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Abstract—The performance of nonhierachical circuit switched
networks at moderate load conditions is improved when alternate
routes are made available. Alternate routes, however, introduce
instability under heavy and overloaded conditions, and under
these load conditions network performance is found to deteri-
orate. To alleviate this problem, a control mechanism is used
where, a fraction of the capacity of each link is reserved for
direct routed calls. In this work, a traffic management scheme
is developed to enhance the performance of a mesh-connected,
circuit-switched satellite communication network. The network
load is measured and the network is continually adapted by
reconfiguring the map to suit the current traffic conditions. The
routing is performed dynamically. The reconfiguration of the net-
work is done by properly allocating the capacity of each link and
placing an optimal reservation on each link. The optimization is
done by using two neural network-based optimization techniques:
simulated annealing and mean field annealing. A comparative
study is done between these two techniques. The results from the
simulation study show that this method of traffic management
performs better than the pure dynamic routing with a fixed
configuration.

I. INTRODUCTION

ATELLITE communications has gone through a period
Sof tremendous growth, contributing to the information
explosion that has changed the world in the last quarter
century. Satellites, from their geostationary orbit position,
22300 miles over the equator, view over one-third of the
earth and can instantly connect any pair of points within
their coverage [1]. This property, together with their record
of high reliability, makes them the most desirable multiple
access diversity communication medium. Many studies on
circuit-switched telecommunication networks are useful here
since a wide spectrum of applications in satellite networks are
circuit-switched networks.

For circuit-switched networks, it is known that nonhierarchi-
cal routing performs better than the hierarchical static routing
[2]. The dynamic nonhierarchical routing (DNHR) method
of AT&T [3] and an adaptive routing algorithm known as
dynamic control routing (DCR) that is being considered by
Telecomm Canada [4] are two of the most common examples
of nonhierarchical networks. Several schemes have been pro-
posed and studied by many in the field of networking [5]-[8].
From these studies it is well known that nonhierarchical
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dynamic routing performs better than the hierarchical static
routing. It is also shown that allowing alternate routes in
nonhierarchical networks results in an improved performance
at moderate loads but suffers severely at overload conditions.
Many control mechanisms have been proposed to overcome
this stability problem. A study done by Akinpela [8] suggests
reservation of some portion of the capacity at high loads avoids
the instability. In a study done by Mitra et al. [9], optimal
trunk reservation is found for a fully connected, completely
symmetric network.

In this work a new traffic management scheme is pro-
posed to improve the efficiency of a circuit-switched satellite
communication network of the geostationary orbital type.
Contributions of this paper include the introduction of the new
traffic management model and the application of simulated
mean field annealing (MFA), neural network-based technique
[10], [11], to carry out the proposed management scheme.
Further applications of neural networks in telecommunications
can be found in [12]. Analytical results are developed to aid
simulations. This work is an extension of the work done by
Balasekar and Ansari [13]. The proposed scheme incorporates
the idea of dynamically adapting the networks as well as
dynamically routing each arrival. The scheme allows the
network to change according to the traffic conditions, and:
thus, improves the grade of service. The system is modeled
such that it continuously organizes itself to minimize the cost
for varying traffic conditions.

II. THE TRAFFIC MANAGEMENT SCHEME
A. Network Model

A satellite communication network consists of a number of
geostationary satellites, each satellite covering a number of
ground stations. This kind of satellite network can be modeled
as a mesh-connected topology, where each node represents
either a satellite or an earth station. The connections between
the nodes denote the links between stations. The links may
have any number of circuits, but the total capacity of the
network is fixed. Traffic is generated by purely random (e.g.,
Poisson) sources characterized by two parameters: the average
rate of message or call generation and the average length of
message or call duration. The satellite communication system
is modeled as-an appropriate server system which provides a
transmission service to the generated traffic or “customer.”

The objective here is to design ‘a network such that the
overall block rate of the network is minimized, and, thus,
the throughput is maximized. Since traffic conditions (i.e.,
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Fig. 1. System model.

arrival rates) change from time to time, a scheme which will
dynamically route each call is proposed. The proposed scheme
can be explained with the help of the block diagram shown
in Fig. 1. The scheme is made up of four functional modules:
map generator, router, controller, and arbitrator. The function
of each of the modules is described in detail in the subsequent
sections.

B. Map Generator

The function of the map generator is to generate a map
of the best configuration for current traffic conditions. Maps
differ from each other by two parameters, namely, ¢ and 7.
Vector ¢ denotes the link capacities of the network, and the
elements of vector 7 denote the number of circuits that can be
used by alternately routed calls. Therefore, ¢ — r circuits in a
particular link are reserved for direct calls only. The parameter,
¢ — r, is referred to as the reservation parameter. Average
arrival rates for each origin-destination (O-D) pair, the total
capacity of the network, and the current status of the network
are given as inputs to this module. Based on this information,
an optimization technique is used to find an optimal map which
will minimize the total block rate of the network. Two kinds

of optimization techniques, simulated annealing and MFA, are

employed. Map generation by simulated annealing and by
MEFA is discussed in Sections IV and V, respectively.

C. Router

The router performs the routing dynamically for every call

arriving at the network as follows:

o If the direct link has. an idle circuit, an arriving call is

~routed on the direct link.

« If the direct link has no idle circuits, a randomly selected
alternate route is tried. An alternately routed call will be
blocked if either one or both links corresponding to that
particular O-D pair is in the reserved state (i.e., at least
r circuits in the link are busy).

« If direct link routing and alternate routing fail, the call is
blocked and then lost from the network.

