Conclusion: Injection-locked arrays working at 4GHz and showing
good radiation patterns have been realised. CPW lines are used to
fabricate the oscillator part of the antenna and microtrip lines to
built the injection circuit. As each side of the substrate is used for
different purposes, the design procedure and the fabrication are
simplified. The use of switches is proposed to extend the control of
radiated phase to 360° for full beam scanning. This type of
antenna could find application as transmitting sources or as
Doppler transmit-receive modules.
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Configuring RBF neural networks
1. Sohn and N. Ansari

A novel method (based on the characteristics of scatter matrices
and frequency-sensitive competitive learning) for training the
hidden layer of a radial basis function neural network is
proposed. The method is demonstrated to be robust and to
outperform the state-of-the-art algorithm.

Introduction: Owing to their structural simplicity, radial basis
function (RBF) networks [1, 2] have been applied to many areas
such as image processing, speech recognition and adaptive equali-
sation. The key issue in configuring an RBF network is the deter-
mination of the number and centres of the hidden units. Existing
training methods such as competitive learning (CL), frequency-
sensitive competitive learning (FSCL) [3] and rival penalised com-
petitive learning (RPCL) [4] suffer from their respective inadequa-
cies. Though FSCL alleviates the sensitivity of CL to the
initialisation of the centres of the hidden units, it requires prior
knowledge of the number of clusters. RPCL improves upon FSCL
by creating a ‘rival penalising force’, but it suffers severe perform-
ance degradation when the number of initial hidden units is less
than the actual number of data clusters.

A new approach, called scatter-based clustering (SBC), is pro-
posed to train the hidden layer of the RBF networks. Parameters
of scatter matrices are utilised in conjunction with FSCL to derive
both the number and locations of the centres. SBC is simple to
implement, and is shown to outperform RPCL, the state-of-the-art
method.

RBF network: The network consists of three layers; the input, hid-
den and output layers. An RBF network can be considered as a
mapping F: RY — R according to

K
F(x) =wo + Y wiep(l|x — i)
=1
where K is the total number of RBFs, w, are the weights of the
output layer, ¢() is the basis function and ¢; are the centres of the
RBFs.

The weights of the output layer can be obtained by using either
pseudo-inverse or the least mean square algorithm if the input
traming set x and the corresponding desired output are provided.
Different basis functions @(-) can be adopted. The most frequently
used basis is the Gaussian function.

Algorithm: Using the characteristics of the scatter matrix, a new
criterion called ‘sphericity’, similar to a parameter used for meas-
uring shape [5], is developed. Let x® = [x,® ... x,/4] be the jth &-
dimensional pattern vector in the Lth cluster. Furthermore, let m®
= [m® ... m®@] be the d-dimensional mean vector in the Lth clus-
ter, where m® = 1/n,X " x,® and n, is the number of patterns in
the Lth cluster. Denote M = (I/mZf X ix/® as the total mean
vector, where » = ZX n;. Then,
Total scatter matrix:
K np
=33 My - M)T

L=1j=1
Total within scatter matrix:

K np . L

Sw =33 (- mE)({H — mENT
L=1j=1

Total between scatter matrix:

K
Sp = Z”L<m<L) - M)(m® - )T
L=1

Sphericity:

+Sw, Ss] = Z’j%v%ﬁ@

The SBC algorithm, which is motivated to overcome the main
defect of the FSCL in requiring prior knowledge of the number of
data clusters, can be summarised as follows:

(1) Initialise the number of clusters to be two, k = 2.

(i) Compute cluster centres, ¢, i = 1, 2, ..., K using FSCL.

(iii) Assign input patterns to their appropriate centres according

to

xee, if |x—clf <llx—cl® Vi#i

(iv) Compute Y[Sy, Syl

(v) If the “knee’ of the plot of ¥,Sy, S5 against K (see Fig. 1)
can be located, stop; otherwise, increment K and go to Step (ii).

It was observed through numerous simulations that the optimal
number of hidden units of an RBF network corresponds to K
where the ‘knee’ of the y[Sy, S;] against K plot is located. The
‘knee’ is where the value of sphericity begins to stabilise. Well
clustered data always exhibited such ‘knees’ in all of our simula-
tions.
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Fig. 1 Sphericity against number of clusters

Results: Note that one does not have to guess the initial number
of centre units as required by FSCL and RPCL. SBC itself obtaing
the optimum number and the value of the centre units, thus elimi-
nating the possible performance degradation from inaccurate ini-
tialisation of centre units. In contrast, RPCL is sensitive to the
learning rate r that produces the rival penalising force, and per-
forms unsatisfactorily when the number of initial centre units are
smaller than the actual number of clusters. To compare the per-
formance between SBC and RPCL, an RBF network is utilised to
classify the patterns in a ‘noisy” XOR problem. The data patterns
used for this XOR classification are centred at (~1.0, 0.0), (1.0,
0.0), (0.0, 1.0) and (0.0, ~-1.0). The deviation is 0.2 with 100 pat-
terns in each cluster. The two clusters centred at (0.0, 1.0) and
(0.0, -1.0) form the first class, and the other two clusters centred
at (1.0, 0.0) and (1.0, 0.0) form the second class. The Gaussian
function is adopted as the basis function.
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Table 1: Classification using RPCL

