Multiple additively constrained path selection
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Abstract: Finding a feasible path subject to multiple constraints in a network is an NP-complete
problem and has been extensively studied. However, current algorithms suffer either high
computational complexity or low success ratio in finding feasible paths. The authors propose a
novel exiended Bellman-Ford algorithm (EB), from which they present a high-performance
algorithm with low computational complexity in finding feasible paths with multiple additive
consiraints. Through analysis and simulations, it is shown that ihe algorithm euntperforms its
contenders in the success rate of finding a feasible path as well as in terms of scalability; the
proposed algorithm can achieve almost 100% success ratio as long as a feasible path exists.
Furthermore, the worst case computational complexity is only twice that of the Bellman-Ford

algorithm,

1  Introduction

One of the challenging issues for high-speed packet
switching networks to facilitate various applications is to
select feasible paths that satisfy different quality-of-service
(QoS) requirements. This problem is known as QoS
routing. In general, two issues are related to QoS routing;
state distribution and routing strategy [1]. State distribution
addresses the issue of exchanging the state information
throughout the network [2]. Routing strategy is used to find
a feasible path that meets the QoS requirements. In this
paper, we focus on the latter task and assume that accurate
network state information is availabie to each node. A
number of research works have also addressed inaccurate
information [3-7], which is, however, beyond the scope of
this paper.

QoS constraints can be categorised into three types:
concave, additive and multiplicative. Since concave
parameters set the upper limits of all the links along a
path, such as bandwidth, we can simply prune all the links
and nodes that do not satisfy the QoS constraints. We can
also convert multiplicative parameters into  additive
parameters by using the logarithm function. IFor instance,
we ¢an take —log(l—-o) as the replacement for loss rate o.
Thus, we focus only on additive constraints in this paper.
It has been proved that multiple additively constrained
QoS routing is NP-complete [8). Hence, tackling this
problem reqnires heuristics. In [9), a heunstic algorithm
was proposed based on a linear cost function for two
additive constraints; this is a MCP (muliiple constrained
path selection) [1] problem with two additive constraints.
A binary search strategy for finding the appropriaic
value of & in the linear cost function w(p}+kws(p)
or kw(p)+wap), where wip) (i=1,2) are two respective
weights of the path p, was proposed, and a hierarchical
Dijkstra algorithm was introduced to find the path.
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1t was shown that the worst-case complexity of the
algorithm is Oflog B(mi+nlogn)), where B is the upper
bound of the parameter k, m is the number of links and
n is the number of nodes. The authors in [10] simplified
the multiple constrained QoS routing problem into the
shortest path selection probiem, in which the weighted fair
queuing (WFQ) service discipline is assumed. Hence,
this routing algorithm cannot be applied to networks where
other service disciplines are employed. Similar to [9],
Lagrange relaxation based aggregated cost (LARACQ)
was proposed in [l11] for the delay constrained
least-cost path problem (DCLC). This algorithm is based
on 2 linear cost function ¢; = ¢+ Ad, where ¢ denotes the
cost, d the delay and A an adjustable parameter. It differs
from [9] on how 2 is defined; 4 is computed by Lagrange
relaxation instead of the binary scarch, [t was shown that
the computational complexity of this algorithm is
O(nflogm). However, in [12], for the same problem
{DCLC), a nonlinear cost function was proposed. Many
researchers have posed the QoS routing problem as the
k-shortest path problem, but the computational complexity
is generally very high [13, 14]. To solve the delay-cost-
constrained routing problem, Chen and Nahrstedt
proposed an algorithim [15], which maps each constraint
from a positive real number to a positive integer. By doing
50, the mapping offers a ‘coarser resolution’ of the original
problem, and the positive integer is used as an index in the
algorithm. The compulational complexity is reduced to
pseudo-polynomial time, and the performance of the
algorithin can be improved by adjusting a parameter, but
with a larger overhead.

