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Abstract: The enhanced Birkhoff~von Neumann decomposition (EBVND) algorithm, a new class of
scheduling arbitrators for input queued {IQ) crossbdr switches that is based on the Birkhoff-von
Neumann decomposition algorithm, is introduced. Theoretical analysis shows that the performance of
EBVND is better than the Birkhoff-von Neumann decomposition algorithm in terms of throughput
and cell delay, and can also provide rate and cell delay guarantees. Also, the weighted rate filling
algorithm {(WRFA). a new algorithm that can be ueed to construct doubly stochastic matrices from
doubly substochastic matrices with less complexity and better fairness, is proposed. The wave front
Birkhoff-von Neumann decompasition (WFBVND) algorithm and its simplified version WFBYND
with loghV iterations (WFBVND-log¥), the special cases of EBVND, are also introduced and
evaluated. Simulations show that the WFBVND and WFBVND-ogN algorithms have much lower
average cell delay as compared to the Birkhoff-von Neumann decomposition algorithm.

1 Introduction

Input queuved (IQ) switching architecture is attractive for a
high-speed network owing to its scalability. Nevertheless, a
1Q switch using a single FIFO queue in cach input has the
problem of head-of-line (HOL) blocking that limits its
throughput to approximately 58.6% [1]. Previous research
shows that by adopting virtual output queueing (VOQ} [2],
in which multiple VOQs directed to different cutputs are
maintained at each input, 100% throughput can be
achieved under all admissible independent traffic [3].
However, few [Q scheduling algorithms can provide delay
guarantees. The Slepian-Duguid [2] algorithm can guaran-
tee cell delay under the (r, 7) traffic model with a fixed
schedule that is pre-computed when connections are set up.
However, it has problems such as computational complex-
ity and rate granularity limitation.

Recently, Chang er al. [4] proposed the Birkhoff-von
Neumann decomposition algorithm, which can provide
rate and cell delay guarantees, based on a decomposition
result by Birkhoff and von Neumann for a doubly stochas-
tic matrix. In this paper, we will introduce the enhanced
Birkhoff~von Neumann decomposition (EBVND) algo-
rithm, which is better than the Birkhoff-von Neumann
decomposition algorithm in terms of throughput and cell
delay, and can also provide rate and delay guarantees.

2 Background

Consider an N x N VOQ switch consisting of N inputs, ¥
outputs, and a non-blocking switch fabric such as a cross-
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bar. The packets, which may have variable length, are
broken into fixed length cells when they arrive at the
inputs. After the cells have crossed the fabric, they are reas-
sembled to the original variable length packets. A time slot
is defined as the time required to transmit a cell at the line
rate. The VOQ directed to output j at input / is dencted by
Qi; Tf O, is not emply, there will be a request from input /
1o output j. The basic objective of scheduling a VOQ
switch is to find a contention-free match based on the
connection requests, i.e., at most one input can be matched
to each output, and vice versa. Let 5= (S;;} be the match-
ing matrix, which indicates the match between inputs and
outputs. If input / and output j are matched, then §;; = I3
otherwise, S;; = 0. At the end of the time slot, a cell is
transmitted from input / to output j if 8;; = 1 and @, is not
empty.

Suppose the rate assigned to the traffic from input 7 to
output j is #;;, which is also the arrival rate of £;;. The traf-
fic is admisstble if and only if the following inequalities are
satisfied:

N—1

> ri <1,V (1)
=0 .

N—1

D rig 1,9 (2)
=0

Define matrix R = (r;)), then R is a doubly substochastic
matrix. For any doubly substochastic matrix R, there exists
[4. 5] a doubly stochastic matrix R = (7,5 such that r;; =
Fip Vi, j. Matrix R is a doubly stochastic matrix if it satis-
fies

N-1
D Fia=1vi 3)
7=0
and
N-1
Fig =LV (4)
1=0 :
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A doubly stochastic matrix R can be expressed as a linear
combination of permutation matrices {4]:

R= Zﬁf’kpk (5)

where Py Is a permutation matrix, and 0 < ¢ < | such that
= 1

A%he Birkhoff~von Neumann decomposition algorithm
schedules the cells by setting the matching matrix S to the
permutation matrix P, with probability ¢ according to a
modified packetised generalised processor sharing algo-
rithm [4]. Let C; {n) be the cumulative number of time slots
for lransmlssmn that are assigned to Q;; by time slot n.
Denote 4; {n) as the total number of cells arrived in Q;; at
the end of time slot . Then the Birkhoff-von Neumann
decomposition algorithm can guarantee

-,j('m — Cij(?l) > (m — 11)7‘7;__,' - ui,j (6)
for all i, j, m > n, where w;; is a real number less than or

equal to N> - 2N + 2, if eqns 1 and 2 are satisfied [4].
Eqn. 6 implies that if A, ,#1) conforms to (0, 1), 1.e.

