu Q)
j#i
i.e., y; is the weighed sum of all local decisions except
u;, then
;= sga(y;)- ®)

Note that 7; and u; are conditionally independent
given H;, j =0,1. The “reference” %; may not always
be correct. To reduce the possibility of using incorrect
references, the decisions %; are further classified. The
decision #; is considered unreliable when the weighed
sum defined by (7) is close to the decision threshold
0. Our strategy is to determine an “unreliable range”
around the decision threshold such that when the

fi(yi|Ho)

0

fi(}'i'”l)

Apr-m=-=-

{y

Fig. 2. Conditional probability mass function: f;(y;/H;) and
fi(=yi/Hy).

weighed sum y; falls in this range, the fused decision
u; is considered unreliable and will not be used for
training the system. The selection of this unreliable
range is discussed next.

1.  ADAPTIVE MODEL ANALYSIS

Consider the structure shown in Fig. 1. From (6)
and (7), we have

Yi=y—wil;. ®

Under the assumptions that Py = Py and Pr; = Py,
the conditional probability mass functions f;(y;/Hi)
and f;(yi/Ho) are symmetric with each other, i.e.,
fi(y:/H1) = fi(—yi/Ho), as shown in Fig. 2.

We establish the above relationship as follows:

Yi=Y winp=y wi—y W
=

j#i St

(10)

where S = {j:j#iand u; =1} and S7 ={j: j#i
and u; = —1}. By the earlier assumption of
independent observations,

P(yi=¢/H) =Y [[Pw;=1/H)[[P(u; = -1/H)

Si Slf s
(11
where S; = {{S},S; }: combinations of S}t and S;”
such that ) ¢+ w; — 3 .- w; = £}. Since we have
assumed that Py; = Prj, i.e.,
P(uj=—1/H) = P(u; =1/Hy) = Pr;  (12)
which also implies that
P(uj =1/Hy) = P(u; = —1/Ho) = Pp;, (13)
we have
(14)

Py =¢/H)=>_ ] Po;[] Pri-
. .f s-

i

Now, assume that the local detectors, except the ith
detector, make opposite decisions as compared with
(11) such that y; becomes —&. That is, S} and S
remain the same, but the decisions are reversed. Thus,
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P(y; = =&/ H)

=Y TP =-1/E) [ P(w; =1/Hy)

S; Si+ Si_

= ZHPM]HPDJ
—ZHPFJHPDJ

N

(15)

We next evaluate P(y; = £/ Hp),

P(y;=¢/Hy)=> ] P(u; = 1/Ho)HP<uJ =—1/Hy)

R
= ZHPF,HPD, (16)
S st
Since (15) and (16) are the same,
fi(yi/ Hi) = fi(=yi/Ho). (17)

Since fi(y:;/Hi) and f;(—y:/Hp) have such a
symmetric relation, let the unreliable range be
symmetric about its decision threshold and denote the
upper limit of the range as 7. We call 7 the reliability
threshold. Only the fused decisions #; which satisfy
lyil > T are chosen to adapt the weight w;. These
decisions are considered as reliable decisions, denoted
as 7;. Other decisions are ignored. Intuitively, the
blgger the value 7, the more reliable the decisions
7;, the less the errors are between the estimates
and theoretical values. Note that since u; and u; are
conditionally independent and since i is deterministic,
u; and u; are also conditionally independent.

Let IA’D;, P, be the estimates of Pp;, Pr;. When
the local decision u; agrees with the reliable decision
T;, it is considered a detection of the local detector;
otherwise, it is considered a false alarm. Using the
conditional independence of u; and %}, the assumption
of an equiprobable source, and the definition of Pp;
and Pp;,

Pp; =P(u; =1,u; =1)+P(u; = -1,7; =-1)

= P(Ho)P(u; = 1,7} = 1/Hy)
+ P(H)P(u; = 1,7 = 1/H;)
+ P(Hp)P(u; = -1, = —1/Hy)
+ P(H)P(u; = —1,u; = —1/Hj)

= P(Ho)P(u; = 1/Ho)P(u; = 1/Hyp)
+ P(H)P(u; = 1/H\)P(u; =1/H)
+ P(Ho)P(u; = —1/Hp)P(u; = —1/Hyp)
+ P(H)P(u; = —-1/H)P(u; = -1/Hy)

= 3 PpiP(@; = 1/Ho) + 3 Ppi P(a@; = 1/H)
+ 3PpiP(a; = ~1/Hp) + APp; P(u} = —1/Hy).