The routing module performs a simple routing function
without much computation and, thereby, reduces the process-
ing delay of each call. There are other schemes which try to
dynamically compute the alternate route that minimizes the
blocking rate. For instance, the least busy alternative (LBA)
model developed by Mitra ez. al. [9], computes a least busy
alternate route. In this work the proper choice of a map
eliminates the need for computing the least busy alternate
route. Avoiding these computations increases the efficiency
of the map generation process.
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D. Controller

The controller’s job is to keep track of the network’s status
and performance. The controller decides whether a new map
is necessary based on the current network status, which is
updated at regular intervals. The arrival rate of calls to each
O-D pair and the load balance of the network are two of the
most important parameters of which the controller keeps track.
The load imbalance is measured using the following technique.

Measurement of Load Imbalance: Let A denote the ratio of
the network’s total flow to the total capacity, where the total
flow is the sum of calls accepted by all links. Let §;; denote
the ratio of flow (f;;) to the capacity (c;;) of the link (7, j).
At each update a measure of the network’s load imbalance,
denoted by d, is computed from these ratios as follows:

F
A=7,
5{;':&,

Cig

1 2 .
d=5 > (A —6) (0

where C and F' are the total capacity and the total flow of
the network, respectively. Therefore, the parameter d indicates
the amount by which the network’s current load balance
deviates from that of the fully balanced network. This measure
of disparity in the network load is taken as an indication
of potential premature saturation of the network. Let d; be
defined as a threshold value for this imbalance with respect
to the network load balance. In the simulations done here, the
threshold value is defined as

de = 0.1 X A. (2)

When d is larger than d,, the network is considered to be
in the inefficient state and the controller module calls the
map generator module to come up with a better map for the
current traffic condition. When d; is small and close to zero,
even a small deviation of network load balance from the ideal
condition is not tolerated. In this situation, the map generator
is called upon very frequently. But too frequent changes in
the configuration may not be cost effective when considering
other costs associated with changing the configuration of a
satellite network. To avoid this, parameter d is updated after
a fixed number of network updates. In the simulations here,
network status is updated at the end of every time unit and
the parameter d is computed after 10 updates. Up to 100 time
units are used in measuring the traffic pattern.

E. Arbitrator

The function of the arbitrator is to decide whether changing
the map will be beneficial to network performance, and thus,
it is used as a cost saving measure. The routing of calls
must be uninterrupted and the optimization has to be done
in real time. Hence, there may be some instances where the
map configured from the most recent network experience may
not actually reflect the optimal performance for present traffic
conditions if the traffic pattern changes too quickly. Therefore,
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Fig. 2. Representing the reserved state. ’

the arbitrator’s function is to change the map that is being
generated if the change will result in better performance. The
above situation can, in fact, be eliminated to a certain extent by
properly choosing the duration that the network is monitored
for measuring the network traffic condition, and by properly
choosing the tolerance level.

1. ANALYTICAL MODEL

A queueing model is employed here to analyze the network.
Since the average block rate is used as the cost, an expression
for the average block rate must be developed. Before carrying
out the analysis, the following assumptions are made.

¢ New calls and overflow calls to any link form a Poisson

process and are independent.

» Holding times of calls are exponentially distributed.

¢ Bach link is represented by an M/M/m/m queueing

model, where m is the number of circuits in that link.

* The average holding time of calls is assumed to be one

time unit.

¢ Link blocking probabilities are independent.

» Processing and propagation delays are negligible.

The last assumption helps us study the network based only
on the proposed scheme, where only the block rate is used
as the cost. Furthermore, this is close to a real situation in
circuit-switched networks due to long average holding time.
Even though calls arriving at an alternate route is clearly
not Pois on, this is found to be a reasonable assumption,
especially when each link derives traffic from many end users.
Similarly, the link blocking independence assumption is found
to be reasonable, and this greatly réduces the complexity of
the analysis. A detailed discussion of the validity of these
assumptions can be found in [4].

A. Notations

1) (i, §) Link from node i to node j.

2) (i — j) The O-D pair from node 7 to node j.

3) Xi-; External (new) arrival rate of (i — j).

4) A The total rate of input traffic to the network.

5) ~v; Total arrival rate to (3, j).

6) fi; Flow in (¢, ).

7) ¢;; Capacity, in number of circuits, of (z, 7).

8) r;; Number of circuits in (¢, j) that allow alternately
routed calls.

9) m A tandem node used in an alternate route.

10) M;_; Set of tandem nodes that forms the alternate

routes for (¢ — 7). '

Rf_; An alternate route for (i — j), with node k as the

tandem node. )

B;_; Probability that call (i — j) is blocked from the

network.

B;; Probability that any call is blocked in (%, 7).

ih

11)
12)

13)
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14) Bil} Probability that an alternately routed call® is
blocked in (i, 7). )
15) B Average network blocking probability.
For notational convenience, subscripts are dropped when
referring to a particular link. .