As reviewed above, existing routing algorithms have one
or more of the following drawbacks:

(i) High computational complexity
(i) Lack of scalability
(i1} Poor success ratio

(tv) Loss of generality; focus only on one special case of
multiconstrained routing, i.e. two constraints.

Here, we propose an algorithm to solve the QoS routing
problem with multiple additive constraints, by which we are
able to overcome the above drawbacks.
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2 Problem formulation

Most works reported in the hiterature approach the QoS
routing problem as a special case of the multiconstrained
QoS routing problem, ie. mostly considering two con-
straints only. We will propose an algorithm in which there is
no limitation on the number of QoS constraints. Since
concave constraints can be easily addressed by pruning, and
multiplicative constraints can be generally converted into
additive constraints, without loss of generality, we only
consider additive constraints and formulate the problem as
follows:

Definition 1. Multiple additively constrained path selection
(MACP). Assume a network is modelled as a directed
graph G(N,E), where N is the set of all nodes and £ is the
set of all links. Each link connected from node u to &,
denoted by e,, = (u,v) € E, is associated with Af additive
parameters: wi(z,8) > 0, i=1,2,...,M. Given a set of
constraints ¢; >0, { = 1,2,..., M and a pair of nodes s and
t, the objective of MACP is to find a path p from s to ¢
subject to Hi(p) = Y wiw,vi<e, i=1,2,... .M.

e Ep

Definition 2: Any path selected by MACP is a feasible path;
that 1s, any path p from s to ¢ that meets the requirement
Wipy= 3 wilu,vy<c,i=12,...,M is a feasible path.

€urEp
Notations:.

Aix)  cost function, where x = (), x2,..., %)
c vector representation of the QoS constraints
{c1,¢2,. . ¢80}
W{p) weight vector of path p, i.e. W(p) = (W (p), Wa(p),

s Wu(p)), where Bi{p) =32, o, wilu,v
Clpy cost of path p, C(p)= 3 flwi(ews) wilews):
CurEp

cowr(e,,3), where £(-) is the cost function.

Note that C{p) is generally not fiW (p)) because

F(W(p) = f( Z wi{u, ), Z walw, ), ..., Z wiy ae, .::))
Cus€ P o €P PurGp

(1
Z}\il Boxe

f(W{P)):f(Z wi{a, 0), Z wa e, o), ..., z e v))
Er:E Y eu EP oD
M
=30 (X monn)

ereCl

-3 ( S Bl v)))

i=l \gEp

=, (iﬂwmv})

eueEp

= Z f(wl eu,p),WZ(eu,u): i

CurEP

However, if flx) is linear, i.e. f{x) =

s Wat (eu,v)) = C(p}

(2)

3  Proposed QoS routing algorithm

Assume the link weights are randomly distributed, and
define £ {Wi(p) < c1. Wy(p) < ca,..., Wy(p) < cu [C(p)
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=k, H(p) = n} as the probability that a path p is a feasible
path W1th C(p) = k, and its hop count H( p) = n. Thus, the
probability of the least-cost path of being a feasible path
may not be the largest in all possible paths. Note that the
probability that a path is a feasible path is not only related
to the cost of the path but also the hop count.

For simplicity, the following linear normalised cost
function is adopted:

I
fw=32 (3)
= i
With the above setting, the following theorem can be readily
established.
Theorem 1. A feasible path does not exist if’ the least-cost
path has a cost greater than or equal to fc).
Proof' By contradiction. Assume path p satisfies the
constraint ¢ and the least cost among all paths is larger
than or equal to flc); that is

Clp) z f(e),Vp=C(p) = fle) (4)
Also, since f{x) is linear, from (2)
J(W(p)) = C(p) (3)
Thus,
JW(p)) = fle) (6)

However, since 3f{x)/0x; > 0 and path p satisfies the
constraint ¢
Wi(p)<ep¥ic{L,2,... .M} = f(W(p)<fle) (7)

which contradicts (6a), and thus theorem 1 is proved. [
Lermmna 1: If path p is a feasible path

S(W(p))<fie) (8)
Proof: The proof is similar to that of theorem 1. n|
Lemma 2. If AW(p)<fic), path p can be an infeasible

path.