(18)

Because of the symmetry of the conditional probability
mass function (see (17)),
P(u; =1/Ho) = P(

u; = —1/Hy) (19)

P@ =1/H) = Pz} = -1/Hy). (20

Thus,

Pp; = PD,‘P(TI;-" = 1/Hy) + Pp:P(G; =1/Hp). (21)
By the same reasoning, we have

Pri = P(u; = 1, = ~1) + P(u; = —1,i} = 1)

= PD;‘P(H? = 1/H0) + PF,'P(ﬁ:f = 1/H1). (22)
Let & <& < -+ <{n, where Ev = (¥:)max, b€ the set
of values that y; can attain for the ith local detector.
Without loss of generality, let §; < 7 < &y, and k €
{L,2,...,N} be the smallest integer such that ¢; >,

Vj > k. Define

o ,
A=P@ =1/H) =) P(y; =¢;/H)

(23)
j=k
N
B=P@; =1/Hy)=) P(:=¢/Hy). (24)
j=k
Then, (21) and (23) can be written as
Pp; = Pp;A+ Pp;B (25)
and »
Pr; = Pp;B + PriA (26)
Let r; = Pp;/Pr;, F; = PD;/PF,‘, then, logr; = w; is
the weight of the ith detector defined by (5) and
log#; = W; is the estimate for w;
P ;  Pp; A+ Pp;B 1+ —.B‘
fr= =2 e a7 27)
Pr;  PpiB+ Pp; A 1452
B
1
=log#; = logr; + log ;ZB =w;+¢;. (28)
1+ —;T

As seen in (28), the estimate for the weight is cqual to
the correct weight plus an error term ¢;, where,

(29)

Since r; is fixed, ¢; will approach 0 as B/ A4 is
approaching 0. We prove that increasing the reliability
threshold T will reduce the fractlon B/ A, and thus the
error.
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For notational convenience, let p; = Pp;, ¢; = Pp;.
Since P(y; = ¢/Ho) = P(y; = ~¢/Hy) (see (17),

Pyi =¢/Hy) _ 2s Il Pills- 4

Pyi=¢/H) Y lls 4ills-pi
From (10), we have
exp(Lss W)
exp(Q_s- Wj)
Applying (5) to (31) yields

exp(yi) = H Pi H

+ pJ

(0)

Hs+ exp(w;)
HS" exp(w;)’

exp(y;) = (D)

sy pills- 9

=t 32
Hs; q;lls- pi 2

The above equation holds for any combination of S}
and §; such that

)’t=ZVVj“

jes}

DW=t (33)
jes”
Thus, using the following equality

a+t+c

a C a
b+d b

b d

Equation (30) becomes
Py =¢/Hy _ Lllg pills- 4

P(yi = §/Ho) ZHs; gj Hs,.— Pj

_ [Is: pi11s- 95

Hs‘.+ qj Hs'.— pj

€

=exp§) (35)

and
P()’z §/Ho)

P(y; =¢/H)

Thus far, we have proved that for each y; = ¢, (36)
holds. Using this equation and induction, we shall
prove that B/A4 is monotonically decreasing with
respect to T.

As assumed earlier, §; < &< -+

= exp(—¢): (36)

< &n. From (36),

we have
P(y; =& /Hy) _ P(y; = 52/H0)
P(y; =&/H1) = P(y: —fz/Hl)
S P(y; =&n-1/Ho)
P(y; =&n-1/Hi)
P(yi =&~/ Ho)
>, 37
PO: = e /Hy) 7
Repeatedly applying the inequality,
X a X X+a a
Y25 Y Y45 b 38)

to (37), and using the definition of 4 and B in
(23) and (24), it is clear that B/A is monotonically
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decreasing with respect to k, and thus it is also
monotonically decreasing with respect to 7. This is
consistent with our intuitive reasoning. However,

T cannot go to infinity; the maximum value of 7 is
(¥i)max- When 7 attains its maximum, B /A reaches its
minimum value. According to the definition of A4 and
B, the minimum of B/ A is

<§_) — P(yl - (Yi)max/HO)
A min P(y; = (yi)max/Hl).