B. Calculation of The Block Rate

Denote the average network blocking probability as B,
which can be obtained by summing all the call blocking
probabilities and normalizing the sum by the total arrivals to
the network

- 1
B=3 > Xi-iBiy (3)

where A, the rate of the total input traffic to the network is
given by

A= S A @
(i=9)

Arrival rates A;_; are known quantities. Under the previously
stated assumption of independent link blocking probabilities,
B;_; can be expressed in terms of B;; and BJY. A call (i - j)
is blocked from the network only when the direct link and
the possible alternate routes are busy. The alternate routes are
busy when either or both of the links constituting that route
are busy. Hence, the call blocking probability B;_; is

I[I n-a-BE)a-BE). o)

mEMifj

Bi—j = Bij

The link blocking probabilities B;; and B;% in (5) are de-
rived from the birth-death process of an M /M /m/m queueing
model [15]. Let A and v denote the arrival rates of new and
overflow calls, respectively. In this model a state is defined as
the number of circuits occupied in a given link (see Fig. 2). In
the given link, ¢ —r circuits are reserved for direct calls, and r
circuits can be used by either direct calls or alternately routed
calls. If a new call arrives to the link or a call is serviced
by the link, the state of a link changes from one to anothef.
If the transition rate from state ¢; to state iz is denoted by
p(Z'l, 7:2), then

. P (e>i>r)
p@z+n‘{A+u (r>i>0) ©)
(e>i>0) @

C. Queueing Analysis
R
g

p(é,5—1) =ip

where p is the service rate (u = 1), y = A+ v and a = A/7y.

Let p; denote the steady state probability of having ¢
circuits occupied in a given link. The following steady-state
probabilities are obtained from the balance equations for an
M/M/m/m queueing model. Detailed derivation is found in
[15]

pi={ " iy - ®)



ANSARI et al.: TRAFFIC MANAGEMENT OF A SATELLITE

where po is found using the flow conservation equation,
Y i opi =1, and is given below

Po = Z’Zy—:+
=0

Substituting (9) into (8), p; can be solved in terms of vy, «, and
c. The link blocking probabilities B and B are then related
to these parameters via (10) and (11) below

. . . -1
i1 - )"
Z ﬂ——i!aL_ . )

i=r+1

(10)

an

B =p.

B = zc: Di-

i=r+1

To solve for the link blocking probabilities B and B%, one
needs to relate the unknown link arrivals - and the parameter
o to the known node-to-node arrivals A and the reservation
parameter 7 of the links in the network. This is done by
finding the flow f;; on each link with two different methods,
as described in the following section.

D. Calculation of Flow

The flow on each link can be calculated using two different
methods. Knowing the link blocking probabilities, the flow is
found by first using , and then A and the overflow rate from
other O-D pairs.

Method 1: For a given map (i.e., with ¢ and r for each link
specified) the flows f;; of all links (¢, §) can be computed from

fiz = vi;(1 — Byj). (12)

Method 2: Alternatively, flows in each link can also be
given in terms of the node-to-node traffic A and the link
blocking probabilities. Suppose, for link (s, j), the rate of
accepted direct calls is denoted by u;;, and the rate of accepted
alternately routed calls is denoted by y;;, then the flow on
link (3, 5) is ’ :

fij =i + yij (13)
where

uij = Xi—j(1 = Bij). (14)
With f5_ ;» denoting the rate of accepted calls in link (¢/, j')

on alternate route RY_ > Y in (13) is given by

il as)

2

i: (i, 5)ER], _

2

§': (i, )eR]

13
Yiz = i'—j +

3 -3’

Suppose Qf,ﬂj, is used to denote the probability that call
(¢ — ') is not blocked on the alternate route Rf, ; while
it is blocked on all other alternate routes available for this
O-D pair, then

fi’?—j/ = )\i"j/Bi'j'Q::c’_j’ (16)
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where Air_jrBjj: is the rate of call overflow (¢’ — j') from the
direct Iink (', j'). Q¥ _; can be given in terms of the link

blocking probabilities and can be written as

y=| Il B@rp- I BE)
m#k mEM,;/,jl
mEMir_]-/
an
where B(R]'_;) is the blocking probability of the alternate

route R, and this can be expressed in terms of the link
blocking probabilities for alternately routed calls of the links
that form this alternate route, as given below
B(Ry_;)=[1-(1-Bff,)1-Bk).  (18)
Using the initial estimate of the quantities «, link arrivals ~y are
obtained from external arrival rates A. Then using (6)—(11), the
link blocking probabilities are computed. These probabilities
are used to compute the flow by using (13)—(18). For these

flows, the new link arrivals can be computed from (12) and
then a new set of « for each link are calculated as follows:

Q5 = ﬁ (19)
Yij

The above steps are repeated until the flows found in
successive iterations converge. Finally, from the resulting
blocking probabilities, the desired quantity B is obtained from
(3)=(5). This B, the network block rate, is used as the cost
function in determining the best map in the map generator

module, as explained in the next two sections.

IV. MAP GENERATION USING SIMULATED ANNEALING

To improve the performance of the network, a map which
will minimize the total block rate of the network must be
chosen. As explained in Section III, the block rate B depends
on the capacity per link and on the number of circuits that
can be used by alternately routed calls in a link. These
two independent variables, ¢ and r, make the solution space
very large. Choosing the best map from this solution space
is computationally time consuming. Therefore, a powerful
optimization technique should be applied to find an optimal
map. In this paper, two neural network-based optimization
techniques, simulated annealing and MFA, are used. This
section describes the application of simulated annealing in the
map generation process. The next section describes how MFA
can be applied to speed up the map generation task.