Proof: The proof is similar to that of theorem 1. O
Lemmas 1 and 2 motivate us to propose the following
operation in executing our proposed algorithm: whenever
we have a path p that satisfies C{p) <fl¢) (it may not be the
least~cost path), we check if it is a feasible path. This
operation is included in lines 1-8 of the pseudocode of the
relaxation procedure of our proposed extended Bellman—
Ford (£B) algorithm shown in Fig. . Here, p'(s,
represents an n-hop path from source s to i compuied by
the EB algorithm (we will prove later that p”(s, 1 is a least-
cost path among all the #-hop paths from source s to ij). D}
is the cost of this path, #({) represents the predecessor node
of i along the path and o, /) is the cost of link (i, j) (f there
is no link between i and j, (i, j} = o0).

Relax(j, i}

1 it i ts the destination node t

2 if D7+c (f, D f(c) Fcheck if this path is teasible path®/
4 it p" (s, N+e (f, 1) is feasible, then

5 return SUCCESS /“feasible path is found™/
6 endif

7 endif

8 end if

9 if Df”ﬂz l:f,"-u: (i, phen

10 Dinn: ‘Djn+&\(j' A

. PP (s ) =phis ) +elif)

12 7 (=4

18 endif

Fig. T Relaxation procedure of EB
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Note that, from Fig 1, the checking procedure (lines 1-8)
is required only when node ; is the destination, and hence its
compuiational complexity is negligible when compared to
the whole relaxation procedure. Since there is no difference
between the relaxation procedure of the EB algorithm and
that of the standard Bellman-Ford algorithm except the
checking procedure, the computational complexity and
memory cost of the EB algorithm arc compatible with those
of the standard Bellman-Ford algorithm. However, it
should be noted that there are two distinct differences
between our algorithm and the Bellman—Ford algorithm,
that are net shown in Fig. 1:

(i) D" is defined as minfe(i, j) + D%, n = 1,2,..., in our
J
algorithm, while Df*! is defined as min{minfc(;, /) +- D%,
S

0} in the Beltman-Ford algorithm. Here, D} = (s, i).
D! can be obtained iteratively through the relaxation
procedure by simply setting the initial value of D'! as
infinity, instead of 7 in the Bellman—Ford algorithm.

(i) In our algorithm, [ = 0o, n = 1,2, ..., while D? =0,
n=1,2, .., in the Bellman-Ford algorithm.

By the above two modifications, we can compuie p"(s, 1)
which is a least-cost path among all n-hop paths from sto 7.
Note that the computational complexity of the ER
algorithm is just compatible with that of the Bellman-Ford
algorithm. However, as compared to the Beliman-Ford
algorithm which only computes the least-cost path from
node s to any other node 7 subject to the constraint that the
path contains at most » hops, our algorithin finds more
possible paths and thus increases the success ratio in finding
a feasible path.

Proposition: For any node i € {1,2,,..,N}, if at least one
#-hop path from s to 7 physically exists, the path p"(s, i}
generated by the EB algorithm must be a least-cost path
among all r-hop paths from s (o £

Proof: When n=1, from the definition of the initial value
of DI (i # 5), p'(s,i) is the one hop least-cost path from s
toi, ie{l,2,....N}L

We assume that the proposition is correct for n = k. We
want fo prove by deduction that it is true for n = k + 1.