When Pp; is greater than Pr; for each sensor and the
learning procedure converges to its steady state, we

(39)

have
(Vi)max = Z 108 (40)
j=Lj#i
Thus,
B
(%), = exnt=0oms
n PF ,
=ex lo =L
p ( ‘1[, 5 ) I %,
j=Lj# j=Lj#i
(41)
According to (29), the minimum error that can be
achieved at steady state for a fixed i is
' P,
1+]T7 PF .
¢ = log Pp; P 42)

1422 S
Pr; [Tevj Ppj

Note that (y;)max varies from sensor to sensor. In order
to let every sensor adjust its weight and achieve the
least error, the maximum value of 7 is chosen to be the
minimum of all (y;)max:

43)

Tmax = min{(yl)maxa (y2)max9 “ee (Yn )max}

l. REINFORCEMENT LEARNING ALGORITHM

We assume that the distributed decision system has
no knowledge of the probability mass functions of the
observations. However, the probabilities of detection
and false alarm for the ith detector PD, and Pp, can
be approximated by relative frequencies. That is, in
contrast to (18) and (22),

I:Di mi (44)
Pr;  hi

where m; and n; are, respectively, the number of
decisions made by the ith detector that agree and
disagree with the reliable fused decisions. Both m; and
n; are simply obtained by counting in the simulations.
We next develop the updating rule for the fusion
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Fig. 3. The structure of the distributed decision system.

center. Similarly,

. Pp;
w; = log =
Fi

~ log %1-‘- = m; mexp(Wn;.  (45)

Taking the partial derivative with respect to m; and n;,
respectively,
ow; 1

[ a—

om;  my

o 11w,
N“n,-_ m; p l)'

and

(46)

If the decision of the current local detector agrees
with the reliable fused decision, its weight W; should
be increased. In this case,

1 1

AW, & —Am; = —. 47
w; m; i m; ( )

On the other hand, if the current local decision

disagrees with the reliable decision, its weight W; should

be reduced. That is,

1 1 1
AW~ ——An; = —— Vi )An; = —— ;).
w Py n iexp(w) iexp(w)

(48)
Thus, we obtain the following updating rule:
Wi =W+ AW
W+ l, if w=1u
= " (49)
W — —”Texp(wi“), if u; #u;.

LEMMA Using the updating rule according to (49),
W;~ will converge to the desired steady state estimate
weight W;.

PROOF Using the definition E[X] =5 x;P(x;) and
the updating rule according to (49),

Epw - w] = E[Aw] = —P( = T5)
_ ;;“ exp(W;)P(u; £Tf).  (50)
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As the number of iterations increase, m; approaches
infinity. In this case,

1 I T ey
o P =) =~ exp(W))P(ws A7) =0 (51)

and from the definition of Pp; and Pg;,

Pp; — Priexp(W;) = 0. (52)
Thus,
Wi =W (53)

Hence, w7 — w;, for i =0,1,....

IV.  SIMULATION RESULTS

In this section, we present some computer
simulation results to demonstrate the validity of
our proposed adaptive scheme. Fig. 3 shows the
simulation set-up. Here, equally likely binary signals
{—1,1} are randomly generated as source signals.
Additionally, N1, Ny,...,N, are assumed to be
independent identically distributed (IID) zero mean
additive Gaussian random processes. Having selected
the random noise process, the theoretical probabilities
of detection and false alarm for each detector can be
readily evaluated. For the Gaussian case, they can be
determined by the standard deviation. They can be
calculated according to:

1 > 1 2
Pri=Q|— =/ ——e /2 54
n=0(5)= [ el G
where o; is the standard deviation of the Gaussian
noise fed into the ith sensor,
Ppi =1— Pp;. (55)

Note that these theoretical probabilities and weights
are calculated for comparison purposes only, and they
are not readily available in practice. They are not
used in the proposed adaptive fusion system. In the
experiment, all the weights are first set to an initial
value of 1, and then updated according to (49). The
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Fig. 5. Simulation results for case with different detectors.
Straight lines represent theoretical weight values, curves show
transient behavior of weights being updated.

steady state values arc obtained after convergence
(=~ 1000 iterations).