A. Introduction to Simulated Annealing

First proposed by Kirkpatrick [16], simulated annealing is
a stochastic optimization technique used to solve complex
problems. Since then it has been applied in many areas.
Generally, a combinatorial optimization problem consists of
a set S of configurations or solutions and a cost function C,
which determines the cost C(s) for each configuration. An
iterative improvement scheme known as local search could be
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performed to find the minimum cost. During a local search
process, an initial solution s; is given and then a new solution
sy, is proposed at random. If the new cost C(s,,) is less than
the current cost C(s.), which is the same as C(s;), then
the new configuration is accepted, and the new solution s,
becomes the current solution s.. If the new cost is larger
than the current cost then a new solution is proposed, again at
random. This procedure continues until the minimum solution
is found. Unfortunately, a local search may get stuck at the
local minima and may escape the global minima. To alleviate
the problem of getting trapped at local minima, simulated
annealing occasionally allows “uphill moves” to solutions of
higher cost according to the so-called metropolis criterion [14].
The simulated annealing algorithm is based on the analogy
between the simulation of the annealing of solids and the
problem of solving large combinatorial optimization problems.
For this reason the algorithm became known as “simulated
annealing.” The simulated annealing process consists of first
“melting” the system being optimized at an effective high
temperature, then lowering the temperature gradually until
the system “freezes” and no further changes occur [16]. At
each temperature, the system is allowed to reach thermal
equilibrium, characterized by a probability of being in a state
s, P(s). This probability is proportional to the Boltzman
probability factor and can be written as
| P(s) o e EG)/FT (20)
where F(s) is the energy of the system at state s, k is
the Boltzman constant, and 7' denotes the temperature at
which thermal equilibrium is maintained. Now, apply a small
perturbation to the current state s, of the system and obtain a
new state s,,. Denote p, the ratio between the probabilities of
finding the system in two states s, and s,, as

_ P(sa)
P= P60
= e {[B(sn)=B(s.)l/kT}

20D

If the difference in energy, AE, between the current state
and the slightly perturbed one is negative (i.e., the new state
has lower energy than the current state), then the process
is continued with the new state. If AE > 0, then the
probability of acceptance of the perturbed state is given by
(21). This acceptance rule for new states is referred to as
the metropolis criterion. Following this criterion, the system
eventually evolves into a state of thermal equilibrium. Detailed
discussions on the convergence of simulated annealing type
algorithms and other similar algorithms can be found in
[17]-[19].

B. Application of Simulated Annealing in Map Generation

In this section an optimal map generation process using
simulated annealing is described. Before applying the algo-
rithm, a cost function, the cooling schedule and a generation
mechanism (or, equivalently, a neighborhood structure) must
be defined.
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1) Cost Function: In this work the total block rate of the
network is chosen as the cost. An expression for finding the
total block rate B is given in (3). Since the block rate depends
on the capacity of the link and the reservation parameter of
each link, the energy function can be written as follows:

E(s) = B(, 7) 22)

where

and
7={ri: (¢, j) € all links}. .

2) Cooling Schedule: Once the cost function isr,l determined
the following parameters should be specified:
1) the initial value of temperature 7g;
2) the final value of temperature T (stopping criterion);
3) the number of transitions at each temperature; and
4) a rule for changing the current value of the control
parameter T} into the next one, T)j11.

These particular parameters are referred to as the cooling
schedule [17].

a) Initial Temperature: The initial value of temperature
T) is determined in such a way that virtually all the transitions
are accepted. If a value is too high then all the transitions will
be accepted most of the time. If the value is too low then
the solution may not be optimal. To avoid these problems,
a temperature must be chosen so that it is in the critical
point where the number of accepted maps is about to decrease
significantly. This particular temperatuare is referred to as the
critical temperature. .

b) Stopping Criterion: A stopping criterion is usually'
based on the argument that execution of the algorithm can be
terminated if the improvement in cost (that which would be ex-
pected in the case of continuing execution of the algorithm) is
small [16]. Therefore, if the maps generated consecutively do
not vary significantly in cost, then the algorithm is terminated
and the final map is considered the “best” map.

¢) Number of Transitions at Each Temperature: The gen-
eration of new states is stopped and the next temperature
level is tried when either the number of acceptances reaches
a certain level (Lgccept) Or after generating a specific number
(Ltriats) of new states. Due to the variations in the experi-
ments, different values of Lgccepr and Lypiq1, are tried in the
simulations.

d) Temperature Updating Rule: The difference between
two temperatures and the value of the temperature relative
to the difference in the possible range of costs of two states
in the solution space are two parameters that need to be
given close attention in determining the rule for decreasing
the temperature. Since the size of the network affects AFE,
the control parameter is related to the total capacity C' of
the network. The rule of decreasing the temperature can be
expressed as follows:

T=a

- 23
n () =
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where a is a constant and j is the iteration index which
is incremented linearly to produce the desired temperature
schedule. '

3) Neighborhood Structure: A neighborhood structure is
necessary when implementing the simulated annealing algo-

rithm. Different neighborhoods are defined for each of the

cases considered during the simulations.

Case 1) Varying Reservation Parameter of the Links: If a
particular link has ¢ circuits, the number of circuits- that can
be reserved varies from zero to ¢. Therefore, when finding a
neighbor, a random number in [0, ¢] is chosen, and this number
is assigned as the reservation parameter of that link.

Case 2) Varying Link Capacities Only: Here, one link is
chosen at random, and one circuit is deducted from that
link and assigned to another link which will benefit by this
exchange. To be practical and to obtain reasonable results,
a lower bound capacity and an upper bound capacity are
assigned to each link. These conditions will avoid the state
where some of the links have almost no circuits and some
circuits have a very large number of circuits. In addition, they
will avoid unnecessary computations.

Case 3) Varying Both Link Capacities and Reservation: The
number of combinations in this case is very large. To be
practical and to avoid unnecessary calculations, a similar
control measure described for Case 2) is used. The same
approach is taken here to allocate the circuits but, in addition,
a reservation parameter between zero and the link capacity is
randomly assigned.

Once the cost function, the cooling schedule, and the
neighborhood structure are defined above, the map generation
problem can be solved by simulated annealing. Simulation
results are given in Section VI.