Assume when 7 =k~ 1, if 3£ 5, p**1{s,/) is not a
least-cost path o all ( + 1)-hop paths from s to j (DAV! is
larger than the cost of the (k + 1)-hop least-cost path from
s to j). Further assume path i (s, /) is a least-cost path in
all (X + 1)-hop paths from s to 4, then the predecessor node
of node jin pF+'(s, /) is 4, the path from s to in P+ (s, §)
is p*(s,d) (note that p*(s,d) may not be a least-cost &-hop
path from s to ¢, and by the earlier assumption, since a k-
hop path exists, p*{s, d) generated by the EB algorithm is a
least-cost path from s to d), the cost of p**!(s,/) is ¢ and
the cost of p*(s,d) is ¢’. Thus

c<Df" (%)

if pf(s,d) = p*(s,d) or ¢ = D5, p*+(s, /) is obtained by
concatenating p*(s,d} with link e(j,d). Thus

C:Dﬁ*‘cﬁi:d)zm!in[c(j, D+ Df =D (1)
which contradicts (9). Hence,

Pis,d) # p(s.d) (11)
and

c'>D§ (12)
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So, the cost of (s, ) is
e=c'+e(j.d) = Dyt cj.d) 2 minle(j, 1)+ Djj = Df*!
(13)

which contradicts {9). So, when n = k+ 1, p*+'(s,1), i €
{1,2,....N} is a least-cost path among all (k+ 1)-hop
paths from s to £

Thus, for any node 7 € {1,2,...,N}, if at least one »-
hop path from s to ¢ physically exists, the path p*(s,7)
generated by the EB algorithm must be a least cost path
among all n-hop paths from s to i. a

As shown in Fig. 2, the EB aigorithm first computes
P(s, j), where j is a neighbour node of destination 1, adds
the link (7.£) to the path p"{s.;) and then checks if the
resulting new path is a feasible path.

Note that the EB algorithm is asymmetric with respect to
the source and destination. Intuitively, if no feasible path is
found in the first execution of the EB algorithm, we may
search in the reverse direction if the cost of the least-cost
path is less than f{¢) (otherwise, by theorem 1, we already
know that there does not exist a feasible path), that 1s, from
the destination to the source node, with a well designed new
cost function f(x). We thus propose 1o incorporate this
bidirectional search (both forward and reverse) in our
proposed QoS routing algorithm, and call it the BEB
(bidirectional extended Bellman-Ford) algorithm. We shall
next address the issue of choosing the new cost function for
the backward EB.

It is desirable to either have found a feasible path or
ascertain that a feasible path does not exist (invoking
theorem 1) by the second execution of the EB algorithm
(backward EB). However, #f the same cost function is
deployed, the least-cost path of the first search (forward EB)
that is not a feasible path is still a least-cost path in the
second search (backward EB). Since we already know that
the least-cost path p of the first search (forward EB) is not a
feasible path, the cost function should be adjusted for the
second search such that

(1) If a feasible path does exist, p should not be the least-cost
path computed by the second search

() If p is the leastcost path of the second search,
F{W{p)) > f(e) so that theorem 1 can be invoked.

Since p is not a feasible path, Iw.( p) for some i such that
wi{p)>e. It is also possible that wi(p)=g¢,
i=1,2,....,M, for p to be an infeasible path. In this case,
fle) = C{p), and by theorem 1, a feasible path does not
exist and it is unnecessary to invoke the second search).
Thus, we may simply adjust this component in the cost

Fig. 2 EB dalgorithm
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Algorithm BED(G,s,t,¢}
1 it EB(G,s4, ¢, LeastCost) = SUCCESS
refurn SUCCESS
else
it LeastCost 2 f (€)
I return No Feasible Path Exists /*no feasible path existing*/
else
Compute New Cost Function 7 {x)
it EB (G,1,5,c, LeastCost}= SUCCESS
return SUCCESS

= 0 ~NH R

(=]

else

i1 if LeastCost 2 f{c}

12 return No Feasible Path Exists /*no feasible path existing*/
i3 end f

14 end if

i5 end if

else
17 return FAIL  /fail to find a feasibie path’/
18 end it

Fig. 3 Psewdocode of the BEB algoritihm

function such that (W (p)) = f/(¢) as follows:

M
Flenxa, . x) :le+ (M+—]-)xf

= wi{(p) — ¢ <
J#
M :
NN f@%—qu‘
i G )-
(14)
since ,
X ¢) — P
fle)y=C(p), lfu(_’l(lp_)_f_(c{j_) >0 and —gj—ffl >0,
F=12 ..M

(theorem | s valid only when & (x)/dx; >0,
i=1.2,...,M). It should be noted that this procedure is
derived under the condition that the cost function is linear
because, only in this case, fAW(p))= C(p) holds for any
path p.