Figs. 4 and 5 and Table I show the results for two
different cases. The first case assumes that each local
detector is identical. Here, Pp; = 0.8413, and Pp; =
0.1587, for all i = 1,2,...,8, where w; = log Pp;/Pr; =
1.6679. Fig. 4 shows the mean error among 8 sensors
between the estimate W; and the actual weight w; =
1.6679 for different values of 7, the reliability threshold.
The figure conforms to our analytical results. That is,
the larger the 7, the smaller the error. On the other

hand, larger training time is needed to reach the
steady state for a larger 7.

In the second case, the eight local detectors are
assumed different, i.e., Pp; = 0.9234 and Pr; = 0.0766,
for i = 1,2,3,5,6,7, Pps = 0.8667 and Prq = 0.1333,
and Ppg = 0.9772 and Prg = 0.0228. Fig. 5 shows how
the estimated weights approach the theoretical values.
In the figure, wy = 2.4895, w4 = 1.8721, wg = 3.7579.
Only three of the eight weights are shown. However,
other weights also follow the same trend. Table I
summaries the results for this experiment. It is readily
seen that the simulation results conform closely to the
theoretical results.

Though it has been shown that W, converges
to W;, it does not converge to w;. The error, (42),
depends on the number of sensors, the Pp; and Pr;.
In the Gaussian noise environment, Pp; and Pr; are
determined by the Signal-to-Noise ratio (SNR) of the
ith sensor. Thus, the error ¢; is totally determined by
the number and the SNRs of sensors. Fig. 6 shows,
for the case of identical sensors, the error, ¢;, versus 1
(the number of sensors) for various SNRs. In this case,
according to (54) and (55), the error can be simplified

to
Q n
1+<1—Q)

Q n-2
1+(1—Q>

where Q is the Q-function defined in (54) with the
same standard deviation, o, for all sensors. Note that
the error is the same for every sensor.

When the SNR is different from sensor to sensor,
the error can be written as

e =log (56)

€; =log i + ; 3 7
1 STXi
* ( Qi )
where
n Qj
T= (58)
=G
and .
= —1. 59
0wl

From (57), it is readily seen that the larger the SNR,
the smaller the ¢;.

TABLE I
Comparison Between Theoretical and Steady State Values of Weights
Sencor 1st 2nd 3rd Ath 5th 6th Tth 8th
Noise Variance o> | 049 | 049 [ 049 |08l |049 [049 [049 |0.25
SNR (dB) 3.098 | 3.098 |3.098 {0915 | 3.098 |3.098 | 3.098 |6.02
Weights | Theorctical | 2.4895 | 2.4805 | 2.4895 | 1.8721 | 2.4895 | 2.4895 | 2.4895 | 3.7579
Steady state | 2.4853 | 2.1916 | 2.4889 | 1.8721 | 2.4939 | 2.4971 | 2.4927 | 3.7941
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V.  CONCLUSIONS

In a real-world environment, the probability mass
functions of the observations at local detectors may not
be known and the performance of the local detectors
may not be stationary. Under such circumstances,
it is desirable to have a system which can adapt
itself during the decision making process. This paper
proposes such an adaptive system with the assumption
that Py = P, and Pp; = Pr;. The major advantage of
the system is that a priori knowledge of the probability
mass functions of the observations is not required. The
system can acquire the knowledge about the reliability
of the local detectors by itself—it can learn by doing. A
reinforcement learning rule is proposed and adopted,
and its convergence is analytically proven. The
simulation results conform to our theoretical analysis.

If the reliability threshold T can be adjusted adaptively
during the process of data fusing, the system may
converge faster. Future efforts will focus on adaptively
adjusting the reliability threshold, and developing a
model for unequiprobable sources.
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