V. MAP GENERATION USING MFA

Simulated annealing is a powerful optimization technique,
but it is computationally intensive, especially for large prob-
lems. As an alternative, MFA [21]-[24], which provides a good
trade-off between performance and computational complexity,
can be used in minimizing the call blocking probability. In
MFA, two operations used in simulated annealing are still
needed: a thermostatic operation which schedules the de-
crease of temperature, and a random relaxation process which
searches for the equilibrium solution at each temperature. The
relaxation process, however, has been replaced by a search for
the mean value of the solution. Equilibrium can be reached
faster by using the mean [24] and, thus, MFA speeds up the
computational process.

To solve the problem by MFA, the problem should be
mapped into a neural network and an energy function should
be formulated. Since each map differs from the others in terms
of the link capacities and the reservation parameter of each
link, the energy function should be able to incorporate all
possible combinations. Three different cases of map generation
are considered:

1) The reservation parameter of each link is varied while

keeping the capacity of each link constant.

2) The capacity of each link is varied while keeping the

reservation parameter constant.
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3) Both capacity and the reservation parameter are varied
for all links.
In all cases, the total network capacity is fixed to a constant
value. To represent all these cases, an encoding method to
denote the neurons is necessary, and is described below.

A. Neuron Encoding

A neuron is denoted by S;;., Sijc, Or Sijer depending on
the case considered in the analysis. For example, for the
case where only the link reservation parameters vary, the
neuron is denoted by S;;.. S;;» takes on “1” when the link
(¢, j) has r circuits which are allowed to handle alternately
routed calls and takes on “0” otherwise. This can be defined
mathematically as follows:

if r circuits in link (¢, ) handle

1
Sijr = { alternately routed calls (24)
0 otherwise

B. Associativity Matrix N

Since the nodes in the network may not be fully connected,
some of the neurons are always fixed to zero. Most of the time,
the number of neurons which are “off” is very large. Therefore,
the computations for those clamped neurons can be avoided,
which speeds up the computational process. To implement this
clamping technique into the neural network, an associativity
matrix N should be defined [25]. If there are N nodes, then
there are Ny rows and Ny columns in matrix N, as shown
below :

n11 ni2 TNy
n21 n22 n2N

N=| : Y 5)

NNyl TNy2 NNy Ny
where n;; takes on either “0” or “1” according to

1 if there is a link between

Nij = node i and node j (26)
0 otherwise

C. Formulation of Energy Function

In this work, the energy function will have the form of
the Hopfield energy function [26]. In constrained optimization
problems, the energy function has two terms: the cost term and
the constraint term. In the problem considered in this paper,
the cost term is the total block rate of the network and the
constraint term is the penalty imposed to the cost for violating
the constraints. Therefore, the energy function can be written
as follows:

E = x “cost” + 8 x “constraintl”

+ v X “constraint2” 4 - - - 27

where o, 3, and ~ are the relative weights.

For illustrative purposes, the energy function for the case
where only the reservation parameter is varied is derived be-
low. With additional or different constraints, energy functions
for the other cases which can be similarly derived are omitted.
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In this case only the reservation parameter is changed. The
capacity of each link is fixed at a constant value. The “cost”
term in (27) is the total block rate of the network. Combining
(3) and (5), an expression for the cost term Fy is obtained

Z B;jr Sijr
II Ei

meM;_;

EAB =1- (l—z Bzmr zm'l’) (1_2 mjr mjr)
= X Z z )\i_jEDBEABnij
L]

where Fpp is the energy term corresponding to the direct
blocking, F 4p the energy term corresponding to the alternate
blocking, Bj;, the probability that a direct call is blocked in
the link (7, j) with r circuits available for alternately routed
calls, and Bgr the probability that an' alternately routed call
is blocked in -the link (¢, j) with r circuits available for
alternately routed calls.

Constraint terms- of the energy function are defined as
follows:

fl

Eps

E4sp =

(28)

1) Each link is restricted to have only one particular reser-
vation parameter. If more than one reservation parameter
is assigned to a link then a penalty term is imposed

530 3) 3p LI

r  ri#r

29)

2) The total number of neurons that are “on” must be equal
to the number of links, N, in the network.

Thus; this constraint avoids the situation where all neurons
are turned “off”

2

EY Y s
% j r

The total energy is the sum of the cost and the constraints,
and can be written as

(30)

E=axFEy+8xE +vx%xFE, 3D

where «a, 3, and +, are the relative weights.

D. Application of Mean Field Theory

Once the representation scheme of neurons and the energy
function are developed, mean field theory can be applied in
the map generation process. The relaxation in both simulated
annealing and MFA follows a Boltzman distribution [16],
which is given by

1
P(S) = = e BGNT (32)
where S is any one of the possible configurations specified
by the corresponding neuron set, E(S) is the energy of
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the corresponding configuration, 7' is the parameter called
temperature, and Z is the partition function given by

2= e BT
(s)

In mean field theory, instead of concerning the neuron
variables directly, the means of neurons are considered

Vijr = (Sijr).