Aizlm) — A ;) <m—nyri;+o;  (7)
then the celi delay from input { to output j is bounded by
[(cr + u; )fr; ] using the Birkhoff—von Neumann decompo-
smon algorithm [4].

3 Enhanced Birkhoff-von Neumann decomposition
algorithm

An algorithm to construct a doubly stochastic matrix R
from a doubly substochastic matrix R is provided m [4],
with a computational complexity of O(N%). In this paper,
we introduce the weighted rate filling algorithm (WRFA}
to perform this task,

Weighted rate filling algorithim ( WRFA):

1. Define p;=1-2¥ Jj, r;;- Calculate p; for all i.

2. Define g;=1-E2%; r, J Cdiculdte g; for all j.

3. Calculate A= N-EX3 ¥ 0 Ly, -

4 Let 7;; = ry + pgih
Theorem 1. Matrix R =

substochastic matrix R
stochastic matrix.

(7;) constructed from doubly
(r;;) with WRFA is a doubly

Proof: Since R = {r;)) is a doubly substochastic matrix, we
have p; = 0, Vi, ¢; = 0, ¥j, and A = 0. Thus, 7;; = r;; +
Pitifh =0, Vi, j. For any j, we have

N1 N -

PRI RS IS

i=0 i

AL =2 1)U
I LB S

A
For any /, we also have 25! 7;. = 1. Thus, matrix R =
(F:j) is a doubly stochastic matrix.

Compared to the original algorithm, WRFA is simpler
and fairer. For example, when
ro.2 02 0.2 0.27
02 02 02 02
0.2 02 02 02

L0.2 02 02 024
the original algorithm construcis the doubly stochastic
matrix

R=

04 02 0.2 0.27
02 04 02 0.2
02 02 04 0.2
102 02 02 04

R=
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Using WRFA, we get

0.25 025 025 0.25

= 1025 025 025 025

025 025 0.25 0.25

025 025 025 0.25
Apparently, WRFA is fairer than the criginal algorithm
since it shares the unreserved bandwidth more evenly
among the VOQs. The complexity of WRFA is O(N%),
which is smaller than the original one.
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Fig.1 Buidmjf—mn Newmgrin decomposition algorithni

a Request graph and selected permutation matrix

b One cell is scheduled by Birkhoff-von Neumann decomposition ajgerithm
¢ Two more cells can be scheduled by filling *holes”

We observed that the Birkhoft~von Neumann decompo-
sition algorithm may select the empty VOQs for transmis-
sion because in certain time slot it sets the crossbar
connection solely according to the permutation matrix
which is obtained from R, and pays no attention to the
current occupancy of VOQs. Thus, it is not surprising to
see that the average cell delay of the Birkhoff-von Neu-
mann decomposition algorithm is much larger than other
algorithms, such as the oldest celi first (OCF) [3]. For
example, Fig. la shows the 4 x 4 VOQs in matrix form,
where every square box represents a VOQ, and the non-
empty VOQ is filled with a cross. Suppose the permutation
mairix selected by the Birkhoff-von Neumann decomposi-
tion algorithm at the current tme slot is

0 0

The non-zero elements of P are represented by circles in
Fig. 1a. Among all the VOQs selected by P, only VOQ @
is non-empty, which is shown by a thick border box n
Fig. 1. Hence, only one cell can be scheduled by the
Birkhoff-von Neumann decomposition algorithm in the
current time slot. However, two more VOQs, Oy, and Qs ;.
can actually send cells across the fabric in the current time
slot without removing the cells scheduled by the Birkhoff-
von Neumann decomposition algorithm, as shown in
Fig. lc.