Fig. 3 shows the pseudocode of our proposed QoS
routing algorithm.

4  Simulations

Cur simulations are divided into two parts. The first part
involves evaluating the performance of our proposal (BEB)
and comparing that with the Korkmaz et al. algorithm [9].
The network topology presented in [9, 15] is adopted for
comparison purposes. The second part is a demonstration
of the scalability of our proposed algorithm, BEB. Two
larger networks with 50 and 100 nodes are generated using
Doar’s model [16]. In all simulations, the link weights are
independent and uniformly distributed from 0 te 1, and all
data are obtained by running [ 000000 requests.

To evaluate the performance, we do not adopt the
success ratio defined in [9, 15] that is defined as
SR = ot ro. of successful requests (1)

total no. of reguests
Since there may not exist a feasible path if the given
constraints are tight, in which case, this success ratio {15)
cannot truly reflect the algorithm’s capability in finding a
feasible path. Therefore, we propose the following more
appropriate success ratio definition as our performance
index:

rotal no. of successful requests of the algorithm

" total no. of successful requests of optimal algorithm

(16)
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Fig. 4 32-node nenwork topology

The algorithm that can always locate a feasible path as long
as it exists is referred to as the optimal algorithm, Here, it 15
achieved simply by flooding which is rather exhaustive.
Sinuiation 1

In simulation 1, our proposed algorithm is compared with
the Korkmaz er al. algorithm [9] (B = 1000). The network
topology is shown in Fig. 4. Two QoS constraints are set
to be equal and increase from 0.5 to 4.9 with an increment
of D.2.

From Fig. §, it can be observed that the lower bound of
our algorithm in this simulation is 99.9%, while that of
Korkmaz et a/. in this simulation is about 99.1%. However,
note that the worst-case computational complexity of the
BEB algorithm is only twice that of EB, i.e. iwice that of the
Bellman-Ford algorithm.

Simulation 2

Intuitively, the larger the network, the harder it is to find a
feasible path. Thus, the performance of an algorithm may
degrade guickly with the network size. However, by
deploving the EB algorithm, our algorithm can essentially
overcome this problem, ie. our algorithm is scalable, as
shown in Figs. 5-7.

It can be observed that the lower bound of the SR of our
algorithm is about 99.5% in both networks (50 and 100
nodes), while the worst-case SRs of the Korkmaz et al
algorithm are 97.5% and 97%, respectively. Thus, as
compared to the Korkmaz et ¢f. algorithm, our algorithm is
more scalable.

1.000 - o
- - ,‘",'/
I ey e
0.008 | \
]
% 0.996 [ \\
—s— BEB
0.994 - -4~ Korkmaz's, B=1000
r
0.992 }
. o L . . 0 L L a
1 2 3 4 5

canstraint

Fig.5 SR for the 32-node network
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100 e e

0.99

SR
2

—— BED

0.98 —&- Korkmaz's, B:!UO(;i

constraint

Fig. 6 SR for the 50-nade network

1.00 -

-+ BEB
—&- Korkmaz's, 8=1000

constraint

Fig. 7 SR jor the 100-node network

5 Conclusions

We have proposed an efficient algorithm (BEB), which
possesses the properties of low computational compiexity
and good scalability for multiple additively constrained
- routing. The worst-case computational complexity of our
algorithm is Q(2NE), where N is the number of nodes and E
is the number of links. Simulations show that our algorithm
outperforms its contender. With a slight modification, our

IEE Proe. Conmpn., Vol 149 No. 5, Oclober 2002

algorithm can also be employed for many other problems,
such as the DCLC problem.
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