Let the value of neuron S;;- be “1” when the neuron S;;, is
on, and let the value of neuron S;;, be “0” when the neuron
S;jr is “off.” Now (34) becomes

V;;j,,- = (l)P(S”T- = 1) +
Vijr = P(Sijr = 1)

(33)

(34)

(0).P(Sijr = 0)

(35)
where P(S;; = 1) and P(S;;» = 0) are the probabilities
for Sijr = 1 and S;j, = 0, respectively, and V is the mean

configuration corresponding to S. Thus, in terms of the mean
field variable, (32) becomes

P(V) = L vy (36)
Now define the local field
" OF
hijr = — oo @7
7 0Si;r
and
1 if hyr >0
- Sigr = {0 if hyjr <0 (38)

The probability of a particular neuron S;;, to be “on” and
“off” is given by the following two equations:

ehiin/T

P(Sij'r = 1) _hi_,”./T + ehzj’P/T (39)
e—hiir/T

P(Sijr = 0) = (40)

e_hijv‘/T + eh,‘j,,./T M

Mean field theory approximation is used to approximate the
local field h;jr by its thermal average (mean field). Therefore,
(39) and (40) become

ehf‘;[fT/T
P(S,-jr = 1) = - hfffT/T ehMFT/T 41)
hfjfT/T
P(Sijr = O) = MEFT MFT . 42)
hm JT | HMFT/T
where A
W™ = (hajr)
OF
37

Now, combining (35), and (41)—(43), an ‘expression for Vi,
is obtained as follows:

hMFT /T

ijr

Vigr = —RHFT]T (44)

+ hMFT/T b
or
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hMFT
14tanh [ 22—} 1.

A detailed description and the derivation of mean field equa-
tions can be found in [21]-{23]. To apply the mean field
equations, thermal average, h}/F”, should be evaluated. This
is done by first replacing the neuron variable S;; by the mean
of neuron, Vj;,, in (28)—(30), as follows:

Epp = Z Bijr Vijr
r

' 1
‘/;.j’l‘:_

: 4s)

Bap= [] EXs
meM;_;

EZLB =1 (1 - Z Bzmr Wm") (1 - Z Bmgr m]")
Ey = 1 z Z Ai—;EppEapn;; (46)
By = Z Z Z > VigrVigr “7)

T r'#r ,
By= Y 3> Vijp - Ny (48)
7 j r
Now the thermal average of the local field, A}, can

be evaluated by taking the partial derivative of the above
equations with respect to V;;,, as follows:

RYET = (hijr)

OF
= <— ——avijr > (49)
Thus OE/8V;;, is expressed as
OF J0Ey 6E2
Wi~ YoV ¥ 55 avm Tov, O

E. Evaluation of Relative Weights

The selection of Lagrange parameters are critical in the an-
nealing process. These parameters must be selected carefully to
guarantee convergence. If the parameters are selected poorly,
the process may not approach a global minimum, or divergence
may occur. To avoid these problems, an approximate method
to find these parameters is proposed for the case where only
the reservation parameter is varied. A similar approach can be
taken to determine the parameters for the other cases.

In (50) the parameter o governs the balance between “cost”
and “constraint” terms, and the constants § and -y determine
the importance of the constraints. Since only one reservation
parameter value should be assigned to a link, energy term F;
should be weighed heavier than the others. Thus, we have

B>a . (5D

To find a relationship between « and y, assume that constraint
(1) is satisfied, (i.e., By = 0). This leads to the fact that
OE,; /0V;j. = 0. In (50), OEy/dV;;, is always positive. But
. 0E5/dV;;, may be positive or negative depending on whether
the total number of neurons which are “on” is equal to the
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total number of links in the network. If the total number of
neurons having “1” is more than the number of links, then the
term 0F,/0V;;, will be positive; and if the total number of
neurons having “1” is less than the number of links, then the
term OE;/0V,;,. will be negative.

Each link must have a specific reservation parameter be-
tween zero and the capacity of the link. When all the neurons
corresponding to the link are “off” (i.e., no specific reservation
parameter is assigned to that link) a neuron must be forced to
turn “on.” To turn “on” a neuron, E/dV;;. < 0. This leads
to the following:

o OEo
8%]’1'

OF
Fy =2 <0

v, (52)

B’LJ’I‘EAB) + 2’)/ Z Z Z ‘/z]r - NL < 0.

(3)

Aij
A
Since there are not enough neurons required to be “on

ZZZWjT_NL < 0.
[ 7 T

Furthermore, the maximum values of B;; and E,p are
“1” and the fraction A;_;/A will never be more than “1.”
If only one neuron is needed to be turned “on,” then
(22 22; 22, Vijr — N) = —1. Using these conditions,

the relationship between ¢ and 7 can be written ‘as

(54)

a—2v<0. (55)
Therefore
>2 (56)
Y 7

When more than one specific reservation parameter is
assigned to a link, a neuron must be turned “off.” To turn
“off” a neuron, 9E/0V;j, > 0. Then

oE, OF;
—_— 57
o Vi + Vi >0 (&)

o (__AT

Since there are more neurons which are “on” than required

BierAB) +2v[ YN Vi - N | >0
i 7 r

(58)

YD Vi =N | >0 (59
% 7 T »
Applying similar arguments as before (58) becomes
A
« (_;X—J BierAB) +2v > 0. (60)

Since both terms in the above equation are positive, as long
as « and -y are positive the condition is satisfied.
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Fig. 3. Network used in simulation.

Node 3
1 2 3 4 5 6 7 8 9 10 11
140 1 1 1 0 0 1 0 1 O 1
21 06 1 0 0 0 1 0 1 O 0
3fp1 1 0 1 1 0 0 0 0 o© 1
41 0 0 0 1 11 0 0 0 O
5ffo0 0 1 1 0 1 0 0 0 O 1
Node 60 0 0 0 1 0 1 0 0 1 0
] 711 0 0 1 0 0 0 1 0 O 0
840 0 0 01 1.0 0 1 1 1
911 1 0 0 0 0 1 1 0 1 ©
10(0 0.0 0 0 1 0 11 0O 1
11t 0 1.0 6 0 6 1 0 1 O

Fig. 4. Connections between nodes of the network.