Based on the above observation, the enhanced Birkhoff—
von Neumann decomposition (EBVND) algorithm
matches the inputs and outputs which are not matched by
the Birkhoff-von Neumann decomposition algorithm, and
altemipts to make a maximal match in every ume slot.
Many algorithms such as parallel iterative matching (PIM)
[2] and wrapped wave front arbiter (WWFA) [6], can be
used to fill the “holes’ left by the Birkhoff-von Neumann
decomposition algorithm. Thus, EBVND will have a
higher online computational complexity than the Birkhoft—
von Neumann decomposition algorithm, but is expected to
have a better performance.

Suppose 1Q swilch B uses the Birkhoff—von Neumann
decomposztion algon'thm while 1Q switch £ uses EBVND.
Denote @2 ¥ dnd ] % as the @, of switches B and £, respec-
tively. Let i (n) be the cumulative number of cells
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dequeued from @ by the end of time slot #, and TE (n) be
the number dequeued from QF. Define T, (n, m) = T, T, (m)

- T {n).
Lemma [: For any integer sz > n, if both Q,ff and Q,f are
onstdntly backlogged from time slot #n + 1 to time slot w1,
then TE(n, m) = Ti(n, m).

Proof: When both Qf and Qf are not empty at a certain
time slot, if a cell is dequeued from Q2 A, then a cell must be
dequeued from @/ according 1o the definition of EBVND.

Let Lfi(n) and LE(n) be the length of Qf and Qf by
the end of time slot i, respectively,

Theorem 2: 1If identical traffic is fed into switch B and F
concurrenily and no cell is dropped, then LE(m) = LE(n)
for any /, j and .

Proof: Consider any.-Z. j and n, if L&) = 0, then the theo-
rem is proved, because LA(n) = 0. if L&) > 0, Jet g < 1
be the largest number such that L& 5 (”U) = 0. That is, from
time slot ny + 1 to time slot #, Q% is constantly back-
logged. Denote T7 j(no, n),,a(,\,{,g as the number of cells
dequeued from Q, A between time slot #y + 1 and # inclu-
sively when QF is constantly bdcklogged dunng (ng, H].
From lemma 1, we know that T J("o m=TE it (M5, Mcklog-
Thus we have T, J,(no, maT, J(rzg, ), because T p(”O’n)buzUng
TE(ny, n). Since L Elm) =0, L; E(ry) = LB (ng). From time
slot ng + 1 ton, the same number of cells are enqueued into
0# and Q,f, but more or the same number of cells are
dequeued from Q/£. Thus L£(n) = Lf(n) for any i, jand n.

Denote D, as the delay of a certain cell ¢ in switch B,
and D.£ as the delay of cell ¢ in switch E.

Theorem 3: Assume all the VOQs in switch B and E are
FIFOs. If identical traffic is fed into switch B and E con-
currently and no cell is dropped, then D.f < D.® for any
cell c.

Proof: If a cell ¢ which is directed to output J arrives in
input / at time slot », then both @4 and Q% j ) will be back-
logged until ¢ is scheduled. At time slot 7, L2 Sn) = L E(n).
Assume cell ¢ departs from switch E at time slot n, then

T m} = TH(n, my). Since the arrivals of 8 and £ are
1dent1cc11 cell c cannot leave switch B before time slot n, if
ali the VOQs are FIFOs. So, D.f < DB for any cell c.

Theorems 2 and 3 1mply that EBVND is better than (in
the worst casc at least as good as) the Birkhoff~von Neu-
mann decomposition algorithm in terms of throughput and
cell delay guarantees. Thus, EBVND does provision QoS
guarantees, since the Birkhoff-von Neumann decomposi-
tion algorithm was proven to provision QoS guarantees [4].

The wave front Birkhoff-von Neumann decomposition
(WFBVND) algorithm, which is a special case of EBVND,
finds more pairs in a match using a method similar to
WWFA [6]. WEBVND divides a time slot into & phases.
Assume P is the permutation matrix selected by the
Birkhoft-von Neumann decomposition algorithm. In the
fth phase, WEBVND calculates matrix ¥; = (V;;) where
Viij = Pinmoan, During the /th phase, WFBVND checks
the VOQs corresponding to the non-zere elements of ¥,
and adds the non-empty VOQs in the match if both its
input and output are unmatched. Fig. 2 shows an example,
where the VOQs filled with crosses indicate the non-empty
YOQs, the VOQs filled with circles indicate that the corre-
sponding elements of ¥} are 1, and the VOQs with thick
border are those scheduled to transmit cells. The online
computational complexity of WFBVND is O{N?).