RPCL Class Classified as Marginally
parameters Class 1 Class 2 | classified as
r=0.005 |[Class1 176 0 24
k=5 Class 2 16 31 153
r = 0.002 Class 1 194 6 0
k=5 Class 2 0 196 4
r=10.002 |Class1 96 102 2
k=3 Class 2 0 197 3

Table 2: Classification using SBC
Classified as i

Class Class 1 Class 2 2{{:;%%1;21111;78
Class 1 197 0 3
Class 2 0 164 6

To examine RPCL on training the hidden layer of the RBF net-
work, where one normally does not know the actual number of
data clusters, the number of initial centre units is set as five and »
= 0.005. The RBF network with these parameters shows a low rec-
ognition rate == 52% as illustrated in Table 1 because the rival
penalising force is too strong. Note that marginally classified pat-
terns were also considered misclassified. By trial and error, the
optimum value of r is found to be 0.002 at which a recognition
rate of 98% is achieved. As shown in Table 1, when the initialised
centre units (k = 3) are less than the actual number of clusters, the
recognition rate becomes 73% because there are not enough RBF
units to represent the four data clusters. In contrast, SBC achieves
a recognition rate of 98% (Table 2).

Conclusion: The proposed SBC algorithm is able to overcome
problems encountered in various adaptive competitive learning
algorithms in configuring RBF networks.
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Dispersion penalties in an analogue link
operating near 1.3um

S.L. Woodward and A .H. Gnauck

The authors investigate dispersion penalties in an analogue link
using an uncooled Fabry-Perot laser operating near 1.3um.
Mode-partition noise, caused by mode fluctuations combined with
dispersion, can rise significantly as the laser temperature rises and,
therefore, its wavelength drifts. It is found that in a link
transmitting signals near 1GHz the noise may rise by over 20dB,
even though the laser wavelength is close to the dispersion zero of
the fibre.

Introduction: The low cost of uncooled Fabry-Perot lasers opens
opportunities for many new applications, such as transmitting sig-
nals originating in homes to the headend of a cable television net-
work [1 — 3], or transporting wireless telephony signals between
small, neighbourhood antennas and a centralised base station [4, 3].
In both of these cases the optical link may use an analogue sub-
carrier to transmit digital signals. Since these lasers are not tem-
perature-controlled, they must operate over a wide temperature
range. In this Letter, we investigate how dispersion affects the per-
formance of an analogue optical link as the laser wavelength var-
ies with temperature. We have measured the relative intensity
noise (RIN) of an optical link while varying the laser temperature,
and the optical modulation depth (OMD) and frequency of a sub-
carrier.

As a Fabry-Perot laser is modulated, its mode distribution
changes. Although the total output power may be a nearly linear
function of the drive current, the fraction of power in any one
mode will vary. After the light is transmitted through fibre, any
fibre dispersion will cause the light from the various modes to
arrive at different times, so that the variation in the optical spec-
trum causes intensity noise, known as mode-partition noise. This
phenomenon has been well-studied in digital optical links [6]. In
our work we focus on analogue transmission. In an analogue link
the low-frequency mode-partition noise will be upconverted by the
modulating signal, enhancing the noise within the signal’s band.

Previous work on mode-partition noise in analogue optical links
has focused on transmission of analogue video signals using tem-
perature controlled lasers [7 — 9]. Meslener [8] concluded that the
temperature of a Fabry-Perot laser must be carefully controlled if
it is to be used to transmit analogue video signals. However, the
carrier-to-noise ratio (CNR) requirements for transmission of dig-
ital signals on analogue subcarriers are much lower than those for
analogue video signals. In this Letter, we present data on how the
noise of an analogue optical link varies over a wide temperature
range.
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Fig. 1 RIN against RF frequency

Experiment: A commercial 1.3pym multiquantum-well (MQW)
Fabry-Perot laser was used. The laser package did not include a
thermo-electric cooler, so the laser temperature was varied by
placing the device in a temperature controlled chamber. The tem-
perature was monitored using a thermistor located adjacent to the
laser package. The laser was prebiased to an average output power
of 2mW. It was modulated with a sine wave, using frequencies
varying from 450MHz to 1.8GHz. The OMD was varied from 0%
(no modulation) to 130% (we measure the OMD at the modulat-
ing frequency, neglecting the harmonic distortion caused by clip-
ping the signal). An optical isolator was used to insure that we
were observing noise due to dispersion, rather than noise due to
optical feedback. The light was then transmitted through an opti-
cal coupler, which diverted 10% of the light to an optical spectrum
analyser (OSA). The remaining light was transmitted through
18km of standard fibre, to an RF spectrum analyser.
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