As a rule of thumb, by incorporating all these relationships,
the following rule is obtained:

ﬁ>,y>ﬁ

5 (61)

F. Cooling Schedule

Similar to simulated annealing, a cooling schedule must be
specified. The cooling schedule includes the initial tempera-
ture, the stopping criterion, the time spent at each temperature
and the temperature updating rule.

1) Initial Temperature: The initial temperature is found by
finding a critical point where the energy decreases signifi-

cantly. Finding this temperature is important to obtain the best

map and to avoid unnecessary computations.
2) Stopping Criterion: The annealing process is stopped
when the following saturation conditions are met.
A) All neuron values are within the range [0.0, 0.1] or
within the range [0.9, 1.0] without any exceptions.
B) When the following criterion is met for Case 1):

Z z > (Vige)?

N

> 0.95 (62)
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07 [ ]
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05 0.55 0.6 0.65 0.7 0.75 0.8
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Fig. 5. Routing of calls with and without alternate routes in moderate load.

1 T T T T T

095 With Alternate Routes —+— T
Without Alternate Routes &— :

Throughput

065 7

05 1 1 1 1 1
67 08 09 1 11 12 13
Arrival Rate

Fig. 6. Routing of calls with and without alternate routes in overload
conditions.

where N is the number of neurons that have values
within the range [0.9, 1.0].

3) Time Spent at Each Temperature: At each temperature
the mean field equations are iterated until the following
convergence criterion is met for Case 1):

DD Vit +1) = Vigp(8)] < 0.001N,,  (63)
% g e

where N,, is the number of nonzero neuron elements.

4) Temperature Updating Rule: The following temperature
schedule, which is the same as the one used in simulated
annealing, is adopted:

C
T=a—-=
In (5)

where a is a constant and 5 is the iteration index.

(64)

G. MFA Algorithm

After formulating the energy function, finding a suitable
cooling schedule and finding all necessary parameters, the
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1 T T T T T T T
| With No Reservation —— ]

0.95 With 5% Reservation —~—

09 k With 10% Reservation & i
g With 20% Reservation >—

085 -
a 08 - 7
'§0.75 - ' 7
é 07 , ‘ .

0.65 |- .

06 [~ -

055 n

0 5 L 1 L 1 1 | 1
05 06 07 08 09 1 11 12 1.3

Arrival Rate

Fig. 7. Network performance with different amount of reservation param-
eters.

1 T T T T T T
0 With No Alt. Routes —*— i
095 With20% Reservation —+—
09 - After Annealing [SA] > |
085 [ T
-% 08 - -
0075 | .
é 07 -
0.65 [ T
06 [ ) .
055 T
0 5 1 L. { 1 ! | i
05 06 07 08 09 1 11 12 13
Arrival Rate

Fig. 8. Network performance after simulated annealing: Varying the reser-
vation parameter only.

MFA algorithm for minimizing the blocking probability is
summarized below. ’

1) Initialize the neurons with random numbers as follows:
‘/ijr = rand [0, l]n,-j. (65)

2) Anneal the network until the network is saturated ac-
cording to the saturation criterion defined before.

3) At each temperature, iterate the MFT equations given
below until the convergence criterion is satisfied for
Case 1)

MFT

y 3
Vijr = %’i [1 + tanh —27-

ni]} . (66)

VI. SIMULATIONS AND DISCUSSION OF RESULTS
The proposed traffic management scheme is simulated and
the results from different experiments are presented in this
section. A reasonably sized network (see Fig. 3) having the
following properties:
* The network is mesh-connected.
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1 T T T T T T T
* | _ With No Alt. Routes *— i
095 With 20% Reservation ~+—
o9 | After Annealing [MFA] ~— B
085 : T
5 08 - b
[N
§0.75 ,
g o7 .
0.65 r 7
06 7
0.55 7
0 5 i 1 1 - ] L 1
05 06 07 08 09 1 11 12 13
Arrival Rate
Fig. 9. Network performance after MFA: Varying the reservation parameter
only.
1 T T T T T T T
After Annealing [SA] <
0.95 " After Annealing [MFA] ——
09
085 - 7
g5 08 -
'§0.75 - .
é 07 .
065 r :
06
055
0 5 I 1 i al ] 1 1
05 06 07 08 09 1 11 12 13
Arrival Rate

Fig. 10. Comparison of simulated annealing and MFA: Varying the reserva-
tion parameter only.

* The network has 11 nodes and 47 links.

 The link capacities may vary from link to link.

« The total capacity of the network is fixed.

» Each O-D pair has a direct link, and alternate routes
varying from zero to four possible paths.

The following elements of the simulation are predefined:

« the associativity matrix of the network is shown in Fig. 4,
i.e., the connection between nodes of the network (a “1”
indicates a link from i to j);

» the O-D pairs and the possible alternate routes for each
O-D pair; and

* the arrival rates to each O-D pair.

Various types of experiments are performed on the network
to study the proposed scheme. Some of the experiments are
listed below.

¢ network performance with and without alternate routes;

» network performance with a reservation scheme;

« performance of the network after varying only the reser-
vation parameter using simulated annealing and MFA;
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1 T T T T T T T

| With No Alt. Routes —~—

0.95 With 20% Reservation —~+—
09 | Afer Anncaling [SA] ~—

085 |- .

08 .
075 .
07 -
065 1
06 |- .
055 R

I 1 1] 1 1 ] 1
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05 06 07 08 09 1 11 12 13
Arrival Rate
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Fig. 11.
capacity only.