The complexity of O(A?) may be costly for high-speed
implementation. WFBVND  with logh . iterations
(WFBVND-logh) is thus introduced as a simplified version
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of WFBVND in order to reduce the complexity. Tt differs
from WFBVYND by only having the first logV phases of
WFBVND. Since WFBVND-log/¥ runs less phases than
WFBVND, its performance is expected to be worse than
WFBVND, but still be better than the Birkhoff~von
Neumann decomposition algorithm, since it is the special
case of EBVND. The online computational complexity of
WFBVND-log¥ is O(NlogN).
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Fig.2 WFBVND algorithm
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4 Discussion and simulations

The performance of the new algorithms, together with that
of some existing algorithms, were simulated ina 16 x 16 1Q
switch. In the simulations, 256 ii.d. flows, each belonging
to a different input-output pair, were created by the Ber-
noulli model and filtered by a leaky bucket method. There-
fore, traffic A;; conforms to (o, r,) for all £ j, where o; is
set to be 10001,, As a result, the delay bound is 1000 +
[24:/r;;] time slots for the Birkhoff-von Neumann decom-
position algorithm, WFBVND, and WFBVND-log/N.

Fig. 3 shows the distribution of the percentage of cells
which experience various delays over the switch using the
Birkhoff-von Neumann decomposition, OCF and WFB-
VND algorithms under the given traffic with a total traffic
load of 84%. It shows clearly that the cell delay of the
Birkhoft~von Neumann decomposition algorithm is much
larger than that of OCF, while for WFBVND the deldy is
quite close to that of OCF.
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Fig.3  Cell delay distribution under 844 traffic load
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Fig, 4 shows the average cell delay of the Birkhoff-von
Neumann decomposition, WFBVND, WEBVND-logV
and OCT against the traffic load under iid. (o, r} traffic.
Fig. 5 shows the variance of cell delay against the traffic
load under the same traffic model. Figs. 4 and 5 indicale
that the average cell delay and variance of WFBVND is
much smaller than that of the Birkhoff-von Neumann
decomposition algorithm, and close to OCF. With a
reduced complexity, the average delay and the delay vari-
ance of WFBVND-log/ are also significantly smaller than
those of the Birkhoff-von Neumann decomposition algo-
rithm.
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The algorithms are also tested under unbalanced traffic
load. In the 256 flows, half of them, which are selected
randomly, are set to be inactive, and the active flows are
assigned rates randomly under the admission condition.
Table 1 shows the average cell delay of all the active flows
from input 0 to the outputs using BYND, WFBVND and
WFBVND-log¥, in which D;; is the average delay of the

flow from input i to output j. Table 2 tabulates the
weighted average cell delay, variance of cell delay and aver-
age queue length of all the flows. The results demonstrate
that our proposed algorithms have also achieved much
smaller average cell delay, cell delay variance and average
queue length in this traffic load.

Table 1: Average cell delay of the active flows in input 0

Algorithm Doo Doz Dga Do Doaz Dora Do Dons

BVND 93 975 968 984 916 813 983 969.0
WFBVYND-log 86 46 112 984 905 552 512 1380
WFBVND 66 29 40 35 34 51 25 1077

Table 2: Performance of BVND and EBVND under unbal-
anced traffic load

Average Variance of cell dela Average
Algorithm cell delay ttimeslot x timeslot)y gueue length
(timeslot) {cell)
BVND 826 1.1 x 108 3
WFBVND-logN 296 8.3 x 104 11
WFBVND 22,8 4.1 %103 0.43

5 Conclusions

A new class of IQ scheduling algorithms with rate and
delay guarantees is proposed in this paper. Specifically, the
performance of WFBVND and WFBVND-logh is com-
pared with that of OCF and the Birkhoff-von Neumann
decomposition algorithm. 1t has been demonstrated both
by simulations and theoretical analysis that the ncw algo-
rithms can achieve much smaller average cell delay and
delay variance, as well as provide QoS guarantees.
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