1 T T T T T T T
0.95 - With No Alt. Routes —*—
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0. | After Annealing [MFA] o
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08 I ' .
0.75 a
0.7 I .
0.65 [ 7
06 [ -
055 |- .

0 5 1 i i | 1 1 1
05 06 07 08 09 1 1.1 1.2 13
Arrival Rate

Throughput

Fig. 12. Network performance after MFA: Varying the link capacity only.

 performance of the network after varying only the link
capacities using simulated annealing and MFA.

The throughput and arrival rate in the plots shown are
normalized to the total capacity C' of the network. All measure-
ments of arrival rate and throughput are measured in number
of calls per one time unit. '

To show the effects of allowing alternate routes, the network
is simulated with and without alternate routes under moderate
and heavy loads. The results from these simulations are shown
in Figs. 5 and 6. Through these simulations, it is verified
that at moderate load the network performs better by having
alternate routes. At overload conditions, however, the network
performance deteriorates and becomes unstable.

To alleviate instability and to improve the performance of
the network with alternate routes under heavy and overloaded
conditions, the reservation scheme, where a fraction of circuits
in the links are reserved only for direct calls, is applied to the
network. The network is simulated with some portion of the
capacity of each link reserved for direct calls. This is done with
a network which has 20 circuits per link and the reservation
parameters used are 5, 10, and 20%. The results from this
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1 T T T T T T T
After Annealing [SA] —>—
After Annealing [MFA] =—

055 .
05 1 ! ! o 1 !

05 06 07 08 09 1 1.1 12 1.3
Arrival Rate .

Network performance after simulated annealing: Varying the link Fig. 13. Network performance after MFA: Varying the link only.

TABLE I
Comutarion Times oF ANNEALING METHODS
Varying SA MFA
Parameter | (Time units) | (Time units)
Reservation 264.5 12.3
Capacity 412.4 16.7
TABLE I1

PARAMETER VALUES USED IN SIMULATED ANNEALING

Parameter Varying Varying
Reservation | Capacity
a 0.002 0.004
tinitial 25 - 35
ncrement 10 10
value of i

simulation are plotted in Fig. 7. From the results it is evident
that near overload conditions make it necessary to impose
some reservations to overcome the instability that alternate
routing causes. )

Unlike the previous simulation, where all the links were
assigned the same reservation parameter, in the next simulation
the reservation parameter of each link is allowed to vary
while keeping the capacity of each link fixed. Both the
simulated annealing and MFA methods are tried in optimizing
the network performance. When optimization by simulated
annealing is performed, initially, 20% of the link capacities
are reserved for direct calls. Annealing is done for different
arrival rates, and the results from the simulation are plotted
in Fig. 8. For different arrival rates, the optimization is also
done by MFA. The results from this method are plotted
in Fig. 9. To show the advantage of using MFA (Fig. 10),
computation time measurements are shown in Table I. The
parameters used in the simulations are given in Tables I and
III. The measured throughput with different arrival rates shows
significant improvement over the previous simulations where
no annealing was done. Even though simulated annealing
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TABLE III

743

feature of the scheme for improving the throughput of the
network is that only external arrival rates are used, and this is

PARAMETER VALUES USED IN MEAN FIELD ANNEALING

Parameter Varying Varying
Reservation | Capacity
a 0.002 0.004
i:‘ nitial 25 35
increment 10 10
value of ¢
a 0.5 0.5
B8 2.0 2.0
¥ 03 2.0
K - 0.4

produces better results than MFA, the computing time required
by the MFA is significantly lower than the time required by
the simulated annealing. )

Similarly, instead of varying the reservation parameter of -

each link, the capacity of each link is varied and the network
parameters are optimized using the two annealing techniques.
The constraint here is that the total capacity: of the network
is fixed. The network is simulated with 20% of the link
capacity reserved for direct calls only. The results obtained
from these simulations are presented in Figs. 11-13. Again, to
show the computational efficiency of MFA, computation time
measurements are tabulated in Table I. The parameters used in
the simulations are given in Tables II and III. (An additional
parameter k is needed for the later case.

VII. CONCLUSIONS

From the simulation results it can be verified that having al-
ternate routes improves the performance of a satellite network
at moderate load conditions. When having alternate routes,
however, the network becomes unstable as the offered load
is increased to a heavy load region, and after a critical point
the performance deteriorates. To overcome this undesirable
effect, a control scheme is implemented where some portion
of the link capacity is reserved for routing direct calls only.
The results obtained here show that this is an effective control
mechanism in avoiding instability in overloaded traffic con-
ditions. Furthermore, this implementation of the reservation
scheme improves the throughput. ‘

Largely due to the ease of changing the link capacities in
a satellite communication network (in contrast to terrestrial
networks), the network was able to adapt to the current
traffic pattern while routing each call dynamically. The use of
simulated annealing and MFA “fine tunes” the network con-
figuration and, thus, improves the performance. The problem
with the simulated annealing algorithm is that the annealing
process is very time consuming. MFA reduces processing time
significantly and produces a configuration which improves
performance.

One of the important features of the proposed traffic man-
agement scheme is the flexibility with which the factors that
affect the network performance can be included. This is done
effectively by properly defining the cost function for both
the simulated annealing and the MFA algorithms. An added

easily measured from the network.

The selection of appropriate parameters for simulated an-
nealing and MFA is essential. If the selection is poor the
algorithms may diverge and fail to produce an optimal so-
ution. In this paper an approximate method to find the
parameters for MFA is analyzed.
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